Правило Вант- Гоффа. Уравнение Аррениуса

Зависимость скорости реакции от температуры приближенно определяется эмпирическим правилом Вант-Гоффа: при изменении температуры на каждые 10 градусов скорость большинства реакций изменяется в 2-4 раза.

Математически правило Вант-Гоффа выражается так:

где v(T2) и v(T1) - скорости реакций, соответственно при температурах Т2 и T1 (T2> T1);

γ-температурный коэффициент скорости реакции.

Значение γ для эндотермической реакции выше, чем для экзотермической. Для многих реакций γ лежит в пределах 2-4.

Физический смысл величины γ заключается в том, что он показывает, во сколько раз изменяется скорость реакции при изменении температуры на каждые 10 градусов.

Поскольку скорость реакции и константа скорости химической реакции прямопропорциональны, то выражение (3.6) часто записывают в следующем виде:

(3.7)

где k(T2), k(T1)- константы скорости реакции соответственно

при температурах T2 и T1;

γ -температурный коэффициент скорости реакции.

Пример 8. На сколько градусов надо повысить температуру, что бы скорость реакции возросла в 27 раз? Температурный коэффициент реакции равен 3.

Решение. Используем выражение (3.6):

Получаем: 27 = , = 3, DТ = 30.

Ответ: на 30 градусов.

Скорость реакции и время, за которое она протекает, связаны обратно пропорциональной зависимостью: чем больше v, тем

меньше t. Математически это выражается соотношением

Пример 9. При температуре 293 К реакция протекает за 2 мин. За какое время будет протекать эта реакция при температуре 273 К, если γ = 2.

Решение. Из уравнения (3.8) следует:

.

Используем уравнение (3.6), поскольку Получим:

мин.

Ответ: 8 мин.

Правило Вант-Гоффа применимо для ограниченного числа химических реакций. Влияние температуры на скорость процес-сов чаще определяют по уравнению Аррениуса.

Уравнение Аррениуса . В 1889 г. шведский ученый С. Арре-1иус на основании экспериментов вывел уравнение, которое на-звано его именем

где k - константа скорости реакции;

k0 - предэксноненциальный множитель;

е - основание натурального логарифма;

Ea - постоянная, называемая энергией активации, определяемая природой реагентов:

R-универсальная газовая постоянная, равная 8,314 Дж/моль×К.

Значения Еa для химических реакций лежат в пределах 4 - 400 кДж/моль.

Многие реакции характеризуются определенным энергети-ческим барьером. Для его преодоления необходима энергия актации - некоторая избыточная энергия (по сравнению со вредней энергией молекул при данной температуре), которой должны обладать молекулы для того, чтобы их столкновение было эффективным, т. е. привело бы к образованию нового ве-щества. С ростом температуры число активных молекул быстро увеличивается, что и приводит к резкому возрастанию скорости реакции.

В общем случае, если температура реакции изменяется от Т1 до Т2, уравнение (3.9) после логарифмирования примет вид:

. (3.10)

Это уравнение позволяет рассчитывать энергию активации реакции при изменении температуры от Т1 до Т2.

Скорость химических реакций возрастает в присутствии катализатора. Действие катализатора заключается в том, что он образует с реагентами неустойчивые промежуточные соединения (активированные комплексы), распад которых приводит к. образованию продуктов реакции. При этом энергия активации, понижается, и активными становятся молекулы, энергия которых была недостаточна для осуществления реакции в отсутствие, катализатора. В результате возрастает общее число активных£ молекул и увеличивается скорость реакции.

Изменение скорости реакции в присутствии катализатора выражается следующим уравнением:

, (3.11)

где vкат, и Ea(кат) - скорость и энергия активации химической реакции в присутствии катализатора;

v и Еа - скорость и энергия активации химической реакции без катализатора.

Пример 10 . Энергия активации некоторой реакции в отсутствие катализатора равна 75,24 кДж/моль, с катализатором - 50,14 кДж/моль. Во сколько раз возрастает скорость реакции в присутствии катализатора, если реакция протекает при температуре 298 К? Решение. Воспользуемся уравнением (3.11). Подставляя в уравнение данные

Влияние температуры на количество столкновений молекул может быть показано с помощью модели . В первом приближении влияние температуры на скорость реакций определяется правилом Вант-Гоффа (сформулировано Я. Х. Вант-Гоффом на основании экспериментального изучения множества реакций):

где g - tтемпературный коэффициент, принимающий значения от 2 до 4.

Объяснение зависимости скорости реакции от температуры было дано С.Аррениусом . К реакции приводит не каждое столкновение молекул реагентов, а только наиболее сильные столкновения. Лишь молекулы, обладающие избытком кинетической энергии, способны к химической реакции.

С.Аррениус рассчитал долю активных (т.е. приводящих к реакции) соударений реагирующих частиц a, зависящую от температуры: - a = exp(-E/RT). и вывел уравнение Аррениуса для константы скорости реакции :

k = k o e -E/RT

где k o и E dзависят от природы реагентов. Е - это энергия, которую надо придать молекулам, чтобы они вступили во взаимодействие, называемая энергией активации .

Зависимость скорости химической реакции от температуры.

Скорость гетерогенных реакций.

В гетерогенных системах реакции протекают на поверхности раздела фаз. При этом концентрация твердой фазы остается прак­тически постоянной и не влияет на скорость реакции. Скорость гетерогенной реакции будет зависить только от концентрации ве­щества в жидкой или газообразной фазе. Поэтому в кинетическом уравнении концентрации твердых веществ не указываются, их ве­личины входят в значения констант. Например, для гетерогенной реакции

кинетическое уравнение можно записать

ПРИМЕР 4. Кинетический порядок реакции взаимо­действия хрома с алюминием равен 1. Написать химическое и кине­тическое уравнения реакции.

Реакция взаимодействия алюминия схлором гетерогенная, кинетическое уравнение может быть записано

ПРИМЕР 5. Кинетическое уравнение реакции

имеет вид

Определить размерность константы скорости и вычислить скорость растворения серебра при парциональном давлении кислорода Па и концентрации цианистого калия 0,055 моль/л.

Размерность константы определяем из кинетического уравнения, чанного в условии задачи:

Подставляя в кинетическое уравнение данные задачи, находим скорость растворения серебра:

ПРИМЕР 6. Кинетическое уравнение реакции

имеет вид

Как изменится скорость реакции, если концентрацию хлорида ртути (П) в два раза уменьшить, а концентрацию оксалат ионов в два раза увеличить?

После изменения концентрации исходных веществ скорость реакции выражается кинетическим уравнением

Сравнивая и, находим, что скорость реакции уве­личилась в 2 раза.

При повышении температуры скорость химической реакции заметно возрастает.

Количественная зависимость скорости реакции от температуры определяется правилом Вант-Гоффа.

Для характеристики зависимости скорости химической реакции (константы скорости) от температуры используют температурный коэф­фициент скорости, реакции (), называемый также коэффициентом Вант-Гоффа. Температурный коэффициент скорости реакции показывает, во сколько раз увеличится скорость реакции с повышением температуры реагирующих веществ на 10 градусов.

Математически зависимость скорости реакции от температуры выражается соотношением

где температурный коэффициент скорости;



Т ;

Т ;

–– константа скорости реакции при температуре Т + 10;

–– скорость реакции при температуре Т + 10.

Для расчетов удобнее пользоваться уравнениями

а также логарифмическими формами этих уравнений

Возрастание скорости реакции с повышением температуры объясняет теория активации. Согласно этой теория частицы реагирующих веществ пристолкновении должны преодолеть силы отталкивания, ослабить или разорвать старые химические связи и образовать новые. На это они должны затратить определен­ную энергию, т.е. преодолеть какой-то энергетический барьер. Частица, обладающие избыточной энергией достаточной дня преодо­ления энергетического барьера, называют активными частицами.

При обычныхусловиях активных частиц в системе мало, и реакцияпротекает с меньшей скоростью. Но неактивные частицы могут стать активными, если сообщить им дополнительную энергий. Одним из способов активации частиц является повышением температуры. При повышении температуры резко возрастает число активных частиц в системе и скорость реакции увеличивается.

Повышение температуры ускоряет все химические реакции. Первоначально Вант-Гофф экспериментально установил, что при увеличении температуры на каждые 10 градусов скорость возрастает в 2 ¸ 4 раза (правило Вант-Гоффа). Это соответствует степенной зависимости скорости от температуры:

где Т > Т 0 , g - температурный коэффициент Вант-Гоффа.

Однако это уравнение теоретически не обосновано; экспериментальные данные лучше описываются экспоненциальной функцией (уравнение Аррениуса):

,

где А - предэкспоненциальный множитель, не зависящий от Т, Е а - энергия активации химической реакции (кДж/моль), R - универсальная газовая постоянная.

Уравнение Аррениуса обычно записывают для константы скорости:

.

Это уравнение теоретически обосновывается методами статистической физики. Качественно это обоснование состоит в следующем: так как реакции идут в результате беспорядочных столкновений молекул, то эти столкновения характеризуются практически непрерывным набором энергий от самых маленьких до очень больших. Очевидно, что реакция произойдет только тогда, когда молекулы соударяются с энергией, достаточной для разрыва (или существенного растяжения) некоторых химических связей. Для каждой системы существует порог энергии Е а, начиная с которого энергия достаточна для протекания реакции, – этому механизму как раз и соответствует кривая 1 на рисунке 5.1. Так как соударения происходят с частотой, зависящей от температуры по экспоненциальному закону, то и получаются формулы 5.9 и 5.10. Тогда предэкспоненциальные множители А и k 0 представляют некоторую характеристику полного числа столкновений, а член - долю результативных столкновений.

Анализ экспериментальных данных проводят, пользуясь логарифмической формой уравнения Аррениуса:

.

График строят в так называемых аррениусовских координатах
(ln k - ),рис. 7.2; из графика находят k o и Е а.

При наличии экспериментальных данных для двух температур k o и Е а легко теоретически найти:

; ;

Скорость химической реакции в значительной мере зависит от энергии активации. Для подавляющего большинства реакций она лежит в пределах от 50 до 250 кДж/моль. Реакции, для которых
Е а > 150 кДж/моль, при комнатной температуре практически не протекают.

Пример 1. Сложная необратимая реакция 2N 2 O 5 = 4NO 2 + O 2 является реакцией первого порядка. Как изменится ее скорость при увеличении давления в 5 раз?

Решение. Кинетическое уравнение этой реакции в общем виде: V = k· a . Так как реакция сложная, то возможно, что a ¹ 2. По условию порядок реакции
a = 1. Для газовых реакций роль концентрации выполняет давление. Поэтому
V = kP, и если Р 1 = 5Р, то V 1 /V = 5, т.е. скорость возрастает в пять раз.


Найти константу скорости, порядки по реагентам и записать кинетическое уравнение.

Решение. Кинетическое уравнение для скорости этой реакции в общем виде:

V = k a b .

Данные таблицы позволяют найти порядки реакции по NO (a) и H 2 (b) методом понижения порядка реакции, т.е. анализируя опыты, в которых один из реагентов имеет неизменную концентрацию. Так, = 0,01 в первом и втором столбцах, при этом изменяется.

. (частный порядок по H 2).

Для второго и третьего столбцов, наоборот, одинакова, а - различны, поэтому:

(частный порядок по NO).

Так как a и b совпадают со стехиометрическими коэффициентами, то реакция может быть простой. Константа скорости может быть найдена по данным каждого столбца:

Таким образом, кинетическое уравнение: V = 2,5 . 10 3 2 .

Суммарный (общий) порядок этой реакции (a + b) равен 3.

Пример 3. Скорость реакции А + 3В = АВ 3 определяется кинетическим уравнением V = k[А]·[B]. Определите общий порядок реакции. Какая это реакция – простая или сложная? Во сколько раз увеличится скорость реакции при увеличении концентраций в 3 раза?

Решение. Порядок реакции определяется суммой показателей степеней реагентов в кинетическом уравнении. Для данной реакции общий порядок равен двум (1 +1).

Если бы данная реакция была простой, то по закону действующих масс

V = k[А] 1 . [B] 3 и общий порядок был бы равен (1+ 3) = 4, т.е. показатели степеней в кинетическом уравнении не совпадают со стехиометрическими коэффициентами, следовательно, реакция сложная и проходит в несколько стадий.

При увеличении концентраций реагентов в 3 раза: V 1 = k·3[A]·3[B] = 3 2 V, то есть скорость увеличится в 3 2 = 9 раз.

Пример 4. Определить энергию активации реакции и ее температурный коэффициент, если при 398 и 600 0 C константы скорости равны, соответственно, 2,1×10 -4 и 6,25×10 -1 .

Решение. Е а по двум значениям может быть рассчитана по формуле 5.12:

192б33 Дж/моль.

Температурный коэффициент находим из выражения (5.8), т.к. V µ k:

.

Катализ

Одним из наиболее распространенных в химической практике методов ускорения химических реакций является катализ.Катализатор - вещество, которое многократно участвует в промежуточных стадиях реакции, но выходит из нее химически неизменным.

Например, для реакции А 2 + В 2 = 2АВ

участие катализатора К можно выразить уравнением

А 2 + К + В 2 ® А 2.... К + В 2 ® А 2 ...К...В 2 ® 2АВ + К.

Эти уравнения можно представить кривыми потенциальной энергии (рис. 5.2.).

Рис. 5.2. Энергетическая схема хода реакции

с катализатором и без катализатора

Из рисунка 5.2 видно, что:

1) катализатор уменьшает энергию активации, изменяя механизм реакции, – она протекает через новые стадии, каждая из которых характеризуется невысокой энергией активации;

2) катализатор не изменяет DН реакции (а также DG, DU и DS);

3) если катализируемая реакция обратимая, катализатор не влияет на равновесие, не изменяет константу равновесия и равновесные концентрации компонентов системы. Он в равной степени ускоряет и прямую, и обратную реакции, тем самым ускоряя время достижения равновесия.

Очевидно, в присутствии катализатора энергия активации реакции снижается на величину DЕ к. Поскольку в выражении для константы скорости реакции (уравнение 5.10) энергия активации входит в отрицательный показатель степени, то даже небольшое уменьшение Е а вызывает очень большое увеличение скорости реакции: .

Влияние катализатора на снижение Е а можно показать на примере реакции распада иодида водорода:

2HI = H 2 + I 2 .

Таким образом, для рассматриваемой реакции уменьшение энергии

активации на 63 кДж, т.е. в 1,5 раза, соответствует повышению скорости реакции при 500 К более чем 10 6 раз.

Следует отметить, что предэкспоненциальный множитель каталитической реакции k 0 1 не равен k 0 и обычно значительно меньше, однако соответствующее уменьшение скорости далеко не компенсирует её увеличения за счёт Е а.

Пример 5. Энергия активации некоторой реакции в отсутствие катализатора равна 75,24 кДж/моль, а с катализатором - 50,14 кДж/моль. Во сколько раз возрастает скорость реакции в присутствии катализатора, если реакция протекает при 25 0 С, а предэкспоненциальный множитель в присутствии катализатора уменьшается в 10 раз.

Решение. Обозначим энергию активации реакции без катализатора через Е а, а в присутствии катализатора - через Еа 1 ; соответствующие константы скоростей реакций обозначим через k и k 1 . Используя уравнение Аррениуса (5.9) (см. раздел 5.3) и принимая k 0 1 /k 0 = 10, находим:

Отсюда

Окончательно находим:

Таким образом, снижение энергии активации катализатором на 25,1 кДж привело к увеличению скорости реакции в 2500 раз, несмотря на 10-кратное уменьшение предэкспоненциального множителя.

Каталитические реакции классифицируются по типу катализаторов и по типу реакций. Так, например, по агрегатному состоянию катализаторов и реагентов катализ подразделяется на гомогенный (катализатор и реагент образуют одну фазу) и гетерогенный (катализатор и реагенты – в разных фазах, имеется граница раздела фаз между катализатором и реагентами).

Примером гомогенного катализа может быть окисление СО до СО 2 кислородом в присутствии NO 2 (катализатор). Механизм катализа можно изобразить следующими реакциями:

CO (г) + NO 2 (г) ® CO 2 (г) + NO (г) ,

2NO (г) + O 2 (г) ® 2NO 2 (г) ;

и катализатор (NO 2) снова участвует в первой реакции.

Аналогично этому может быть катализирована реакция окисления SO 2 в SO 3 ; подобная реакция применяется в производстве серной кислоты "нитрозным" способом.

Примером гетерогенного катализа является получение SO 3 из SO 2 в присутствии Pt или V 2 O 5:

SO 2 (г) + O 2 (г) ® SO 3 (г) .

Эта реакция также применяется в производстве серной кислоты ("контактный" метод).

Гетерогенный катализатор (железо) применяется также в производстве аммиака из азота и водорода и во многих других процессах.

Эффективность гетерогенных катализаторов обычно намного больше, чем гомогенных. Скорость каталитических реакций в случае гомогенного катализатора зависит от его концентрации, а в случае гетерогенного - от его удельной поверхности (то есть дисперсности) - чем она больше, тем больше скорость. Последнее связано с тем, что каталитическая реакция идет на поверхности катализатора и включает в себя стадии адсорбции (прилипание) молекул реагентов на поверхности; по окончании реакции ее продукты десорбируются. Для увеличения поверхности катализаторов их измельчают или получают специальными способами, при которых образуются очень тонкодисперсные порошки.

Приведенные примеры одновременно являются примерами окислительно-восстановительного катализа. В этом случаев качестве катализаторов обычно выступают переходные металлы или их соединения (Mn 3+ , Pt, Au, Ag, Fe, Ni, Fe 2 O 3 и др.).

В кислотно-основном катализе роль катализатора выполняют Н + , ОН - и другие подобные частицы - носители кислотности и основности. Так, реакция гидролиза

CH 3 COOCH 3 + H 2 O CH 3 COOH + CH 3 OH

ускоряется примерно в 300 раз при добавлении любой из сильных кислот: HCl, HBr или HNO 3 .

Большое значение катализ имеет в биологических системах. В этом случае катализатор называют ферментом. Эффективность действия многих ферментов намного больше, чем обычных катализаторов. Например, для реакции связывания азота в аммиак

N 2 + 3H 2 = 2NH 3

в промышленности используется гетерогенный катализатор в виде губчатого железа с добавками оксидов и сульфатов металлов.

При этом реакция проводится при Т » 700 К и Р » 30 МПа. Этот же синтез идет в клубеньках бобовых растений под действием ферментов при обычных Т и Р.

Каталитические системы небезразличны к примесям и добавкам. Некоторые из них увеличивают эффективность катализа, как например, в вышеприведенном примере катализа синтеза аммиака железом. Такие добавки в катализатор называются промоторами (оксиды калия и алюминия в железе). Некоторые примеси, наоборот, подавляют каталитическую реакцию ("отравляют" катализатор), это каталитические яды. Например, синтез SO 3 на Pt-катализаторе очень чувствителен к примесям, содержащим сульфидную серу; сера отравляет поверхность платинового катализатора. И напротив, катализатор на основе V 2 O 5 малочувствителен к таким примесям; честь разработки катализатора на основе оксида ванадия принадлежит российскому учёному Г.К. Борескову.

где g - tтемпературный коэффициент, принимающий значения от 2 до 4.

Объяснение зависимости скорости реакции от температуры было дано С.Аррениусом . К реакции приводит не каждое столкновение молекул реагентов, а только наиболее сильные столкновения. Лишь молекулы, обладающие избытком кинетической энергии, способны к химической реакции.

С.Аррениус рассчитал долю активных (т.е. приводящих к реакции) соударений реагирующих частиц a, зависящую от температуры: - a = exp(-E/RT). и вывел уравнение Аррениуса для константы скорости реакции :

k = koe-E/RT

где ko и E dзависят от природы реагентов. Е - это энергия, которую надо придать молекулам, чтобы они вступили во взаимодействие, называемая энергией активации .

Правило Вант-Гоффа - эмпирическое правило, позволяющее в первом приближении оценить влияние температуры на скорость химической реакции в небольшом температурном интервале (обычно от 0 °C до 100 °C). Я. Х. Вант-Гофф на основании множества экспериментов сформулировал следующее правило:

Энергия активации в химии и биологии - минимальное количество энергии , которое требуется сообщить системе (в химии выражается в джоулях на моль), чтобы произошла реакция . Термин введён Сванте Августом Аррениусом в . Типичное обозначение энергии реакции Ea .

Энтропия активации рассматривается как разность энтропии переходного состояния и основного состояния реагентов. Она определяется главным образом потерей трансляционной и вращательной степеней свободы частиц при образовании активированного комплекса. Существенные изменения (колебательной степени свободы могут также произойти, если активированный комплекс несколько более плотно упакован, чем реагенты.

Энтропия активации такого перехода положительна.

Энтропия активации зависит от многих факторов. Когда при бимолекулярной реакции две начальные частицы соединяются вместе, образуя переходное состояние, трансляционная и вращательная энтропия двух частиц уменьшается до значений, соответствующих единой частице; незначительное возрастание колебательной энтропии недостаточно для компенсации этого эффекта.

Энтропии активации, по существу, больше изменяются и зависимости от строения, чем энтальпии. Энтропии активации хорошо согласуются в большинстве случаев с правилом Прайса и Гаммета. Этот ряд имеет и то частное значение, что возрастание и энтропии силапа, вероятно, можно точно подсчитать из известных абсолютных энтропии соответствующих углеводородов