Продукты реакции горения органических веществ. При написании уравнений реакций горения и разложения органических веществ лучше использовать среднее значение с

Горение – химический процесс соединения топлива с окислителем, сопровождающийся интенсивным тепловыделением и резким повышением температуры продуктов сгорания.

Горение сопровождается смесеобразованием, диффузией, воспламенением, теплообменом и другими процессами, протекающими в условиях тесной взаимосвязи.

Различают гомогенное и гетерогенное горение. При гомогенном горении тепло- и массообмен протекают между веществами, находящимися в одинаковом агрегатном состоянии (обычно газообразном).

Гетерогенное горение свойственно жидкому и твердому топливам.

Скорость химической реакции зависит от концентрации реагирующих веществ, температуры и давления и определяется произведением концентраций реагирующих веществ

где k 0 – эмпирическая константа.

Энергия активации E – это наименьшая энергия (для газовых смесей 85–170 МДж/кмоль), которой должны обладать молекулы в момент столкновения, чтобы быть способными к химическому взаимодействию. Разность энергий активации прямой и обратной реакции составляет тепловой эффект химической реакции.

Реакции характеризуются сильной экзотермичностью, обусловливающей рост температуры. Влияние температуры на скорость реакции значительно сильнее влияния концентрации реагирующих веществ. Поэтому, несмотря на уменьшение концентрации реагирующих веществ при горении, скорость реакции горения увеличивается и достигает максимума после выгорания 80–90% горючих веществ. Реакции горения газообразного топлива протекают практически мгновенно, что объясняется не только сильным влиянием температуры, но и цепным характером их протекания.

Скорость реакции зависит также от давления
(n – порядок реакции).

Процесс горения топлива имеет две области: кинетическую, в которой скорость горения топлива определяется скоростью химической реакции, и диффузионную, в которой регулятором скорости выгорания является скорость смесеобразования. Примером кинетической области горения является горение однородной газовоздушной смеси. Диффузионно горит газообразное топливо, вводимое в реакционную камеру отдельно от окислителя.

Кинетическая область химического воздействия на скорость горения наиболее сильно ощущается при низких концентрациях, температурах и давлениях в смеси. В этих условиях химическая реакция может настолько замедлиться, что сама станет тормозить горение. Диффузионная область воздействия на скорость выгорания топлива проявляется при высоких концентрациях и температурах. Химическая реакция протекает очень быстро, и задержка в горении может быть вызвана недостаточно высокой скоростью смесеобразования.

Процесс смесеобразования практически не зависит от температуры.

Кинетическое горение готовой горючей смеси при турбулентном режиме движения очень неустойчиво. Поэтому в высокопроизводительных промышленных топочных устройствах при турбулентном режиме движения газовоздушных потоков горение является в основном диффузионным.

Процесс горения горючей смеси может начаться путем самовоспламенения или принудительного воспламенения (электрическая искра, факел и т.п.). Температура самовоспламенения определяется соотношением количества теплоты, выделяющегося при горении и отдаваемого во внешнюю среду. Количество теплоты, выделяющееся при горении, зависит от температуры и изменяется по экспоненте 1 (рис. 1.1)

где α – коэффициент теплоотдачи; A – площадь поверхности;T с - температура охлаждаемой стенки.

При небольшом отводе теплоты (прямая 2""" ) количество выделяемой теплотыq в >q от, поэтому реакция сопровождается повышением температуры системы, приводящим к самовоспламенению.

При большем отводе теплоты (прямая 2"" ) в точке Вq в =q от. ТемператураT в в этой точке называется температурой воспламенения горючей смеси. Она зависит от условий отвода теплоты и не является физико-химической константой, характеризующей данную горючую смесь. При увеличении отвода теплоты (прямая2" ) самовоспламенение невозможно. Точка А соответствует стабилизированному окислению в области низких температур, а точка Б – неустойчивому равновесию в области высоких температур.

Температура воспламенения может быть найдена из условий

q в =q от иdq в /dT =dq от /dT ,

определяемых точкой В (см. рис. 1.1).

С учетом уравнений (1.8) и (1.9) имеем
. Решив это уравнение, получим

.

Температура воспламенения T в для некоторых газов приведена в табл. 1.4.

Минимальная и максимальная концентрации горючей составляющей, ниже и выше которых не происходит принудительное воспламенение смеси, называются концентрационными пределами воспламенения (табл. 1.4); они зависят от количества и состава негорючих составляющих газообразного топлива, повышающих нижний и понижающих верхний пределы воспламенения.

Продуктами сгорания называют газообразные, жидкие и твердые вещества, образующиеся в результате соединения горючего вещества с кислородом в процессе горения. Состав их зависит от состава горящего вещества и условий его горения. В условиях пожара чаще всего горят органические вещества (древесина, ткани, бензин, керосин, резина и др.), в состав которых входят главным образом углерод, водород, кислород и азот. При горении их в достаточном количестве воздуха и при высокой температуре образуются продукты полного сгорания: СО 2 , Н 2 О, N 2 . При горении в недостаточном количестве воздуха или при низкой температуре кроме продуктов полного сгорания образуются продукты неполного сгорания: СО, С (сажа).

Продукты сгорания называют влажными , если при расчете их состава учитывают содержание паров воды, и сухими , если содержание паров воды не входит в расчетные формулы.

Реже во время пожара горят неорганические вещества, такие как сера, фосфор, натрий, калий, кальций, алюминий, титан, магний и др. Продуктами сгорания их в большинстве случаев являются твердые вещества, например Р 2 О 5 , Na 2 O 2 , CaO, MgO. Образуются они в дисперсном состоянии, поэтому поднимаются в воздух в виде плотного дыма. Продукты сгорания алюминия, титана и других металлов в процессе горения находятся в расплавленном состоянии.

Дым представляет собой дисперсную систему, состоящую из мельчайших твердых частиц, взвешенных в смеси продуктов сгорания с воздухом. Диаметр частиц дыма колеблется от 1 до 0,01 мкм. Объем дыма, образующегося при горении единицы массы (кг)

или объема (м 3) горючего вещества в теоретически необходимом объеме воздуха (L=1) приведен в табл. 1.2.

Таблица 1.2

Объем дыма при горении горючих веществ

Наименование

горючего вещества

Объем дыма, м 3 /кг

Наименование

горючего газа

Объем дыма, м 3 / м 3

Ацетилен

Древесина (сосна) (W = 20 %)

Природный газ

В составе дыма, образующегося на пожарах при горении органических веществ, кроме продуктов полного и неполного сгорания, содержатся продукты термоокислительного разложения горючих веществ. Образуются они при нагреве еще негорящих горючих веществ, находящихся в среде воздуха или дыма, содержащего кислород. Обычно это происходит перед факелом пламени или в верхних частях помещений, где находятся нагретые продукты сгорания.

Состав продуктов термоокислительного разложения зависит от природы горючих веществ, температуры и условий контакта с окислителем. Так, исследования показывают, что при термоокислительном разложении горючих веществ, в молекулах которых содержатся гидроксильные группы, всегда образуется вода. Если в составе горючих веществ находятся углерод, водород и кислород, продуктами термоокислительного разложения чаще всего являются углеводороды, спирты, альдегиды, кетоны и органические кислоты. Если в составе горючих веществ, кроме перечисленных элементов, есть хлор или азот, то в дыме находятся также хлористый и цианистый водород, оксиды азота и другие соединения. Так, в дыме при горении капрона содержится цианистый водород, при горении линолеума «Релин» – сероводород, диоксид серы, при горении органического стекла – оксиды азота. Продукты неполного сгорания и термоокислительного разложения в большинстве случаев являются токсичными веществами, поэтому тушение пожаров в помещениях производят только в кислородных изолирующих противогазах.

Вид формулы для расчета объема продуктов полного сгорания при теоретически необходимом количестве воздуха зависит от состава горючего вещества.

Горючее вещество – индивидуальное химическое соединение. В этом случае расчет ведут, исходя из уравнения реакции горения. Объем влажных продуктов сгорания единицы массы (кг) горючего вещества при нормальных условиях рассчитывают по формуле

где - объем влажных продуктов сгорания, м 3 /кг; , , , — число киломолей диоксида углерода, паров воды, азота и горючего вещества в уравне- нии реакции горения; М – масса горючего вещества, численно равная молекулярной массе, кг.

Пример 1.2. Определить объем сухих продуктов сгорания 1 кг ацетона при нормальных условиях. Составляем уравнение реакции горения ацетона в воздухе

Определяем объем сухих продуктов сгорания ацетона

Объем влажных продуктов сгорания 1 м 3 горючего вещества (газа) можно рассчитать по формуле

, (1.10)

где - объем влажных продуктов сгорания 1 м 3 горючего газа, м 3 /м 3 ; , , , — число молей диоксида углерода, паров воды, азота и горючего вещества (газа).

Горючее вещество – сложная смесь химических соединений. Если известен элементный состав сложного горючего вещества, то состав и количество продуктов сгорания 1 кг вещества можно определить по уравнению реакции горения отдельных элементов. Для этого составляют уравнения реакции горения углерода, водорода, серы и определяют объем продуктов сгорания, приходящийся на 1 кг горючего вещества. Уравнение реакции горения имеет вид

С + О 2 + 3,76N 2 = СО 2 + 3,76N 2 .

При сгорании 1 кг углерода получается 22,4/12 = 1,86 м 3 СО 2 и 22,4×3,76/12 =7,0 м 3 N 2 .

Аналогично определяют объем (в м 3) продуктов сгорания 1 кг серы и водорода. Полученные данные приведены ниже:

Углерод ………..

Водород ………..

Сера ……………

При горении углерода, водорода и серы кислород поступает из воздуха. Однако в состав горючего вещества может входить кислород, который также принимает участие в горении. В этом случае воздуха на горение вещества расходуется соответственно меньше.

В составе горючего вещества могут находиться азот и влага, которые в процессе горения переходят в продукты сгорания. Для их учета необходимо знать объем 1 кг азота и паров воды при нормальных условиях.


Объем 1 кг азота равен 0,8 м 3 , а паров воды 1,24 м 3 . В воздухе при 0 0 С и давлении 101 325 Па на 1 кг кислорода приходится 3,76×22,4/32=2,63 м 3 азота.

На основании приведенных данных определяют состав и объем продуктов сгорания 1 кг горючего вещества.

Пример 1.3. Определить объем и состав влажных продуктов сгорания 1 кг каменного угля, состоящего из 75,8 % С, 3,8 % Н, 2,8 % О, 1,1 % N , 2,5 % S , W = 3,8 %, A =11,0 %.

Объем продуктов сгорания будет следующий, м 3 (табл. 1.3).

Объем продуктов сгорания каменного угля

Состав продуктов сгорания

Углерод

1,86 × 0,758 = 1,4

Водород

11,2 × 0,038 = 0,425

Сера

Азот в горючем веществе

Влага в горючем веществе

1,24 × 0,03 = 0,037

Сумма

Продолжение табл. 1.3

Состав продуктов сгорания

N 2

Углерод

7 × 0,758 = 5,306

Водород

21 × 0,038 = 0,798

Сера

2,63 × 0,025 = 0,658

0,7 × 0,025 = 0,017

Азот в горючем веществе

0,8 × 0,011 = 0,0088

Влага в горючем веществе

Сумма

6,7708 - 0,0736 = 6,6972

Из общего объема азота вычитают объем азота, приходящийся на кислород в составе каменного угля 0,028 × 2,63 = 0,0736 м 3 . Итог табл. 1.3 указывает состав продуктов сгорания каменного угля. Объем влажных продуктов сгорания 1 кг каменного угля равен

=1,4 + 0,462 + 6,6972 + 0,017 = 8,576 м 3 /кг.

Горючее вещество – смесь газов. Количество и состав продуктов сгорания для смеси газов определяют по уравнению реакции горения компонентов, составляющих смесь. Например, горение метана протекает по следующему уравнению:

СН 4 + 2О 2 + 2×3,76N 2 = СО 2 + 2Н 2 О + 7,52N 2 .

Согласно этому уравнению, при сгорании 1 м 3 метана получается 1 м 3 диоксида углерода, 2 м 3 паров воды и 7,52 м 3 азота. Аналогично определяют объем (в м 3) продуктов сгорания 1 м 3 различных газов:

Водород ……………….

Окись углерода ……….

Сероводород ………….

Метан …………………

Ацетилен ………………

Этилен …………………

На основании приведенных цифр определяют состав и количество продуктов сгорания смеси газов.

Анализ продуктов сгорания, взятых на пожарах в различных помещениях, показывает, что в них всегда содержится значительное количество кислорода. Если пожар возникает в помещении с закрытыми оконными и дверными проемами, то пожар при наличии горючего может продолжаться до тех пор, пока содержание кислорода в смеси воздуха с продуктами сгорания в помещении не снизится до 14 – 16 % (об.). Следовательно, на пожарах в закрытых помещениях содержание кислорода в продуктах сгорания может быть в пределах от 21 до 14 % (об.). Состав продуктов сгорания во время пожаров в помещениях с открытыми проемами (подвал, чердак) показывает, что содержание в них кислорода может быть ниже 14 % (об.):

В подвалах ………

На чердаках …….

Пример 1.4. Определить коэффициент избытка воздуха при пожаре в помещении, если во взятом на анализе дыме содержалось 19 % (об.) О 2 . Коэффициент избытка воздуха находим, пользуясь формулой (1.8).

.

После изучения вопроса о продуктах сгорания решите самостоятельную задачу.

Задача 1.3. Определить объем влажных продуктов сгорания 1 м 3 доменного газа, состоящего из 10,5 % СО 2 , 28 % СО, 0,3 % СН 4 , 2,7 % Н 2 и 58,5 % N 2 .

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

Ответ: V n.c = 1,604 м 3 /м 3 .

Общие сведения о горении

Сущность процесса горения

Одним из первых химических явлений, с которым человечество познакомилось на заре своего существования, было горение. Вначале оно использовалось для приготовления пищи и обогрева, и лишь через тысячелетия человек научился использовать его для преобразования энергии химической реакции в механическую, электрическую и другие виды энергии.


Горение - это химическая реакция окисления, сопровождающаяся выделением большого количества тепла и свечением. В печах, двигателях внутреннего сгорания, на пожарах всегда наблюдается процесс горения, в котором участвуют какие-либо горючие вещества и кислород воздуха. Между ними протекает реакция соединения, в результате которой выделяется тепло и продукты реакции нагреваются до свечения. Так горят нефтепродукты, дерево, торф и многие другие вещества.


Однако процесс горения может сопровождать не только реакции соединения горючего вещества с кислородом воздуха, но и другие химические реакции, связанные со значительным выделением тепла. Водород, фосфор, ацетилен и другие вещества горят, например, в хлоре; медь - в парах серы, магний - в углекислом газе. Сжатый ацетилен хлористый азот и ряд других веществ способны взрываться. В процессе взрыва происходит разложение веществ с выделением тепла и образованием пламени. Таким образом, процесс горения является результатом реакций соединения и разложения веществ.

Условия, способствующие горению

Для возникновения горения необходимы определенные условия: наличие горючей среды (горючее вещество + окислитель) и источника воспламенения. Воздух и горючее вещество составляют систему, способную гореть, а температурные условия обуславливают возможность воспламенения и горения этой системы.


Как известно, основными горючими элементами в природе являются углерод и водород. Они входят в состав почти всех твердых, жидких и газообразных веществ, например, древесины, ископаемых углей, торфа, хлопка, ткани, бумаги и др.


Воспламенение и горение большинства горючих веществ происходит в газовой или паровой фазе. Образование паров и газов у твердых и жидких горючих веществ происходит в результате их нагревания. Твердые горючие вещества, например, сера, стеарин, фосфор, некоторые пластмассы при нагревании плавятся и испаряются. Дерево, торф, каменный уголь при нагревании разлагаются с образованием паров, газов и твердого остатка - угля.


Рассмотрим этот процесс подробнее на примере древесины. При нагревании до 110°С происходит высушивание древесины и незначительные испарения смолы. Слабое разложение начинается при 130°С. Более заметное разложение древесины (изменение цвета) происходит при 150°С и выше. Образующиеся при 150-200°С продукты разложения составляют, в основном, воду и углекислый газ, поэтому гореть не могут.


При температуре выше 200°С начинает разлагаться главная составная часть древесины - клетчатка. Газы, образующиеся при этих температурах, являются горючими, так как они содержат значительное количество окиси углерода-, водорода, углеводородов и паров других органических веществ. Когда концентрация этих продуктов в воздухе станет достаточной, при определенных условиях произойдет их воспламенение.


Все горючие жидкости способны испаряться, и горение их происходит в газовой фазе. Поэтому, когда говорят о горении или воспламенении жидкости, то под этим подразумевают горение или воспламенение ее паров.


Горение всех веществ начинается с их воспламенения. У большинства горючих веществ момент воспламенения характеризуется появлением пламени, а у тех веществ, которые пламенем не горят, - появлением свечения (напала).


Начальный элемент горения, возникающий под действием источников, имеющих более высокую температуру, чем температура самовоспламенения вещества, называется воспламенением.


Некоторые вещества способны без воздействия внешнего источника тепла выделять теплоту и самонагреваться. Процесс самонагревания, заканчивающийся горением, принято называть самовозгоранием.


Самовозгорание - это способность вещества воспламеняться не только при нагревании, но и при комнатной температуре под воздействием химических, микробиологических и физико-химических процессов.


Температура, до которой нужно нагреть горючее вещество, чтобы оно воспламенилось без поднесения к нему источника зажигания, называется температурой самовоспламенения.


Процесс самовоспламенения вещества проходит следующим образом. При нагревании горючего вещества, например, смеси паров бензина с воздухом, можно достигнуть такой температуры, при которой в смеси начинает протекать медленная реакция окисления. Реакция окисления сопровождается выделением тепла, и смесь начинает нагреваться выше той температуры, до которой ее нагрели.


Однако вместе с выделением тепла и повышением температуры смеси происходит теплоотдача от реагирующей смеси в окружающую среду. При малой скорости окисления величина теплоотдачи всегда превышает выделение тепла, поэтому температура смеси после некоторого повышения начинает снижаться и самовоспламенение не происходит. Если смесь нагреть извне до более высокой температуры, то вместе с увеличением скорости реакции увеличивается количество тепла, выделяемого в единицу времени.


При достижении определенной температуры тепловыделение начинает превышать теплоотдачу, и реакция приобретает условия для интенсивного ускорения. В этот момент происходит самовоспламенение вещества. Температура самовоспламенения у горючих веществ разная.



Процесс самовоспламенения, рассмотренный выше, является характерным явлением, присущим всем горючим веществам, в каком бы агрегатном состоянии они не находились. Однако в технике и быту горение веществ возникает вследствие воздействия на них пламени, искр или накаленных предметов.


Температура указанных источников воспламенения всегда выше температуры самовоспламенения горючих веществ, поэтому горение возникает очень быстро. Вещества, способные самовозгораться, делятся на три группы. К первой относятся вещества, способные самовозгораться при контакте с воздухом, ко второй со слабо нагретыми предметами. К третьей группе относятся вещества, которые самовозгораются при контакте с водой.


Например, склонными к самовозгоранию могут быть растительные продукты, древесный уголь, сульфаты железа, бурый уголь, жиры и масла, химические вещества и смеси.


Из растительных продуктов склонны к самовозгоранию сено, солома, клевер, листья, солод, хмель. Особенно подвержены самовозгоранию недосушенные растительные продукты, в которых продолжается жизнедеятельность растительных клеток.


Согласно бактериальной теории, наличие влаги и повышение температуры за счет жизнедеятельности растительных клеток способствует размножению имеющихся в растительных продуктах микроорганизмов. Вследствие плохой теплопроводности растительных продуктов выделяющаяся теплота постепенно накапливается и температура повышается.


При повышенной температуре микроорганизмы погибают и превращаются в пористый уголь, который обладает свойством нагреваться за счет интенсивного окисления и поэтому является следующим, после микроорганизмов, источником выделения тепла. Температура в растительных продуктах поднимается до 300°С, и они самовозгораются.


Древесный, бурый и каменный уголь, торф самовозгораются также за счет интенсивного окисления кислородом воздуха.


Растительные и животные жиры, если они нанесены на измельченные или волокнистые материалы (тряпки, веревки, пакля, рогожа, шерсть, опилки, сажа и др.) обладают способностью самовозгораться.


При смачивании измельченных или волокнистых материалов маслом, оно распределяется по поверхности и при соприкосновении с воздухом, начинает окисляться. Одновременно с окислением в масле происходит процесс полимеризации (соединения нескольких молекул в одну). Как первый, так и второй процессы сопровождаются значительным выделением тепла. Если выделяемое тепло не рассеивается, то температура в промасленном материале поднимается, и может достигнуть температуры самовоспламенения.


Некоторые химические вещества способны самовозгораться при соприкосновении с воздухом. К ним относится фосфор (белый, желтый), фосфористый водород, цинковая пыль, алюминиевая пудра, металлы: рубидий, цезий и др. Все эти вещества способны окисляться на воздухе с выделением тепла, за счет которого реакция ускоряется до самовоспламенения.


Калий, натрий, рубидий, цезий, карбид кальция, карбиды щелочных и щелочно-земельных металлов энергично соединяются с водой, и при взаимодействии выделяют горючие газы, которые, будучи нагреты за счет теплоты реакции, самовозгораются.


При смешении таких окислителей, как сжатый кислород, хлор, бром, фтор, азотная кислота, перекись натрия и бария, марганцевокислый калий, селитра и др., с органическими веществами, происходит процесс самовозгорания этих смесей.


Пожарная опасность веществ и материалов определяется не только их способностью воспламеняться, но и массой других факторов: интенсивностью самого процесса горения и сопутствующих горению явлений (образование дыма, токсичных паров и т.д.), возможностью прекращения этого процесса. Общим показателем пожарной опасности является горючесть.


Согласно этому показателю все вещества и материалы условно делятся на три группы: негорючие, трудногорючие, горючие.


Негорючими считаются вещества и материалы, неспособные к горению в воздухе (около 21 % кислорода). К ним относятся сталь, кирпич, гранит и т.д. Однако было бы ошибкой относить негорючие материалы к безопасным в пожарном отношении. Не горючими, но пожароопасными считаются сильные окислители (азотная и серная кислоты, бром, перекись водорода, перманганаты и др.); вещества, выделяющие горючие газы при нагревании, при реакции с водой, вещества, реагирующие с водой с выделением большого количества тепла, например, негашеная известь.


Трудногорючие - это вещества и материалы, способные гореть в воздухе от источника зажигания, но не способные самостоятельно гореть после его удаления.


Горючие - это вещества и материалы, способные самовозгораться, возгораться от источника зажигания и гореть после его удаления.

Горение древесины представляет собою окисление составных частей ее до углекислого газа СO 2 и воды Н 2 О.

Для осуществления этого процесса необходимо достаточное количество окислителя (кислорода) и нагревание древесины до определенной температуры.

При нагревании без доступа кислорода происходит термическое разложение древесины (пиролиз), в результате чего образуются уголь, газы, вода и летучие органические вещества.

В соответствии с теорией, развитой Г. Ф. Кнорре и другими учеными, горение древесины можно представить следующим образом.

В начале нагревания из древесины испаряется влага. В дальнейшем происходит термическое разложение составных частей ее. Составные части древесины в значительной степени окислены, поэтому они распадаются при невысокой температуре. Образование летучих веществ, достигает максимума (до 85% к весу начинается около 160° и сухой древесины) при 300°.

Продукты первичного распада древесины в результате сложных окислительных и восстановительных процессов переходят, в газообразное состояние, в котором они могут легко перемешиваться с молекулами кислорода, образуя горючую смесь, воспламеняющуюся при определенных условиях (избыток кислорода, достаточно высокая температура). В зависимости от качественного состояния древесина воспламеняется при 250-350°.

Газифицированные продукты горят во внешней кромке пламени, внутри же пламени летучие продукты пиролиза древесины превращаются в газообразное состояние.

Свечение пламени вызывается раскаленными частицами углерода, сгорающими в СО 2 во внешней его кромке при избытке кислорода. Наоборот, при недостатке кислорода, когда температура сравнительно невелика, пламя имеет красноватый цвет, при этом за счет несгоревших частиц углерода выделяется значительное количество копоти.

Чем больше подача кислорода, тем выше температура, больше и ярче пламя.

Внешний вид пламени также зависит от состава древесины и в первую очередь от содержания углеводородов и смол. Больше всего смол в сосновых деревьях, и березе, при горении которых образуется густое, яркое пламя. Пламя осины, летучие вещества которой содержат больше окиси углерода и меньше углеводородов, невелико, прозрачно, имеет синеватый оттенок. При горении ольхи, содержащей мало смол, также образуется более короткое и прозрачное пламя.

Последовательность термического разложения опилок при образовании коптильного дыма можно условно представить следующими этапами.

На первом этапе очередная «свежая» частица древесных опилок под воздействием горячей смеси паров и газов и теплового излучения соседних горящих частиц прогревается до 150-160°. В этот период в основном испаряется влага, заметного уменьшения объема частицы не наблюдается.

В последующие этапы температура частицы также повышается, вследствие чего происходит термическое разложение органической массы древесной частицы и воспламенение части газифицированных продуктов пиролиза с выделением тепла; часть же летучих веществ вместе с некоторым количеством несгоревшего углерода (сажи) увлекается конвекционными токами вверх, образуя дым. В конце процесса разложения древесины и выделения летучих соединений заметно уменьшаются размеры частицы.

Уголь (твердый углерод), образовавшийся в процессе термического разложения древесных опилок, нагревается теплом, выделяемым при окислении части летучих соединений и начинает реагировать с углекислотой и кислородом:

C + CO 2 → 2CO

2CO + O 2 → 2CO 2

При этом образуется небольшое, полупрозрачное синеватое пламя горения окиси углерода.

Объем частицы продолжает сокращаться; на заключительном этапе образуется зола. Под действием выделяющегося тепла начинает прогреваться следующая «свежая» частица древесных опилок.

Механизм и химизм сгорания древесины в виде поленьев дров, щепок или кучи опилок одинаков. Имеются отличия в количественной и качественной сторонах процесса собственно горения, т. е. окисления органических соединений кислородом при использовании дров или опилок.

Здесь мы сталкиваемся с понятиями так называемого полного и неполного горения. При полном горении летучие, паро- и газообразные вещества полностью окисляются (или сгорают) до углекислого газа и паров воды.

Примером полного горения может служить реакция окисления одного из компонентов коптильного дыма - метилового спирта СН 3 ОН:

СН 3 ОН + O 2 → CO 2 + 2H 2 O

Аналогично могут протекать реакции, окисления и других органических соединений, возникающих при термическом разложении древесины.

В результате полного горения образуется парогазовая смесь, которая состоит из углекислого газа и паров воды, не содержит коптильных компонентов и не представляет ценности для копчения.

Чтобы получить дым, пригодный для коптильного производства, необходимо создать условия неполного горения древесины. Для этого, например, сверху на дрова помещают слой увлажненных опилок, в результате чего зона и интенсивность горения значительно уменьшаются. При неполном горении летучие органические вещества окисляются лишь частично, а дым насыщается коптильными компонентами.

Глубина окисления продуктов пиролиза древесины зависит от количества кислорода, а также от температуры горения и скорости отвода летучих веществ из зоны горения.

При недостатке кислорода окисление летучих веществ, на пример метилового спирта, протекает по следующей реакции:

2СН 3 ОН + O 2 → 2C + 4H 2 O

Несгоревшие частички углерода, выйдя из зоны пламени, быстро охлаждаются и образуют вместе с другими, не окисленными до конца продуктами разложения древесины дым. Часть их оседает на стенках коптильных камер в виде копоти (сажи). При недостаточно хорошей изоляции коптильных камер на стенках их оседают также сконденсированные парообразные летучие вещества дыма (смола, деготь).

При более глубоком, но также неполном окислении горючих веществ образуется окись углерода:

СН 3 ОН + O 2 → CO + 2H 2 O

Таким образом, количество кислорода - один из самых существенных факторов, влияющих на химический состав дыма, в частности на изменение содержания в нем метилового спирта, формальдегида и муравьиной кислоты. Так, при ограниченном доступе воздуха в зону горения из метилового спирта образуется муравьиный альдегид:

СН 3 ОН + O 2 → CH 2 O + 4H 2 O

При поступлении большего количества воздуха, а, следовательно, и кислорода образовавшийся формальдегид окисляется до муравьиной кислоты:

2СН 2 О + O 2 → 2CHOOH

При избытке воздуха муравьиная кислота полностью окисляется до углекислого газа и воды:

2СНOOH + O 2 → 2CO 2 + 2H 2 O

При горении других продуктов пиролиза в зависимости от степени окисления аналогично образуются органические вещества, влияющие на состав дыма.

От количества кислорода, поступающего в сгорающий слой, зависит также температура горения. В обычных условиях древесина в виде поленьев не может сгорать без пламени, а, следовательно, без выделения тепла. В этом случае окисляется значительно большее количество веществ, образующихся из органической массы древесины, чем при сгорании (тлении) опилок. Поэтому значительная часть летучих веществ при сжигании дров не используется для копчения, а коптильный дым по составу уступает дыму, полученному при медленном сгорании опилок. При засыпке горящих дров влажными опилками увеличивается количество дыма, но и в этом случае дрова расходуются неэкономично.

Температурный режим естественного сгорания (тления) опилок значительно мягче по сравнению со сгоранием дров. При горении угля, оставшегося после выделения летучих веществ, образуется небольшое пламя. Полученное тепло расходуется главным образом на нагревание соседних слоев опилок, которые подвергаются термическому разложению без доступа кислорода, так как воздух оттесняется парами и газами горящего слоя.

Сгорание протекает медленно. Значительная часть продуктов термического разложения не окисляется в пламени, поэтому конвекционными потоками отводится сравнительно много летучих веществ.

Примером неполного сгорания опилок может служить сжигание их при нефорсированной нижней подаче воздуха. В этом случае сгорает полностью только нижний слой опилок. Горячие газы и пары вытесняют воздух и нагревают верхние слои опилок, что приводит к сухой перегонке древесины, в результате которой образуются уголь, газы, вода и органические соединения. При равномерном поступлении свежих опилок сверху горит только нижний слой угля, образующегося в результате сухой перегонки вышележащего слоя. При этом получается дым более насыщенный летучими органическими соединениями.

Лучшим способом получения дыма, богатого коптильными компонентами, является образование его в дымогенераторах, работающих на опилках с подогревом коптильной среды газом, глухим паром или электричеством, и во фрикционных дымогенераторах. В этом случае получается дым с повышенным содержанием летучих органических соединений, что обусловлено низкими температурами образования дыма и незначительным окислением первичных продуктов распада древесины.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Лекция

Горение в большинстве случаев сложный химический процесс. Он состоит из элементарных химических реакций окислительно-восстановительного типа, приводящих к перераспределению валентных электронов между атомами взаимодействующих молекул. Окислителями могут быть самые различные вещества: хлор, бром, сера, кислород, кислородсодержащие вещества и т. п. Однако чаще всего приходится иметь дело с горением в атмосфере воздуха, при этом окислителем является кислород. Известно, что воздух представляет собой смесь газов, основными компонентами которой являются азот (78%), кислород (21%) и аргон (0,9%). Аргон, содержащийся в воздухе, является инертным газом и в процессе горения участия не принимает. Азот в процессе горения органических веществ также практически участия не принимает.

Для многих расчетов (определение объема воздуха, необходимого для сгорания одной массовой или объемной единицы вещества, нахождение объема продуктов сгорания, температуры горения и т. п.) необходимо составлять уравнения реакций горения веществ в воздухе. При составлении этих уравнений поступают следующим образом: горючее вещество и участвующий в горении воздух пишут в левой части, после знака равенства пишут образующиеся продукты реакции. Например, необходимо составить уравнение реакции горения метана в воздухе. Сначала записывают левую часть уравнения реакции: химическую формулу метана плюс химические формулы веществ, входящих в состав воздуха. Для простоты расчетов принимают, что воздух состоит из 21 % кислорода и 79% азота, т. е. на один объем кислорода в воздухе приходится 79/21 = 3,76 объема азота, или на каждую молекулу кислорода приходится 3,76 молекулы азота. Таким образом, состав воздуха может быть представлен так: О 2 +З,76 N 2 . Тогда левая часть уравнения будет иметь вид CH 4 +O 2 + 3,76N 2 =

Какие будут получаться продукты? Ориентироваться необходимо на состав горючего

вещества. Углерод горючего всегда при полном сгорании превращается в диоксид углерода

(СО 2), водород - в воду (Н 2 О). Так как в данном горючем веществе нет других

элементов, то в продуктах сгорания будет диоксид углерода и вода. Азот воздуха (3,76 N 2) в

процессе горения участия не принимает, он целиком перейдет в продукты сгорания. Таким

образом, правая часть уравнения реакции горения метана будет следующей:

CO 2 + H 2 O + 3,76N 2

Написав левую и правую части, необходимо найти коэффициенты перед формулами. Известно, что суммарная масса веществ, вступивших в реакцию, должна быть равна массе всех веществ, получившихся в результате реакции. Это означает, что число атомов одного и того же элемента в правой и левой частях уравнения должно быть одинаковым, независимо от того, в состав какого вещества этот элемент входит. Сначала уравнивают число атомов углерода, затем водорода, потом кислорода. Множитель перед коэффициентом (3,76), поставленный у молекулы азота, всегда будет равен коэффициенту перед кислородом. Уравнение реакции будет иметь вид



СН 4 + 2О 2 + 2-3,76N 2 = СО 2 + 2Н 2 О + 2-3,76N 2

Учитывая, что расчет ведут обычно на 1 моль или 1 м 3 горючего вещества, в уравнении реакции коэффициент перед горючим веществом не ставят. Поэтому в некоторых уравнениях реакций горения могут появиться перед кислородом или другим веществом дробные коэффициенты; например, уравнение реакции горения ацетилена в воздухе будет иметь вид

C 2 H 2 + 2,5O 2 +2,5-3,76N 2 = 2CO 2 + H 2 O + 2,5-3,76N 2

Если в состав горючего вещества, кроме углерода и водорода, входит азот, то он выделяется при горении в свободном виде N 2 , например при горении пиридина

C 2 H 6 N + 6,25О 2 + 6,25 - 3,76N 2 = = 5СО 2 + 2,5Н 2 О + 6,25-3,76N 2 + 0,5N 2-

Если в состав горючего вещества входит хлор, то он при горении обычно выделяется в виде хлористого водорода, например при горении хлористого винила

СН а =СНС1 + 2,5О 2 + 2,5-3,76N 2 = 2СО 2 + Н 2 О + 2,5-3,76N 2 + HC1

Сера, входящая в состав горючего вещества, выделяется в виде SO 2 .

Содержащийся в горючем веществе кислород выделяется в виде соединений с другими элементами горючего, например СО 2 или Н 2 О, в свободном виде он не выделяется. При горении веществ, богатых кислородом, как правило, требуется меньше воздуха. Сгорание веществ может происходить также за счет кислорода, находящегося в составе других веществ, способных его легко отдавать. Такими веществами являются азотная кислота HNO 3 , бертолетова соль КСЮ 3 , селитра KNO 3 , NaNO 3 , NH4NO 3 , перманганат калия КМпО 4 , пероксид бария ВаО 2 и др. Смеси перечисленных выше окислителей с горючими веществами взаимодействуют с большой скоростью, часто со взрывом. Примером таких смесей может служить черный порох, сигнальные осветительные составы и т. п.

Чтобы возникло горение, необходимы определенные условия: наличие горючего вещества, окислителя (кислорода) и источника зажигания. Горючее вещество и окислитель должны быть нагреты до определенной температуры источником тепла (источником зажигания): пламенем, искрой, накаленным телом или теплом, выделяемым при какой-либо химической реакции или механической работе. В установившемся процессе горения постоянным источником воспламенения является зона горения, т. е. область, где происходит реакция, выделяется тепло и свет. Для возникновения и протекания процесса горения горючее вещество и окислитель должны находиться в определенном количественном соотношении.

Сгорание веществ может быть полным и неполным. При полном сгорании образуются продукты, не способные к дальнейшему горению (СО 2 , Н 2 О, НС1); при неполном - получающиеся продукты способны к дальнейшему горению (СО, H 2 S, HCN, NH 3 , альдегиды и т. д.). В условиях пожара при горении органических веществ на воздухе чаще всего полного сгорания не происходит. Признаком неполного сгорания является наличие дыма, содержащего несгоревшие частицы углерода.

Однако как бы ни проходил процесс горения, в основе его лежит химическое взаимодействие между горючим веществом и окислителем.

Современная теория окисления - восстановления основана на следующих положениях. Сущность окисления состоит в отдаче окисляющимся веществом (восстановителем) валентных электронов окислителю, который, принимая электроны, восстанавливается. Сущность восстановления состоит в присоединении восстанавливающимся веществом (окислителем) электронов восстановителя, который, отдавая электроны, окисляется. В результате передачи электронов изменяется структура внешнего (валентного) электронного уровня атома. Каждый атом при этом переходит в наиболее устойчивое в данных условиях состояние.

В химических процессах электроны могут полностью переходить из электронной оболочки атомов одного вида в оболочку атомов другого вида. Так, при горении металлического натрия в хлоре атомы натрия отдают по одному электрону атомам хлора. При этом на внешнем электронном уровне атома натрия оказывается восемь электронов (устойчивая структура), а атом, лишившийся одного электрона, превращается в положительно заряженный ион. У атома хлора, получившего один электрон, внешний уровень заполняется восемью электронами, но атом превращается в отрицательно заряженный ион. В результате действия кулоновских электростатических сил происходит сближение разноименно заряженных ионов и образуется молекула хлорида натрия (ионная связь)

Na + + Cl - à + Na+Сl

В других процессах электроны внешних оболочек двух различных атомов как бы поступают в общее пользование, стягивая тем самым атомы в молекулы (ковалентная связь)

Н. + . С1 à Н: С1:

И, наконец, один атом может отдавать в общее пользование свою пару электронов

:O: + :Са à O:Са

Но во всех случаях атомы стремятся приобрести устойчивые внешние электронные структуры.

Процесс горения - весьма активный процесс, протекающий с выделением значительного количества энергии (в виде тепла и света). Следовательно, в этом процессе происходит такое превращение веществ, при котором из менее устойчивых веществ получаются более устойчивые.