Фундаментальные взаимодействия. Школьная энциклопедия Жесткость образца

>>Физика: Силы в природе. Гравитационные силы

Выясним сначала, много ли видов сил существует в природе.
На первый взгляд кажется, что мы взялись за непосильную и неразрешимую задачу: тел на Земле и вне ее бесконечное множество. Они взаимодействуют по-разному. Так, например, камень падает на Землю; электровоз тянет поезд; нога футболиста ударяет по мячу; потертая о мех эбонитовая палочка притягивает легкие бумажки, магнит притягивает железные опилки; проводник с током поворачивает стрелку компаса; взаимодействуют Луна и Земля, а вместе они взаимодействуют с Солнцем; взаимодействуют звезды и звездные системы и т. д. Подобным примерам нет конца. Похоже, что в природе существует бесконечное множество взаимодействий (сил)? Оказывается, нет!
Четыре типа сил. В безграничных просторах Вселенной , на нашей планете, в любом веществе, в живых организмах, в атомах, в атомных ядрах и в мире элементарных частиц мы встречаемся с проявлением всего лишь четырех типов сил: гравитационных, электромагнитных, сильных (ядерных) и слабых.
Гравитационные силы , или силы всемирного тяготения, действуют между всеми телами - все тела притягиваются друг к другу. Но это притяжение существенно обычно лишь тогда, когда хотя бы одно из взаимодействующих тел так же велико, как Земля или Луна. Иначе эти силы столь малы, что ими можно пренебречь.
Электромагнитные силы действуют между частицами, имеющими электрические заряды. Сфера их действия особенно обширна и разнообразна. В атомах, молекулах, твердых, жидких и газообразных телах, живых организмах именно электромагнитные силы являются главными. Велика их роль в атомах.
Область действия ядерных сил очень ограничена. Они заметны только внутри атомных ядер (т. е. на расстояниях порядка 10 -13 см). Уже на расстояниях между частицами порядка 10 -11 см (в тысячу раз меньших размеров атома - 10 -8 см) они не проявляются совсем.
Слабые взаимодействия проявляются на еще меньших расстояниях, порядка 10 -15 см. Они вызывают взаимные превращения элементарных частиц, определяют радиоактивный распад ядер, реакции термоядерного синтеза.
Ядерные силы - самые мощные в природе. Если интенсивность ядерных сил принять за единицу, то интенсивность электромагнитных сил составит 10 -2 , гравитационных - 10 -40 , слабых взаимодействий - 10 -16 .
Сильные (ядерные) и слабые взаимодействия проявляются на таких малых расстояниях, когда законы механики Ньютона, а с ними вместе и понятие механической силы теряют смысл.
В механике мы будем рассматривать только гравитационные и электромагнитные взаимодействия.
Силы в механике. В механике обычно имеют дело с тремя видами сил - силами тяготения, силами упругости и силами трения.
Силы упругости и трения имеют электромагнитную природу. Мы не будем здесь объяснять происхождение этих сил, с помощью опытов можно будет выяснить условия, при которых возникают эти силы, и выразить их количественно.
В природе существуют четыре типа взаимодействия. В механике изучаются гравитационные силы и две разновидности электромагнитных сил - силы упругости и силы трения .

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

В природе существует много разных видов сил: тяготения, тяжести, Лоренца, Ампера, взаимодействия неподвижных зарядов и т.д., но все они в конечном счете сводятся к небольшому числу фундаментальных (основных) взаимодействий. Современная физика считает, что существует в природе лишь четыре вида сил или четыре вида взаимодействий:

1) гравитационное взаимодействие (осуществляется через гравитационные поля);

2) электромагнитное взаимодействие (осуществляется через электромагнитные поля);

3) ядерное (или сильное) (обеспечивает связь частиц в ядре);

4) слабое (отвечает за процессы распада элементарных частиц).

В рамках классической механики имеют дело с гравитационными и электромагнитными силами, а также с упругими силами и силами трения.

Гравитационные силы (силы тяготения) – это силы притяжения, которые подчиняются закону всемирного тяготения. Любые два тела притягиваются друг к другу с силой, модуль которой прямо пропорционален произведению их масс и обратно пропорционален квадрату расстояния между ними:

где =6,67×10 –11 Н×м 2 /кг 2 – гравитационная постоянная.

Сила тяжести – сила, с которой тело притягивается Землей. Под действием силы притяжения к Земле все тела падают с одинаковым относительно поверхности Земли ускорением , называемым ускорением свободного падения. По второму закону Ньютона, на всякое тело действует сила , называемая силой тяжести. Она приложена к центру тяжести.

Вес с ила, с которой тело, притягиваясь к Земле, действует на подвес или опору. В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес – это упругая сила, приложенная к опоре или подвесу. Сила тяжести равна весу только в том случае, когда опора или подвес неподвижны относительно Земли. По модулю вес может быть как больше, так и меньше силы тяжести . В случае ускоренного движения опоры (например, лифта, везущего груз) уравнение движения (с учетом того, что сила реакции опоры равна по величине весу, но имеет противоположный знак ): Þ . Если движение происходит вверх , вниз: .

При свободном падении тела его вес равен нулю, т.е. оно находится в состоянии невесомости.

Силы упругости возникают в результате взаимодействия тел, сопровождающегося их деформацией. Упругая (квазиупругая) сила пропорциональна смещению частицы из положения равновесия и направлена к положению равновесия:

Силы трения возникают благодаря существованию сил взаимодействия между молекулами и атомами соприкасающихся тел. Силы терния: а) возникают при соприкосновении двух движущихся тел; б) действуют параллельно поверхности соприкосновения; г) направлены против движения тела.

Трение между поверхностями твердых тел при отсутствии какой-либо прослойки или смазки называется сухим . Трение между твердым телом и жидкой или газообразной средой, а также между слоями такой среды называется вязким или жидким. Различают три вида сухого трения: трение покоя, трение скольжения и трение качения.

Сила трения покоя – это сила, действующая между соприкасающимися телами, находящимися в состоянии покоя. Она равна по величине и противоположно направлена силе, понуждающей тело к движению: ; , где m – коэффициент трения.

Сила трения скольжения возникает при скольжении одного тела по поверхности другого: и направлена по касательной к трущимся поверхностям в сторону, противоположную движению данного тела относительно другого. Коэффициент трения скольжения зависит от материала тел, состояния поверхностей и от относительной скорости движения тел.

При качении тела по поверхности другого возникает сила трения качения , которая препятствует качению тела. Сила трения качения при тех же материалах соприкасаемых тел всегда меньше силы трения скольжения. Этим пользуются на практике, заменяя подшипники скольжения шариковыми или роликовыми подшипниками.

Упругие силы и силы трения определяются характером взаимодействия между молекулами вещества, которое имеет электромагнитное происхождение, следовательно, они по своей природе имеют электромагнитные происхождения. Гравитационные и электромагнитные силы являются фундаментальными – их нельзя свести к другим, более простым силам. Упругие силы и силы трения не являются фундаментальными. Фундаментальные взаимодействия отличаются простотой и точностью законов.

1) Закон всемирного тяготения: Две материальные точки притягиваются друг к другу с силами, пропорциональными произведению масс тел и обратно пропорциональны квадрату расстояния между ними.

2) Ускорение свободного падения- это ускорение, которое приобретают все тела при свободном падении вблизи поверхности Земли независимо от их массы. Обозначается буквой g.

Ускорение свободного падения на Земле приблизительно равно g = 9,81 м/с2.

Свободное падение - это равноускоренное движение. Его ускорение всегда направлено к центру Земли.

3) Сила тяжести- это сила, с которой Земля притягивает к себе тело.

4) Вес тела- это сила, с которой тело действует на опору или подвес.

Перегрузка-отношение веса к силе тяжести.

Состояние невесомости, если Р=0.

5) Сила упругости- это сила, возникающая в результате деформации тела и стремящаяся восстановить прежние размеры и форму тела.

6) Деформация-это изменение формы и размеров тела. Деформации бывают упругие и не упругие.

7) Если деформация упругая, то после снятия внешнего воздействия, тело восстанавливает исходную форму и размер.

Если деформация не упругая, то тело не восстанавливает исходную форму и размер.

8. Абсолютная и относительная деформации:

9) Закон Гука: При упругих деформациях возникает сила упругости, направленная против смещения частиц тела и прямо пропорциональная изменению линейных размеров тела (абсолютной деформации).

10) Сигма Механическое напряжение- сила, действующая на единицу площади поперечного сечения тела.

11) Модуль Юнга [Е] зависит только от материала тела и не зависит от размеров тела.

12.Сила трения- это сила, возникающая на границе соприкосновения тел при отсутствии относительного движения тел.

13.Сила трения покоя:

Пусть тело покоится на горизонтальной поверхности и на него действует внешняя сила.

Если внешняя сила лежит в пределах от нуля, то остаётся в покое. Т.к внешняя сила будет уравновешена силой трения покоя.

Если внешняя сила изменяется, то одновременно изменяется сила трения покоя.

14) Коэффициент трения покоя зависит от материалов тела и поверхности, а так же состояния соприкасающихся поверхностей.

15) Сила трения скольжения:

Если внешние силы больше реакции опоры и коэффициента трения, то тело начинает скользить и возникает сила трения скольжения.

Сила Трения скольжения не зависит от площади соприкасающихся поверхностей и прямо пропорциональна силе нормального движения тела на поверхность.

16) Коэффициент трения скольжения зависит от материалов тела и поверхности, а также от состояния этих поверхностей. Наличие смазки уменьшает силу трения скольжения.

17) Сила сопротивления среды:

Если тело двигается в жидкости или газе, возникает сила сопротивления среды.

Сила С.С зависит от скорости движения тела, формы тела и его размеров.

Если скорость движения маленькая, то сила пропорциональна скорости.

Для силы С.С не существует Силы трения покоя. Любая малая сила заставит тело двигаться.

18) Силы инерции- это силы, которые возникают в ИСО, вследствие ускорения, всегда равны по величине и противоположны по направлению.

ФУНДАМЕНТАЛЬНЫЕ СИЛЫ

ФУНДАМЕНТАЛЬНЫЕ СИЛЫ , четыре основные силы, которые известны современной физике. Наиболее известная и самая слабая - это ГРАВИТАЦИЯ. Сила гравитации между Землей и предметом объясняет понятие ВЕСА предмета. Намного сильнее ЭЛЕКТРОМАГНИТНАЯ СИЛА, действующая между электрическими заряженными частицами. Благодаря ей притягиваются друг к другу атомы, и связывая их друг с другом химически. Две другие известные силы действуют только на субатомном уровне: СЛАБОЕ ЯДЕРНОЕ ВЗАИМОДЕЙСТВИЕ, связанное с распадом частиц, среднее по уровню между гравитационной и электромагнитной силами; СИЛЬНОЕ ЯДЕРНОЕ ВЗАИМОДЕЙСТВИЕ, которое ассоциируется с «клеем», связывающим ядра вместе, - это самая мощная сила, известная в природе.


.

Смотреть что такое "ФУНДАМЕНТАЛЬНЫЕ СИЛЫ" в других словарях:

    СИЛЫ ДВИЖУЩИЕ, см. ФУНДАМЕНТАЛЬНЫЕ СИЛЫ … Научно-технический энциклопедический словарь

    - … Википедия

    Центральная сила сила, линия действия которой при любом положении тела, к которому она приложена, проходит через точку, называемую центром силы (точка на Рис.1). Тело при этом, как правило, рассматривается как материальная точка, а центр также… … Википедия

    Классическая механика Второй закон Ньютона История… Фундаментальные понятия … Википедия

    В физике консервативные силы (потенциальные силы) силы, работа которых не зависит от формы траектории (зависит только от начальной и конечной точки приложения сил). Отсюда следует определение: консервативные силы такие силы, работа которых по… … Википедия

    В физике консервативные силы (потенциальные силы) силы, работа которых не зависит от формы траектории (зависит только от начальной и конечной точки приложения сил). Отсюда следует следующее определение: консервативные силы такие силы, работа по… … Википедия

    Вид вооруженных сил, главный компонент морской мощи государства, характеризующий его возможности контроля океанских (морских) коммуникаций. Современные ВМС имеют в своем составе не только корабли, авиацию и ракеты, но также береговые службы,… … Энциклопедия Кольера

    Современная энциклопедия

    Ядерные силы - ЯДЕРНЫЕ СИЛЫ, силы, удерживающие нуклоны (протоны и нейтроны) в ядре. Ядерные силы действуют только на расстояниях не более 10 13 см, в 100 1000 раз превышают силу взаимодействия электрических зарядов и не зависят от заряда нуклонов. Ядерные силы … Иллюстрированный энциклопедический словарь

Книги

  • Силы природы , . Книга рассказывает о физических силах, определяющих поведение различных тел. Представлены ситуации, с которыми человек сталкивается ежедневно, а также рассмотрены более сложные вопросы,…
  • Всего шесть чисел. Главные силы, формирующие Вселенную , Мартин Рис. В книге всемирно известного астрофизика, члена Королевского астрономического общества сэра Мартина Риса описываются фундаментальные силы, управляющие нашей Вселенной. Автор утверждает, что…

Фундаментальные взаимодействия

В природе существует огромное множество природных систем и структур, особенности и развитие которых объясняется взаимодействием материальных объектов, то есть взаимным действием друг на друга. Именно взаимодействие – это основная причина движения материи и оно свойственно всем материальным объектам вне зависимости от их происхождения и их системной организации . Взаимодействие универсально, как и движение. Взаимодействующие объекты обмениваются энергией и импульсом (это основные характеристики их движения). В классической физике взаимодействие определяется силой, с которой один материальный объект действует на другой. Долгое время парадигмой была концепция дальнодействия – взаимодействие материальных объектов, находящихся на большом расстоянии друг от друга и оно передается через пустое пространство мгновенно . В настоящее время экспериментально подтверждена другая – концепция близкодействия – взаимодействие передается при помощи физических полей с конечной скоростью, не превышающей скорости света в вакууме. Физическое поле – особый вид материи, обеспечивающей взаимодействие материальных объектов и их систем (следующие поля: электромагнитное, гравитационное, поле ядерных сил – слабое и сильное). Источником физического поля являются элементарные частицы (электромагнитного – заряженные частицы), в квантовой теории взаимодействие обусловлено обменом квантами поля между частицами.

Различают четыре фундаментальных взаимодействия в природе: сильное, электромагнитное, слабое и гравитационное, которые определяют структуру окружающего мира.

Сильное взаимодействие (ядерное взаимодействие) – взаимное притяжение составных частей атомных ядер (протонов и нейтронов)и действует на расстоянии порядка 10 -1 3 см, передается глюонами. С точки зрения электромагнитного взаимодействия протон и нейтрон – разные частицы, так как протон электрически заряжен, а нейтрон - нет. Но с точки зрения сильного взаимодействия, эти частицы неразличимы, так как в стабильном состоянии нейтрон является нестабильной частицей и распадается на протон, электрон и нейтрино, но в рамках ядра он становится похожим по своим свойствам с протоном, поэтому и был введен термин «нуклон (от лат. nucleus - ядро)» и протон с нейтроном стали рассматриваться как два различных состояния нуклона. Чем сильнее взаимодействие нуклонов в ядре, тем стабильнее ядро, тем больше удельная энергия связи.

В стабильном веществе взаимодействие между протонами и нейтронами при не слишком высоких температурах усиливается, но если происходит столкновение ядер или их частей (нуклонов, обладающих высокой энергией) тогда происходят ядерные реакции, которые сопровождаются выделением огромной энергией.

При определенных условиях сильное взаимодействие очень прочно связывает частицы в атомные ядра – материальные системы с высокой энергией связи. Именно по этой причине ядра атомов являются весьма устойчивыми, их трудно разрушить.

Без сильных взаимодействий не существовали бы атомные ядра, а звезды и Солнце не могли бы генерировать за счет ядерной энергии теплоту и свет.

Электромагнитное взаимодействие передается при помощи электрических и магнитных полей. Электрическое поле возникает при наличии электрических зарядов, а магнитное при их движении. Изменяющееся электрическое поле порождает переменное магнитное – это и есть источник переменного магнитного поля. Взаимодействие такого типа свойственно электрически заряженным частицам. Носителем электромагнитного взаимодействия является не имеющий заряда фотон - квант электромагнитного поля. В процессе электромагнитного взаимодействия электроны и атомные ядра соединяются в атомы, атомы - в молекулы. В определенном смысле это взаимодействие является основным в химии и биологии.

Около 90% информации об окружающем мире мы получаем через электромагнитную волну, так как различные агрегатные состояния вещества, трение, упругость и т.п. определяются силами межмолекулярного взаимодействия, которые по своей природе электромагнитные. Электромагнитные взаимодействия описываются законами Кулона, Ампера и электромагнитной теорией Максвелла.

Электромагнитное взаимодействие – это основа создания различных электроприборов, радиоприемников, телевизоров, компьютеров и т.д. Оно примерно в тысячу раз слабее сильного, но значительно более дальнодействующее.

Без электромагнитных взаимодействий не было бы атомов, молекул, макрообъектов, тепла и света.

3. Слабое взаимодействие возможно между различными частицами, кроме фотона, оно является короткодействующим и проявляется на расстояниях, меньших размера атомного ядра 10 -15 – 10 -22 см. Слабое взаимодействие слабее сильного и процессы при слабом взаимодействии протекают медленнее, чем при сильном. Отвечает за распад нестабильных частиц (напр., превращения нейтрона в протон, электрон, антинейтрино). Именно благодаря этому взаимодействию, большинство частиц нестабильны. Переносчики слабого взаимодействия – вионы, частицы с массой в 100 раз больше массы протонов и нейтронов. За счет этого взаимодействия светит Солнце (протон превращается в нейтрон, позитрон, нейтрино, испускаемое нейтрино обладает огромной проницающей способностью).

Без слабых взаимодействий не были бы возможны ядерные реакции в недрах Солнца и звезд, не возникали бы новые звезды.

4. Гравитационное взаимодействие самое слабое, не учитывается в теории элементарных частиц, так как на характерных для них расстояниях (10 -13 см) эффекты малые, а на ультрамалых расстояниях (10 -33 см) и при ультрабольших энергиях гравитация приобретает значение и начинают проявляться необычные свойства физического вакуума.

Гравитация (от лат. gravitas - «тяжесть») - фундаментальное взаимодействие является дальнодействующим (это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени) и ему подвержены все материальные тела. В основном гравитация играет определяющую роль в космических масштабах, Мегамире.

В рамках классической механики, гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы m 1 и m 2 , разделёнными расстоянием R , есть

Где G - гравитационная постоянная.

Без гравитационных взаимодействий не было галактик, звезд, планет, эволюции Вселенной.

От силы взаимодействия зависит время, в течение которого совершается превращение элементарных частиц (при сильном взаимодействии ядерные реакции происходят в течение 10 -24 – 10 -23 с., при электромагнитном - изменения осуществляются в течение 10 -19 – 10 -21 с., при слабом распад в течение 10 -10 с.).

Все взаимодействия необходимы и достаточны для построения сложного и разнообразного материального мира, из них по мнению ученых можно получить суперсилу (при очень высоких температурах или энергиях все четыре взаимодействия объединяются в одно ).