Магнитные свойства вещества. Магнитная проницаемость

Многочисленные опыты свидетельствуют о том, что все вещества, помещенные в магнитное поле, намагничиваются и создают собственное магнитное поле, действие которого складывается с действием внешнего магнитного поля:

где - магнитная индукция поля в веществе; - магнитная индукция поля в вакууме, - магнитная индукция поля, возникшего благодаря намагничиванию вещества.

При этом вещество может либо усиливать, либо ослаблять магнитное поле. Влияние вещества на внешнее магнитное поле характеризуется величиной , которая называется магнитной проницаемостью вещества

Магнитная проницаемость - это физическая скалярная величина, показывающая, во сколько раз индукция магнитного поля в данном веществе отличается от индукции магнитного поля в вакууме.

Вещества, ослабляющие внешнее магнитное поле, называют диамагнетиками (висмут, азот, гелий, углекислота, вода, серебро, золото, цинк, кадмий и др.).

Вещества, усиливающие внешнее магнитное поле, - парамагнетики (алюминий, кислород, платина, медь, кальций, хром, марганец, соли кобальта и др.).

Для диамагнетиков >1. Но в том и другом случае отличие от 1 невелико (несколько десятитысячных или стотысячных долей единицы). Так, например, у висмута = 0,9998 = 1,000.

Некоторые вещества (железо, кобальт, никель, гадолиний и различные сплавы) вызывают очень большое усиление внешнего поля. Их называют ферромагнетиками . Для них = 10 3 -10 5 .

Впервые объяснение причин, вследствие которых тела обладают магнитными свойствами, дал Ампер. Согласно его гипотезе, внутри молекул и атомов циркулируют элементарные электрические токи, которые и определяют магнитные свойства любого вещества.

В настоящее время установлено, что все атомы и элементарные частицы действительно обладают магнитными свойствами. Магнитные свойства атомов в основном определяются входящими в их состав электронами.

Согласно полуклассической модели атома, предложенной Э. Резерфордом и Н. Бором, электроны в атомах движутся вокруг ядра по замкнутым орбитам (в первом приближении можно считать, что по круговым). Движение электрона можно представить как элементарный круговой ток , где е - заряд электрона, v - частота вращения электрона по орбите. Этот ток образует магнитное поле, которое характеризуется магнитным моментом, модуль его определяется формулой , где S - площадь орбиты.

Магнитный момент электрона, обусловленный движением вокруг ядра, называют орбитальным магнитным моментом . Орбитальный магнитный момент - это векторная величина, и направление определяется по правилу правого винта. Если электрон движется по ходу часовой стрелки (рис. 1), то токи направлены против хода часовой стрелки (по направлению движения положительного заряда), и вектор перпендикулярен плоскости орбиты.

Так как в атоме плоскости орбит различных электронов не совпадают, то их магнитные моменты направлены под разными углами друг к другу. Результирующий орбитальный магнитный момент многоэлектронного атома равен векторной сумме орбитальных магнитных моментов отдельных электронов.

Нескомпенсированным орбитальным магнитным моментом обладают атомы с частично заполненными электронными оболочками. В атомах с заполненными электронными оболочками он равен 0.

Кроме орбитального магнитного момента, электрон обладает еще собственным (спиновым) магнитным моментом , что впервые установили О. Штерн и В. Герлах в 1922 г. Существование магнитного поля у электрона было объяснено его вращением вокруг собственной оси, хотя и не следует буквально уподоблять электрон вращающемуся заряженному шарику (волчку).

Достоверно установлено, что магнитное поле электрона является таким же неотъемлемым свойством, как его масса и заряд. Электрон, в весьма грубом приближении, можно представить как очень маленький шарик, окруженный электрическим и магнитным полями (рис. 2). Магнитные поля у всех электронов одинаковы, как одинаковы их массы и заряды. Спиновый магнитный момент - вектор, направленный вдоль оси вращения. Он может ориентироваться только двумя способами: либо по..., либо против... Если в том месте, где находится электрон, есть внешнее магнитное поле, то либо по полю, либо против поля. Как показано в квантовой физике, в одинаковом энергетическом состоянии могут находиться только два электрона, спиновые магнитные моменты которых противоположны (принцип Паули).

У многоэлектронных атомов спиновые магнитные моменты отдельных электронов, как и орбитальные моменты, складываются как векторы. При этом результирующий спиновый магнитный момент атома у атомов с заполненными электронными оболочками равен 0.

Общий магнитный момент атома (молекулы) равен векторной сумме магнитных моментов (орбитальных и спиновых) входящих в атом (молекулу) электронов:

Диамагнетики состоят из атомов, которые в отсутствие внешнего магнитного поля не имеют собственных магнитных моментов, так как у них скомпенсированы все спиновые и все орбитальные магнитные моменты.

Внешнее магнитное поле не действует на весь атом диамагнетика, но действует на отдельные электроны атома, магнитные моменты которых отличны от нуля. Пусть в данный момент скорость электрона составляет некоторый угол (рис. 3) с магнитной индукцией внешнего поля.

Благодаря составляющей на электрон будет действовать сила Лоренца (направленная к нам на рис. 3), которая вызовет дополнительное (кроме других движений, в которых участвует электрон при отсутствии поля) движение по окружности. Но это движение представляет собой дополнительный круговой ток, который создаст магнитное поле, характеризуемое магнитным моментом (наведенным), направленным по правилу правого винта навстречу . В результате диамагнетики ослабляют внешнее магнитное поле.

Парамагнетики состоят из атомов, у которых результирующий магнитный момент атома . В отсутствие внешнего поля эти моменты ориентированы хаотически и вещество в целом не создает вокруг себя магнитного поля. При помещении парамагнетиков в магнитное поле происходит преимущественная ориентация векторов по полю (этому препятствует тепловое движение частиц). Таким образом, парамагнетик намагничивается, создавая собственное магнитное поле, совпадающее по направлению с внешним полем и усиливающее его. Этот эффект называется парамагнитным. При ослаблении внешнего магнитного поля до нуля ориентация магнитных моментов вследствие теплового движения нарушается и парамагнетик размагничивается. В парамагнетиках наблюдается и диамагнитный эффект, но он значительно слабее парамагнитного.

Все вещества, помещенные в магнитное поле, приобретают магнитные свойства, то есть намагничиваются, и поэтому в некоторой мере изменяют внешнее (первоначальное) поле. Магнетиками называют все вещества при рассмотрении их магнитных свойств. При этом оказывается, что одни вещества ослабляют внешнее поле, а другие - усиливают его; первые называются диамагнитными, вторые - парамагнитными веществами, или, короче, диамагнетиками и парамагнетиками. Ферромагнетиками называют вещества, вызывающие очень большое усилие внешнего поля (кристаллическое железо, никель, кобальт, гадолиний и дисирозий, а также некоторые сплавы и окислы этих металлов и некоторые сплавы марганца и хрома).

Подавляющее большинство веществ относится к диамагнетикам. Диамагнетиками являются такие элементы как фосфор, сера, сурьма, углерод, многие металлы (висмут, ртуть, золото, серебро, медь и др.), большинство химических соединений (вода, почти все органические соединения). К парамагнетикам относятся некоторые газы (кислород, азот) и металлы (алюминий, вольфрам, платина, щелочные и щелочноземельные металлы).

У диамагнитных веществ суммарный магнитный момент атома (молекулы) равен нулю, так как имеющиеся в атоме орбитальные, спиновые и ядерные магнитные моменты взаимно компенсируются. Однако под влияним внешнего магнитного поля у этих атомов возникает (индуцируется) магнитный момент, направленный всегда противоположно внешнему полю. В результате диамагнитная среда намагничиваеся и создает собственное магнитное поле, направленное противоположно внешнему полю и поэтому ослабляющее его (рисунок).

Индуцированные магнитные моменты атомов диамагнетика сохраняется до тех пор, пока существует внешнее поле. При ликвидации внешнего поля индуцированные магнитные моменты атомов исчезают и диамагнетик рамагничивается.

У атома (молекулы) парамагнитных веществ орбитальные, спиновые и ядерные магнитные моменты не компенсируют друг друга. Поэтому атомы парамагнетика всегда обладают магнитным моментом, являясь как бы элементарными магнитами. Однако атомные магнитные моменты расположены беспорядочно и поэтому парамагнитная среда в целом не обнаруживает магнитных свойств. Внешнее магнитное поле поворачивает атомы парамагнетика так, что их магнитные моменты устанавливаются преимущественно в направлении поля; полной ориентации препятствует тепловое движение атомов. В результате парамагнетик намагничивается и создает собственное магнитное поле, всегда совпадающее по направлению с внешним полем и поэтому усиливающее его (рисунок).

При ликвидации внешнего поля тепловое движение сразу же разрушает ориентацию атомных магнитных моментов и парамагнетик размагничивается.



У ферромагнетиков имеется множество сравнительно крупных самопроизвольно намагниченных до насыщения областей, называемых доменами. Линейные размеры домена имеют порядок 10 -2 см. Домен объединяет многие миллиарды атомов; в пределах одного домена магнитные моменты свех атомов ориентированы одинаково (спиновые магнитные моменты электронов свех атомов точнее). Однако ориентация самих доменов разнообразна. Поэтому в отсутствие внешнего магнитного поля ферромагнетик в целом оказывается ненамагниченным.

С появлением внешнего поля домены, ориентированные своим магнитным моментом в направлении этого поля, начинают увеличиваться в объёме за счет соседних доменов, имеющих иные ориентации магнитного момента; ферромагнетик намагничивается.. При достаточно сильном поле все домены целиком поворачиваются в направлении поля и ферромагнетик быстро намагничивается до насыщения.

При ликвидации внешнего поля ферромагнетики полностью не размагничиваются, а сохраняют остаточную магнитную индукцию, так как тепловое движение не в состоянии быстро дезориентировать столь крупные совокупности атомов, какими являются домены.

Ткани организма в значительной степени диамагнитны, подобно воде. Однако в организме имеются и парамагнитные вещества, молекулы и ионы. Ферромагнитных частиц в организме нет.

Первичными физическим или физико-химическими процессами при действии магнитного поля на биологические системы могут быть: ориентация молекул, изменение концентрации молекул или ионов в неднородном магнитном поле, силовое воздействие (сила Лоренца) на ионы, перемещающиеся вместе с биологической жидкостью, эффект Холла, возникающий в магнитном поле при распостранении электрического импульса вобуждения и др.

Эффект Холла - возникновение в проводнике, помещенном в магнитное поле, электрического поля (поля Холла), направленного перпендикулярно Н и j (плотности тока).

В настоящее время физическая природа воздействия магнитного поля на биологические объекты ещё не установлена.

Магнитотерапия - метод физиотерапии, в основе которого лежит дйствие на организм низкочастотного переменного или постоянного магнитного поля.

Магнитные поля по направлению силовых линий могут быть постоянными и переменными и генерироваться в непрерывном или прерывистом (импульсном) режимах с раличной частотой, формой и длительностью импульсов. Магнитное поле, возникающее между северным и южным полюсами магнита, может быть однородным и неоднородным.

Многочисленные опыты свидетельствуют о том, что все вещества, помещенные в магнитное поле, намагничиваются и создают собственное магнитное поле, действие которого складывается с действием внешнего магнитного поля:

\(~\vec B = \vec B_0 + \vec B_1,\)

где \(~\vec B\) - магнитная индукция поля в веществе; \(~\vec B_0\) - магнитная индукция поля в вакууме, \(~\vec B_1\) - магнитная индукция поля, возникшего благодаря намагничиванию вещества. При этом вещество может либо усиливать, либо ослаблять магнитное поле. Влияние вещества на внешнее магнитное поле характеризуется величиной μ, которая называется магнитной проницаемостью вещества

\(~\mu = \dfrac B{B_0}.\)

  • Магнитная проницаемость - это физическая скалярная величина, показывающая, во сколько раз индукция магнитного поля в данном веществе отличается от индукции магнитного поля в вакууме.

Диа- и пара- магнетики

Все вещества обладают определенными магнитными свойствами, т. е. являются магнетиками . Для большинства веществ магнитная проницаемость μ близка к единице и не зависит от величины магнитного поля. Вещества, для которых магнитная проницаемость незначительно меньше единицы (μ < 1), называются диамагнетиками , незначительно больше единицы (μ > 1) - парамагнетиками . Вещества, магнитная проницаемость которых зависит от величины внешнего поля и может значительно превышать единицу (μ » 1), называются ферромагнетиками .

Примерами диамагнетиков являются свинец, цинк, висмут (μ = 0,9998); парамагнетиков - натрий, кислород, алюминий (μ = 1,00023); ферромагнетиков - кобальт, никель, железо (μ достигает значения 8⋅10 3).

Впервые объяснение причин, вследствие которых тела обладают магнитными свойствами, дал Анри Ампер (1820 г.). Согласно его гипотезе, внутри молекул и атомов циркулируют элементарные электрические токи, которые и определяют магнитные свойства любого вещества.

Возьмем некоторое твердое вещество. Его намагниченность связана с магнитными свойствами частиц (молекул и атомов), из которых он состоит. Рассмотрим, какие контуры с током возможны на микроуровне. Магнетизм атомов обусловлен двумя основными причинами:

1) движением электронов вокруг ядра по замкнутым орбитам (орбитальный магнитный момент ) (рис. 1);

2) собственным вращением (спином) электронов (спиновой магнитный момент ) (рис. 2).

Для любознательных . Магнитный момент контура равен произведению силы тока в контуре на площадь, охватываемую контуром. Его направление совпадает с направлением вектора индукции магнитного поля в середине контура с током.

Так как в атоме плоскости орбит различных электронов не совпадают, то вектора индукций магнитных полей , созданные ими (орбитальные и спиновые магнитные моменты), направлены под разными углами друг к другу. Результирующий вектор индукции многоэлектронного атома равен векторной сумме векторов индукций полей, создаваемых отдельными электронами. Не скомпенсированными полями обладают атомы с частично заполненными электронными оболочками. В атомах с заполненными электронными оболочками результирующий вектор индукции равен 0.

Во всех случаях изменение магнитного поля обусловлено появлением токов намагниченности (наблюдается явление электромагнитной индукции). Иными словами принцип суперпозиции для магнитного поля остается справедливым: поле внутри магнетика является суперпозицией внешнего поля \(~\vec B_0\) и поля \(~\vec B"\) токов намагничивания i′ , которые возникают под действием внешнего поля. Если поле токов намагниченности направлено так же, как и внешнее поле, то индукция суммарного поля будет больше внешнего поля (Рис. 3, а) – в этом случае мы говорим, что вещество усиливает поле; если же поле токов намагниченности направлено противоположно внешнему полю, то суммарное поле будет меньше внешнего поля (Рис. 3, б) – именно в этом смысле мы говорим, что вещество ослабляет магнитное поле.

Рис. 3

В диамагнетиках молекулы не обладают собственным магнитным полем. Под действием внешнего магнитного поля в атомах и молекулах поле токов намагниченности направлено противоположно внешнему полю, поэтому модуль вектора магнитной индукции \(~\vec B\) результирующего поля будет меньше модуль вектора магнитной индукции \(~\vec B_0\) внешнего поля.

В парамагнетиках молекулы обладают собственным магнитным полем. В отсутствии внешнего магнитного поля из-за теплового движения вектора индукций магнитных полей атомов и молекул ориентированы хаотически, поэтому их средняя намагниченность равна нулю (рис. 4, а). При наложении внешнего магнитного поля на атомы и молекулы начинает действовать момент сил, стремящийся повернуть их так, чтобы их поля были ориентированы параллельно внешнему полю. Ориентация молекул парамагнетика приводит к тому, что вещество намагничивается (рис. 4, б).

Рис. 4

Полной ориентации молекул в магнитном поле препятствует их тепловое движение, поэтому магнитная проницаемость парамагнетиков зависит от температуры. Очевидно, что с ростом температуры магнитная проницаемость парамагнетиков уменьшается.

Ферромагнетики

Само название этого класса магнитных материалов происходит от латинского имени железа - Ferrum. Главная особенность этих веществ заключается в способности сохранять намагниченность в отсутствии внешнего магнитного поля, все постоянные магниты относятся к классу ферромагнетикам. Кроме железа ферромагнитными свойствами обладают его «соседи» по таблице Менделеева - кобальт и никель. Ферромагнетики находят широкое практическое применение в науке и технике, поэтому разработано значительное число сплавов, обладающих различными ферромагнитными свойствами.

Все приведенные примеры ферромагнетиков относятся к металлам переходной группы, электронная оболочка которых содержит несколько не спаренных электронов, что и приводит к тому, что эти атомы обладают значительным собственным магнитным полем. В кристаллическом состоянии благодаря взаимодействию между атомами в кристаллах возникают области самопроизвольной (спонтанной) намагниченности - домены. Размеры этих доменов составляют десятые и сотые доли миллиметра (10 -4 − 10 -5 м), что значительно превышает размеры отдельного атома (10 -9 м). В пределах одного домена магнитные поля атомов ориентированы строго параллельно, ориентация магнитных полей других доменов при отсутствии внешнего магнитного поля меняется произвольно (рис. 5).

Таким образом, и в не намагниченном состоянии внутри ферромагнетика существуют сильные магнитные поля, ориентация которых при переходе от одного домена к другому меняется случайным хаотическим образом. Если размеры тела значительно превышают размеры отдельных доменов, то среднее магнитное поле, создаваемое доменами этого тела, практически отсутствует.

Если поместить ферромагнетик во внешнее магнитное поле В 0 , то магнитные моменты доменов начинают перестраиваться. Однако механического пространственного вращения участков вещества не происходит. Процесс перемагничивания связан с изменением движения электронов, но не с изменением положения атомов в узлах кристаллической решетки. Домены, имеющие наиболее выгодную ориентацию относительно направления поля, увеличивают свои размеры за счет соседних «неправильно ориентированных» доменов, поглощая их. При этом поле в веществе возрастает весьма существенно.

Свойства ферромагнетиков

1) ферромагнитные свойства вещества проявляются только тогда, когда соответствующее вещество находится в кристаллическом состоянии ;

2) магнитные свойства ферромагнетиков сильно зависят от температуры, так как ориентации магнитных полей доменов препятствует тепловое движение. Для каждого ферромагнетика существует определенная температура, при котором доменная структура полностью разрушается, и ферромагнетик превращается в парамагнетик. Это значение температуры называется точкой Кюри . Так для чистого железа значение температуры Кюри приблизительно равно 900°C;

3) ферромагнетики намагничиваются до насыщения в слабых магнитных полях. На рисунке 6 показано, как изменяется модуль индукции магнитного поля B в стали с изменением внешнего поля B 0 ;

4) магнитная проницаемость ферромагнетика зависит от внешнего магнитного поля (рис. 7).

Это объясняется тем, что вначале с увеличением B 0 магнитная индукция B растет сильнее, а, следовательно, μ будет увеличиваться. Затем при значении магнитной индукции B ´ 0 наступает насыщение (μ в этот момент максимальна) и при дальнейшем увеличении B 0 магнитная индукция B 1 в веществе перестает изменяться, а магнитная проницаемость уменьшается (стремится к 1):

\(~\mu = \dfrac B{B_0} = \dfrac {B_0 + B_1}{B_0} = 1 + \dfrac {B_1}{B_0};\)

5) у ферромагнетиков наблюдается остаточная намагниченность. Если, например, ферромагнитный стержень поместить в соленоид, по которому проходит ток, и намагнитить до насыщения (точка А ) (рис. 8), а затем уменьшать ток в соленоиде, а вместе с ним и B 0 , то можно заметить, что индукция поля в стержне в процессе его размагничивания остается все время большей, чем в процессе намагничивания. Когда B 0 = 0 (ток в соленоиде выключен), индукция будет равна B r (остаточная индукция). Стержень можно вынуть из соленоида и использовать как постоянный магнит. Чтобы окончательно размагнитить стержень, нужно пропустить по соленоиду ток противоположного направления, т.е. приложить внешнее магнитное поле с противоположным направлением вектора индукции. Увеличивая теперь по модулю индукцию этого поля до B oc , размагничивают стержень (B = 0).).

Таким образом, при намагничивании и размагничивании ферромагнетика индукция B отстает от B 0 . Это отставание называется явлением гистерезиса . Изображенная на рисунке 8 кривая называется петлей гистерезиса .

Гистерезис (греч. ὑστέρησις - «отстающий») - свойство систем, которые не сразу следуют за приложенными силам.

Вид кривой намагничивания (петли гистерезиса) существенно различается для различных ферромагнитных материалов, которые нашли очень широкое применение в научных и технических приложениях. Некоторые магнитные материалы имеют широкую петлю с высокими значениями остаточной намагниченности и коэрцитивной силы, они называются магнитно-жесткими и используются для изготовления постоянных магнитов. Для других ферромагнитных сплавов характерны малые значения коэрцитивной силы, такие материалы легко намагничиваются и перемагничиваются даже в слабых полях. Такие материалы называются магнитно-мягкими и используются в различных электротехнических приборах - реле, трансформаторах, магнитопроводах и др.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C.330- 335.
  2. Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. шк. с рус. яз. обучения / В. В. Жилко, А.В. Лавриненко, Л. Г. Маркович. - Мн.: Нар. асвета, 2002. - С. 291-297.

Есть микроскопические круговые токи (молекулярные токи ). Эта идея в дальнейшем, после открытия электрона и строения атома, подтвердилась: эти токи создаются движением электронов вокруг ядра и, так как ориентированы одинаково, в сумме образуют поле внутри и вокруг магнита.

На рисунке а плоскости, в которых размещены элементарные электрические токи , ориентированы беспорядочно из-за хаотичного теплового движения атомов, и вещество не проявляет магнитных свойств. В намагниченном состоянии (под действием, например, внешнего магнитного поля) (рисунок б ) эти плоскости ориентированы одинаково, и их действия суммируются.

Магнитная проницаемость.

Реакция среды на воздействие внешнего магнитного поля с индукцией В0 (поле в вакууме) определяется магнитной восприимчивостью μ :

где В — индукция магнитного поля в веществе. Магнитная проницаемость аналогична диэлектрической проницаемости ɛ .

По своим магнитным свойствам вещества разделяются на диамагнетики , парамагнетики и фер ромагнетики . У диамагнетиков коэффициент μ , который характеризует магнитные свойства среды, меньше единицы (к примеру, у висмута μ = 0,999824); у парамагнетиков μ > 1 (у платины μ - 1,00036); у ферромагнетиков μ ≫ 1 (железо , никель , кобальт).

Диамагнетики отталкиваются от магнита, парамагнетики — притягиваются к нему. По этим призна-кам их можно отличить друг от друга. У многих веществ магнитная проницаемость почти не отличается от единицы, но у ферромагнетиков сильно превосходит ее, достигая нескольких десятков тысяч единиц.

Ферромагнетики.

Самые сильные магнитные свойства проявляют ферромагнетики. Магнитные поля, которые создаваются ферромагнетиками, гораздо сильнее внешнего намагничивающего по-ля. Правда, магнитные поля ферромагнетиков создаются не вследствие обращения электронов вокруг ядер — орбитального магнитного момента , а вследствие собственного вращения электрона — собственного магнитного момента, называемого спином .

Температура Кюри (Т с ) — это температура, выше которой ферромагнитные материалы те-ряют свои магнитные свойства. Для каждого ферромагнетика она своя. Например, для железа Т с = 753 °С, для никеля Т с = 365 °С, для кобальта Т с = 1000 °С. Существуют ферромагнитные спла-вы, у которых Т с < 100 °С.

Первые детальные исследования магнитных свойств ферромагнетиков были выполнены выдающимся русским физиком А. Г. Столетовым (1839-1896).

Ферромагнетики применяются довольно широко: в качестве постоянных магнитов (в электроизмерительных приборах, громкоговорителях, телефонах и так далее), стальных сердечников в транс-форматорах, генераторах, электродвигателях (для усиления магнитного поля и экономии элек-троэнергии). На магнитных лентах, которые изготовлены из ферромагнетиков, осуществляется запись звука и изображения для магнитофонов и видеомагнитофонов. На тонкие магнитные пленки про-изводится запись информации для запоминающих устройств в электронно-вычислительных ма-шинах.

МАГНИТНЫЕ СВОЙСТВА И СТРОЕНИЕ ВЕЩЕСТВ

Магнетохимия – раздел химии, изучающий магнитные свойства веществ, а также их связь со строением молекул. Становление ее как науки можно отнести к началу XX века, когда были открыты основные законы магнетизма.

МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВ

Магнетизм – фундаментальное свойство материи. С глубокой древности известно свойство постоянных магнитов притягивать железные предметы. Развитие электромагнетизма позволило создать электромагниты более сильные, чем существующие в природе постоянные. Вообще различные приборы и устройства, основанные на использовании электромагнитных явлений, распространены настолько широко, что сейчас без них нельзя уже представить жизни.

Однако с магнитным полем взаимодействуют не только постоянные магниты, но и все остальные вещества. Магнитное поле, взаимодействуя с веществом, изменяет свою величину по сравнению с вакуумом (здесь и далее все формулы записаны в системе СИ):

где µ 0 – магнитная постоянная, равная 4p 10 -7 Гн/м, µ – магнитная проницаемость вещества, B – магнитная индукция (в Тл), H – напряженность магнитного поля (в А/м). Для большинства веществ m очень близка к единице, поэтому в магнетохимии, где основным объектом является молекула, удобнее использовать величину c, которая называется магнитной восприимчивостью. Ее можно отнести к единице объема, массы или количества вещества, тогда она называется соответственно объемной (безразмерной) cv , удельной cd (в см3/г) или молярной (в см3/моль) магнитной восприимчивостью.

Вещества можно разделить на две категории: те, которые ослабляют магнитное поле (c < 0), называются диамагнетиками, те, которые усиливают (c > 0), – парамагнетиками. Можно представить себе, что в неоднородном магнитном поле на диамагнетик действует сила, выталкивающая его из поля, на парамагнетик, наоборот, – втягивающая. На этом основаны рассмотренные ниже методы измерения магнитных свойств веществ. Диамагнетики (а это подавляющее большинство органических и высокомолекулярных соединений) и главным образом парамагнетики являются объектами изучения магнетохимии.

Диамагнетизм – важнейшее свойство материи, обусловленное тем, что под действием магнитного поля электроны в заполненных электронных оболочках (которые можно представить как маленькие проводники) начинают прецессировать, а, как известно, любое движение электрического заряда вызывает магнитное поле, которое по правилу Ленца будет направлено так, чтобы уменьшить воздействие со стороны внешнего поля. Электронную прецессию при этом можно рассматривать как круговые токи. Диамагнетизм свойствен всем веществам, кроме атомарного водорода, потому что у всех веществ имеются спаренные электроны и заполненные электронные оболочки.

Парамагнетизм обусловлен неспаренными электронами, которые называются так потому, что их собственный магнитный момент (спин) ничем не уравновешен (соответственно спины спаренных электронов направлены в противоположные стороны и компенсируют друг друга). В магнитном поле спины стремятся выстроиться по направлению поля, усиливая его, хотя этот порядок и нарушается хаотическим тепловым движением. Поэтому понятно, что парамагнитная восприимчивость зависит от температуры – чем ниже температура, тем выше значение восприимчивость.

Этот вид магнитной восприимчивости еще называют ориентационным парамагнетизмом, так как его причина – ориентация элементарных магнитных моментов во внешнем магнитном поле.

Магнитные свойства электронов в атоме можно описывать двумя способами. В первом способе считается, что собственный (спиновый) магнитный момент электрона не оказывает влияния на орбитальный (обусловленный движением электронов вокруг ядра) момент или наоборот. Точнее, такое взаимное влияние есть всегда (спин-орбитальное взаимодействие), но для 3d-ионов оно мало, и магнитные свойства можно с достаточной точностью описывать двумя квантовыми числами L (орбитальное) и S (спиновое). Для более тяжелых атомов такое приближение становится неприемлемым и вводится еще одно квантовое число полного магнитного момента J, которое может принимать значения от | L + S | до | L – S |

Следует обратить внимание на малость величины энергии магнитного взаимодействия (для комнатных температур и магнитных полей, обычных в лаборатории, энергия магнитных взаимодействий на три-четыре порядка меньше, чем энергия теплового движения молекул).

Существует довольно много веществ, которые при понижении температуры ведут себя сначала как парамагнетики, а затем при достижении определенной температуры резко меняют свои магнитные свойства. Самый известный пример – ферромагнетики и вещество, по которому они получили свое название, – железо, атомные магнитные моменты которого ниже температуры Кюри выстраиваются в одном направлении, вызывая спонтанную намагниченность. Однако макроскопической намагниченности при отсутствии поля не возникает, так как образец самопроизвольно разделяется на области размером около 1 мкм, называемые доменами, в пределах которых элементарные магнитные моменты направлены одинаково, но намагниченности разных доменов ориентированы случайно и в среднем компенсируют друг друга. Силы, вызывающие ферромагнитный переход, можно объяснить только при помощи законов квантовой механики.

Антиферромагнетики характеризуются тем, что спиновые магнитные моменты при температуре антиферромагнитного перехода (температура Нееля TN) упорядочиваются так, что взаимно компенсируют друг друга.

Если компенсация магнитных моментов неполная, то такие вещества называются ферримагнетиками, например Fe2O3 и FeCr2O4 . Последние три класса соединений являются твердыми телами и изучаются в основном физиками. За последние десятилетия физики и химики создали новые магнитные материалы.

В молекуле, содержащей неспаренный электрон, остальные (спаренные) электроны ослабляют магнитное поле, но вклад каждого из них на два-три порядка меньше. Однако если мы хотим очень точно измерить магнитные свойства неспаренных электронов, то должны вводить так называемые диамагнитные поправки, особенно для больших органических молекул, где они могут достигать десятков процентов. Диамагнитные восприимчивости атомов в молекуле складываются друг с другом согласно правилу аддитивности Паскаля-Ланжевена . Для этого диамагнитные восприимчивости атомов каждого сорта умножают на количество таких атомов в молекуле, а затем вводят конститутивные поправки на особенности строения (двойные и тройные связи, ароматические кольца и т.п.). Перейдем к рассмотрению того, как же экспериментально изучают магнитные свойства веществ.

ЭКСПЕРИМЕНТАЛЬНОЕ ИЗМЕРЕНИЕ МАГНИТНОЙ ВОСПРИИМЧИВОСТИ

Основные экспериментальные методы определения магнитной восприимчивости были созданы еще в прошлом веке. Согласно методу Гуи, измеряется изменение веса образца в магнитном поле по сравнению с его отсутствием.

По методу Фарадея измеряется сила, действующая на образец в неоднородном магнитном поле.

Основное отличие метода Гуи от метода Фарадея заключается в том, что в первом случае поддерживается неоднородность по (протяженному) образцу, а во втором – по магнитному полю.

Метод Квинке применяется только для жидкостей и растворов. В нем измеряется изменение высоты столбика жидкости в капилляре под действием магнитного поля

При этом для диамагнитных жидкостей высота столбика понижается, для парамагнитных повышается.

По методу вискозиметра измеряется время истечения жидкости через малое отверстие при включенном (tH) и выключенном (t0) магнитном поле. Время истечения парамагнитных жидкостей в магнитном поле заметно меньше, чем при отсутствии поля, для диамагнитных – наоборот.

Магнитную восприимчивость можно измерить и при помощи ЯМР-спектрометра. Отметим: величина химического сдвига сигнала ЯМР в общем случае определяется не только константой экранирования, которая является мерой электронной плотности на исследуемом ядре, но и магнитной восприимчивостью образца.

Полученное значение магнитной восприимчивости для парамагнетиков определяется количеством неспаренных электронов (для одного неспаренного электрона)

Магнетохимические исследования позволяют установить электронную конфигурацию соединений переходных металлов, которые составляют основу химии координационных (комплексных) соединений.

Измеряя магнитную восприимчивость, можно легко судить о степени окисления и геометрии первой координационной сферы в комплексе.

Известно, что большинство важных на практике химических реакций протекают в растворах, к ним относятся также и реакции комплексообразования, поэтому в следующем разделе рассмотрим магнитные свойства растворов, в которых соединения переходных металлов реализуются в виде комплексов.

МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ РАСТВОРОВ

При переходе от твердого тела к раствору следует учитывать магнитные восприимчивости растворителя и всех растворенных веществ. При этом простейшим способом такого учета будет суммирование вкладов всех компонентов раствора по правилу аддитивности. Принцип аддитивности – один из основополагающих принципов в обработке экспериментальных данных. Любые отклонения от него чаще связывают с тем, что сам принцип аддитивности выполняется, а компоненты раствора изменяют свои свойства. Поэтому принимается, что магнитная восприимчивость раствора равна сумме магнитных восприимчивостей отдельных компонентов с учетом концентрации

Из исследования магнитных свойств одного и того же вещества в разных растворителях видно, что они могут заметно зависеть от природы растворителя. Это можно объяснить вхождением молекул растворителя в первую координационную сферу и изменением соответственно электронного строения комплекса, энергий d-орбиталей (D) и других свойств сольватокомплекса. Таким образом, магнетохимия позволяет изучать и сольватацию, то есть взаимодействие растворяемого вещества с растворителем.

Если магнитное поле влияет на свойства раствора, а многочисленные экспериментальные факты (измерения плотности, вязкости, электропроводности, концентрации протонов, магнитной восприимчивости) свидетельствуют, что это так,то следует признать, что энергия взаимодействий отдельных компонентов раствора и ансамбля молекул воды достаточно высока, то есть сопоставима или превышает энергию теплового движения частиц в растворе, которое усредняет всякое воздействие на раствор. Напомним, что энергия магнитного взаимодействия одной частицы (молекулы) мала по сравнению с энергией теплового движения. Такое взаимодействие возможно, если принять, что в воде и водных растворах за счет кооперативного характера водородных связей реализуются большие льдоподобные структурные ансамбли молекул воды, которые могут упрочняться или разрушаться под воздействием растворенных веществ.Энергия образования таких "ансамблей", по-видимому, сопоставима с энергией теплового движения и под магнитным воздействием раствор может запомнить его и приобрести новые свойства, но броуновское движение или повышение температуры ликвидирует эту "память" в течение некоторого времени.

Точно подбирая концентрации парамагнитных веществ в диамагнитном растворителе, можно создать немагнитную жидкость, то есть такую, средняя магнитная восприимчивость которой равна нулю или в которой магнитные поля распространяются точно так же, как и в вакууме. Это интересное свойство пока не нашло применения в технике.