Основные положения молекулярно-кинетической теории. Размеры молекул

В основе молекулярно-кинетической теории строения вещества лежат три положения, каждое из которых доказано с помощью опытов: вещество состоит из частиц; эти частицы хаотически движутся; частицы взаимодействуют друг с другом.

Свойства и поведение тел, начиная от разреженных газов верхних слоев атмосферы и кончая твердыми телами на Земле, а также сверхплотными ядрами планет и звезд, определяются движением взаимодействующих друг с другом частиц, из которых состоят все тела, - молекул, атомов или еще более малых образований - элементарных частиц.

Оценка размеров молекул. Для полной уверенности в реальности существования молекул необходимо определить их размеры.

Рассмотрим сравнительно простой метод оценки размеров молекул. Известно, что нельзя заставить капельку оливкового масла объемом расплыться на поверхности воды так, чтобы она заняла площадь более Можно предположить, что при растекании масла по максимальной площади оно образует слой толщиной всего лишь в одну молекулу. Толщину этого слоя нетрудно определить и тем самым оценить размеры молекулы оливкового масла

Разрежем мысленно кубик объемом на квадратные слои по площади каждый так, чтобы ими можно было покрыть площадь (рис. 2). Число таких слоев будет равно: Толщину слоя масла, а следовательно, и размер молекулы оливкового масла можно найти, разделив ребро куба в 0,1 см на число слоев: см.

Ионный проектор. В настоящее время перечислять всевозможные способы доказательства существования атомов и молекул нет необходимости. Современные приборы позволяют наблюдать изображения отдельных атомов и молекул. В учебнике физики для VI класса приведена фотография, полученная с помощью электронного микроскопа, на которой можно видеть расположение отдельных атомов на поверхности кристалла золота.

Но электронный микроскоп - очень сложное устройство. Мы познакомимся с гораздо более простым прибором, позволяющим получать изображения отдельных атомов и оценивать их размеры. Этот прибор называется ионным проектором или ионным микроскопом. Устроен он следующим образом: в центре сферического сосуда радиусом около 10 см расположено острие вольфрамовой иглы (рис. 3). Радиус кривизны острия делают настолько малым, насколько это возможно при современной технике обработки металлов, - около 5-10 6 см. Внутреннюю поверхность сферы покрывают тонким проводящим слоем, способным, подобно экрану телевизионной трубки, светиться под действием ударов быстрых частиц. Между положительно заряженным острием и отрицательно заряженным проводящим слоем создают напряжение в несколько сотен вольт. Сосуд заполняют гелием при малом давлении 100 Па (0,75 мм рт. ст.).

Атомы вольфрама на поверхности острия образуют микроскопические «бугорки» (рис. 4). При сближении хаотически

движущихся атомов гелия с атомами вольфрама электрическое поле, особенно сильное вблизи атомов на поверхности острия, отрывает электроны у атомов гелия и превращает эти атомы в ионы. Ионы гелия отталкиваются от положительно заряженного острия и с большой скоростью движутся вдоль радиусов сферы. Сталкиваясь с поверхностью сферы, ионы вызывают ее свечение. В результате на экране возникает увеличенная картина расположения атомов вольфрама на острие (рис. 5). Светлые пятнышки на экране - это изображения отдельных атомов.

Увеличение проектора - отношение расстояния между изображениями атомов к расстоянию между самими атомами - оказывается равным отношению радиуса сосуда к радиусу острия и достигает двух миллионов. Именно поэтому удается видеть отдельные атомы.

Диаметр атома вольфрама, определяемый с помощью ионного проектора, оказывается равным приблизительно см. Размеры атомов, найденные другими методами, оказываются примерно такими же. Размеры молекул, состоящих из многих атомов, естественно,больше.

При каждом вдохе вы захватываете в легкие столько молекул, что если бы все они после выдоха равномерно распределились в атмосфере Земли, то каждый житель планеты при вдохе получил бы две молекулы, побывавшие в ваших легких.

>>Физика: Основные положения молекулярно-кинетической теории. Размеры молекул


Молекулы очень малы, но посмотрите, как просто оценить их размеры и массу. Достаточно одного наблюдения и пары несложных расчетов. Правда, надо еще додуматься до того, как это сделать.
В основе молекулярно-кинетической теории строения вещества лежат три утверждения: вещество состоит из частиц; эти частицы беспорядочно движутся; частицы взаимодействуют друг с другом . Каждое утверждение строго доказано с помощью опытов.
Свойства и поведение всех без исключения тел от инфузории до звезды определяются движением взаимодействующих друг с другом частиц: молекул, атомов или еще более малых образований - элементарных частиц.
Оценка размеров молекул. Для полной уверенности в существовании молекул надо определить их размеры.
Проще всего это сделать, наблюдая расплывание капельки масла, например оливкового, по поверхности воды. Масло никогда не займет всю поверхность, если сосуд велик (рис.8.1 ). Нельзя заставить капельку объемом 1 мм 3 расплыться так, чтобы она заняла площадь поверхности более 0,6 м 2 . Можно предположить, что при растекании масла по максимальной площади оно образует слой толщиной всего лишь в одну молекулу - «мономолекулярный слой». Толщину этого слоя нетрудно определить и тем самым оценить размеры молекулы оливкового масла.

Объем V слоя масла равен произведению его площади поверхности S на толщину d слоя, т. е. V=Sd . Следовательно, размер молекулы оливкового масла равен:

Перечислять сейчас всевозможные способы доказательства существования атомов и молекул нет необходимости. Современные приборы позволяют видеть изображения отдельных атомов и молекул. На рисунке 8.2 показана микрофотография поверхности кремниевой пластины, где бугорки - это отдельные атомы кремния. Подобные изображения впервые научились получать в 1981 г. с помощью не обычных оптических, а сложных туннельных микроскопов .

Размеры молекул, в том числе и оливкового масла, больше размеров атомов. Диаметр любого атома примерно равен 10 -8 см. Эти размеры так малы, что их трудно себе представить. В таких случаях прибегают к помощи сравнений.
Вот одно из них. Если пальцы сжать в кулак и увеличить его до размеров земного шара, то атом при том же увеличении станет размером с кулак.
Число молекул. При очень малых размерах молекул число их в любом макроскопическом теле огромно. Подсчитаем примерное число молекул в капле воды массой 1 г и, следовательно, объемом 1 см 3 .
Диаметр молекулы воды равен примерно 3 10 -8 см. Считая, что каждая молекула воды при плотной упаковке молекул занимает объем (3 10 -8 см) 3 , можно найти число молекул в капле, разделив объем капли (1 см 3) на объем, приходящийся на одну молекулу:

При каждом вдохе вы захватываете столько молекул, что если бы все они после выдоха равномерно распределились в атмосфере Земли, то каждый житель планеты при вдохе получил бы две-три молекулы, побывавшие в ваших легких.
Размеры атома малы: .
О трех основных положениях молекулярно-кинетической теории речь будет идти неоднократно.

???
1. Какие измерения надо произвести, чтобы оценить размеры молекулы оливкового масла?
2. Если бы атом увеличился до размеров макового зернышка (0,1 мм), то размеров какого тела при том же увеличении достигло бы зернышко?
3. Перечислите известные вам доказательства существования мо¬лекул, не упомянутые в тексте.

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Когда два или более атома вступают в химические связи друг с другом, возникают молекулы. При этом не имеет значения, являются ли эти атомы одинаковыми или они вовсе отличаются друг от друга как по форме, так и по своему размеру. Мы с вами разберемся, какова величина молекул и от чего это зависит.

Что такое молекулы?

На протяжении тысячелетий ученые размышляли о тайне жизни, о том, что именно происходит при ее зарождении. Согласно самым древним культурам, жизнь и все-все в этом мире состоит из основных элементов природы - земли, воздуха, ветра, воды и огня. Однако со временем многие философы начали выдвигать идею, что все вещи состоят из крошечных, неделимых вещей, которые не могут быть созданы и уничтожены.

Однако только после появления атомной теории и современной химии ученые начали постулировать, что частицы, взятые в совокупности, породили основные строительные блоки всех вещей. Так появился термин, который в контексте современной теории частиц относится к мельчайшим единицам массы.

По своему классическому определению, молекула - это наименьшая частица вещества, которая помогает сохранять его химические и физические свойства. Она состоит из двух или более атомов, а также групп одинаковых или разных атомов, удерживаемых вместе химическими силами.

Какова величина молекул? В 5 классе природоведение (школьный предмет) дает лишь общее представление о размерах и формах, более подробно этот вопрос изучается в старших классах на уроках химии.

Примеры молекул

Молекулы могут быть простыми или сложными. Вот некоторые примеры:

  • H 2 O (вода);
  • N 2 (азот);
  • O 3 (озон);
  • CaO (оксид кальция);
  • C 6 H 12 O 6 (глюкоза).

Молекулы, состоящие из двух или более элементов, называются соединениями. Так, вода, оксид кальция и глюкоза являются составными. Не все соединения являются молекулами, но все молекулы являются соединениями. Насколько большими они могут быть? Какова величина молекулы? Известен тот факт, что почти все вокруг нас состоит из атомов (кроме света и звука). Их общий вес и будет составлять массу молекулы.

Молекулярная масса

Говоря о том, какова величина молекул, большинство ученых отталкиваются от молекулярной массы. Это общий вес всех входящих в нее атомов:

  • Вода, состоящая из двух атомов водорода (имеющих по одной единице атомной массы) и одного атома кислорода (16 единиц атомной массы), имеет молекулярный вес 18 (точнее, 18,01528).
  • Глюкоза имеет молекулярную массу 180.
  • ДНК, которая является очень длинной, может иметь молекулярную массу, которая составляет около 1010 (приблизительный вес одной человеческой хромосомы).

Измерение в нанометрах

В дополнение к массе мы также можем измерить, какова величина молекул в нанометрах. Единица воды составляет около 0,27 Нм в поперечнике. ДНК достигает 2 Нм в поперечнике и может растягиваться до нескольких метров в длину. Трудно себе представить, как такие размеры могут умещаться в одной клетке. Соотношение длины и толщины ДНК удивительно. Оно составляет 1/100 000 000, это как человеческий волос с длиной в футбольное поле.

Формы и размеры

Какова величина молекул? Они бывают разных форм и размеров. Вода и углекислый газ при этом являются одними из самых маленьких, белки - одними из самых больших. Молекулы - это элементы, состоящие из атомов, которые связаны друг с другом. Понимание внешнего вида молекул традиционно является частью химии. Помимо их непостижимо странного химического поведения, одной из важных характеристик молекул является их размер.

Где может быть особенно полезным знание о том, какова величина молекул? Ответ на этот и многие другие вопросы помогает в сфере нанотехнологий, так как концепция нанороботов и интеллектуальных материалов обязательно имеет дело с эффектами молекулярных размеров и форм.

Какова величина молекул?

В 5 классе природоведение по этой теме дает только общую информацию, что все молекулы состоят из атомов, которые находятся в постоянном беспорядочном движении. В старших классах можно уже увидеть структурные формулы в учебниках химии, которые напоминают действительную форму молекул. Однако невозможно измерить их длину с помощью обычной линейки, а чтобы это сделать, нужно знать, что молекулы представляют собой трехмерные объекты. Их изображение на бумаге является проекцией на двумерную плоскость. Длина молекулы изменяется с помощью связей длин ее углов. Существуют три основных:

  • Угол тетраэдра 109°, когда все связи этого атома со всеми другими атомами являются одинарными (только одно тире).
  • Угол шестиугольника 120°, когда один атом имеет одну двойную связь с другим атомом.
  • Угол линии 180°, когда атом имеет либо две двойные связи, либо одну тройную с другим атомом.

Реальные углы часто отличаются от этих углов, так как необходимо учитывать целый ряд разнообразных эффектов, в том числе электростатические взаимодействия.

Как представить себе размер молекул: примеры

Какова величина молекул? В 5 классе ответы на этот вопрос, как мы уже говорили, носят общий характер. Школьники знают, что размер названных соединений очень маленький. Вот, например, если превратить молекулу песка в одной единственной песчинке в целую песчинку, то под получившейся массой можно было бы спрятать дом в пять этажей. Какова величина молекул? Краткий ответ, которой также является и более научным, имеет следующий вид.

Молекулярная масса приравнивается к отношению массы всего вещества к количеству молекул в веществе или отношению молярной массы к постоянной Авогадро. Единицей измерения является килограмм. В среднем молекулярная масса составляет 10 -23 -10 -26 кг. Возьмем, например, воду. Ее молекулярная масса будет 3 х 10 -26 кг.

Как размер молекулы влияет на силы притяжения?

Ответственной за притяжение между молекулами является электромагнитная сила, которая проявляется через притяжение противоположных и отталкивание подобных зарядов. Электростатическая сила, которая существует между противоположными зарядами, доминирует во взаимодействиях между атомами и между молекулами. Гравитационная сила настолько мала в этом случае, что ею можно пренебречь.

При этом размер молекулы влияет на силу притяжения через электронное облако случайных искажений, возникающих при распределении электронов молекулы. В случае неполярных частиц, проявляющих только слабые ван-дер-ваальсовые взаимодействия или дисперсионные силы, размер молекул оказывает прямое влияние на величину электронного облака, окружающего указанную молекулу. Чем она больше, тем больше и заряженное поле, которое ее окружает.

Большее электронное облако означает, что между соседними молекулами может происходить больше электронных взаимодействий. В результате одна часть молекулы развивает временный положительный частичный заряд, а другая - отрицательный. Когда это происходит, молекула может поляризовать электронное облако у соседней. Притяжение происходит потому, что частичная положительная сторона одной молекулы притягивается к частичной отрицательной стороне другой.

Заключение

Итак, какова величина молекул? В природоведении, как мы выяснили, можно найти лишь образное представление о массе и размерах этих мельчайших частиц. Но мы знаем, что есть простые и сложные соединения. И ко вторым можно отнести такое понятие, как макромолекула. Это очень большая единица, например белок, которая обычно создается путем полимеризации меньших субъединиц (мономеров). Они обычно состоят из тысяч атомов или более.

«Физика - 10 класс»

Какие физические объекты (системы) изучает молекулярная физика?
Как различить механические и тепловые явления?

В основе молекулярно-кинетической теории строения вещества лежат три утверждения:

1) вещество состоит из частиц;
2) эти частицы беспорядочно движутся;
3) частицы взаимодействуют друг с другом.

Каждое утверждение строго доказано с помощью опытов.

Свойства и поведение всех без исключения тел определяются движением взаимодействующих друг с другом частиц: молекул, атомов или ещё более малых образований - элементарных частиц.

Оценка размеров молекул. Для полной уверенности в существовании молекул надо определить их размеры. Проще всего это сделать, наблюдая расплывание капельки масла, например оливкового, по поверхности воды. Масло никогда не займёт всю поверхность, если мы возьмём достаточно широкий сосуд (рис. 8.1). Нельзя заставить капельку объёмом 1 мм 2 расплыться так, чтобы она заняла площадь поверхности более 0,6 м 2 . Предположим, что при растекании масла по максимальной площади оно образует слой толщиной всего лишь в одну молекулу - «мономолекулярный слой». Толщину этого слоя нетрудно определить и тем самым оценить размеры молекулы оливкового масла.

Объём V слоя масла равен произведению его площади поверхности S на толщину d слоя, т. е. V = Sd. Следовательно, линейный размер молекулы оливкового масла равен:

Современные приборы позволяют увидеть и даже измерить отдельные атомы и молекулы. На рисунке 8.2 показана микрофотография поверхности кремниевой пластины, где бугорки - это отдельные атомы кремния. Подобные изображения впервые научились получать в 1981 г. с помощью сложных туннельных микроскопов.

Размеры молекул, в том числе и оливкового масла, больше размеров атомов. Диаметр любого атома примерно равен 10 -8 см. Эти размеры так малы, что их трудно себе представить. В таких случаях прибегают к помощи сравнений.

Вот одно из них. Если пальцы сжать в кулак и увеличить его до размеров земного шара, то атом при том же увеличении станет размером с кулак.

Число молекул.


При очень малых размерах молекул число их в любом макроскопическом теле огромно. Подсчитаем примерное число молекул в капле воды массой 1 г и, следовательно, объёмом 1 см 3 .

Диаметр молекулы воды равен примерно 3 10 -8 см. Считая, что каждая молекула воды при плотной упаковке молекул занимает объём (3 10 -8 см) 3 , можно найти число молекул в капле, разделив объём капли (1 см 3) на объём, приходящийся на одну молекулу:


Масса молекул.


Массы отдельных молекул и атомов очень малы. Мы вычислили что в 1 г воды содержится 3,7 10 22 молекул. Следовательно, масса одной молекулы воды (Н 2 0) равна:

Массу такого же порядка имеют молекулы других веществ, исключая огромные молекулы органических веществ; например, белки имеют массу, в сотни тысяч раз большую, чем масса отдельных атомов. Но всё равно их массы в макроскопических масштабах (граммах и килограммах) чрезвычайно малы.


Относительная молекулярная масса.


Так как массы молекул очень малы, удобно использовать в расчётах не абсолютные значения масс, а относительные.

По международному соглашению массы всех атомов и молекул сравнивают с массы атома углерода (так называемая углеродная шкала атомных масс).

Относительной молекулярной (или атомной) массой М r вещества называют отношение массы m 0 молекулы (или атома) данного вещества к массы атома углерода:

Относительные атомные массы всех химических элементов точ- но измерены. Складывая относительные атомные массы элементов, входящих в состав молекулы вещества, можно вычислить относительную молекулярную массу вещества. Например, относительная молекулярная масса углекислого газа СO 2 приближённо равна 44, так как относительная атомная масса углерода практически равна 12, а кислорода примерно 16: 12 + 2 16 = 44.

Сравнение атомов и молекул с массы атома углерода было принято в 1961 г. Главная причина такого выбора состоит в том, что углерод входит в огромное число различных химических соединений. Множитель введён для того, чтобы относительные массы атомов были близки к целым числам.

Молекулярно-кинетическая теория – учение о строении и свойствах вещества, использующее представление о существовании атомов и молекул как наименьших частиц химического вещества. В основе МКТ лежат три строго доказанных с помощью опытов утверждения:

Вещество состоит из частиц – атомов и молекул, между которыми существуют промежутки;

Эти частицы находятся в хаотическом движении, на скорость которого влияет температура;

Частицы взаимодействуют друг с другом.

То, что вещество действительно состоит из молекул, можно доказать, определив их размеры: Капля масла расплывается по поверхности воды, образуя слой, толщина которого равна диаметру молекулы. Капля объемом 1 мм 3 не может расплыться больше, чем на 0,6 м 2:

Современные приборы (электронный микроскоп, ионный проектор) позволяют видеть отдельные атомы и молекулы.

Силы взаимодействия молекул. а) взаимодействие имеет электромагнитный характер; б) силы короткодействующие, обнаруживаются на расстояниях, сопоставимых с размерами молекул; в) существует такое расстояние, когда силы притяжения и отталкивания равны (R 0), если R>R 0 , тогда преобладают силы притяжения, если R

Действие сил молекулярного притяжения обнаруживается в опыте со свинцовыми цилиндрами, слипающимися после очистки их поверхностей.

Молекулы и атомы в твердом теле совершают беспорядочные колебания относительно положений, в которых силы притяжения и отталкивания со стороны соседних атомов уравновешены. В жидкости молекулы не только колеблются около положения равновесия, но и совершают перескоки из одного положения равновесия в соседнее, эти перескоки молекул являются причиной текучести жидкости, ее способности принимать форму сосуда. В газах обычно расстояния между атомами и молекулами в среднем значительно больше размеров молекул; силы отталкивания на больших расстояниях не действуют, поэтому газы легко сжимаются; практически отсутствуют между молекулами газа и силы притяжения, поэтому газы обладают свойством неограниченно расширяться.

2. Масса и размер молекул. Постоянная Авогадро

Любое вещество состоит из частиц, поэтому количество вещества принято считать пропорциональным числу частиц. Единицей количества вещества является моль. Моль равен количеству вещества системы, содержащей столько же частиц, сколько содержится атомов в 0,012 кг углерода.

Отношение числа молекул к количеству вещества называется постоянной Авогадро:

Постоянная Авогадро равна . Она показывает, сколько атомов или молекул содержится в одном моле вещества.

Количество вещества можно найти как отношение числа атомов или молекул вещества к постоянной Авогадро:

Молярной массой называется величина, равная отношению массы вещества к количеству вещества:

Молярную массу можно выразить через массу молекулы:

Для определения массы молекул нужно разделить массу вещества на число молекул в нем:

3. Броуновское движение и идеальный газ

Броуновское движение – тепловое движение взвешенных в газе или жидкости частиц. Английский ботаник Роберт Броун (1773 – 1858) в 1827 году обнаружил беспорядочное движение видимых в микроскоп твердых частиц, находящихся в жидкости. Это явление было названо броуновским движением. Это движение не прекращается; с увеличением температуры его интенсивность растет. Броуновское движение – результат флуктуации давления (заметного отклонения от средней величины).

Причина броуновского движения частицы заключается в том, что удары молекул жидкости о частицу не компенсируют друг друга.

У разреженного газа расстояние между молекулами во много раз превышает их размеры. В этом случае взаимодействие между молекулами пренебрежимо мало и кинетическая энергия молекул много больше потенциальной энергии их взаимодействия.

Для объяснения свойств вещества в газообразном состоянии вместо реального газа используется его физическая модель - идеальный газ. В модели предполагается:

расстояние между молекулами чуть больше их диаметра;

молекулы – упругие шарики;

между молекулами не действуют силы притяжения;

при соударении молекул друг с другом и со стенками сосуда действуют силы отталкивания;

движения молекул подчиняется законам механики.

Основное уравнение МКТ идеального газа:

Основное уравнение МКТ позволяет вычислить давление газа, если известны масса молекулы, среднее значение квадрата скорости и концентрация молекул.

Давление идеального газа заключается в том, что молекулы при столкновениях со стенками сосуда взаимодействуют с ними по законам механики как упругие тела. При столкновении молекулы со стенкой сосуда проекция скорости v x вектора скорости на ось OX, перпендикулярную стенке, изменяет свой знак на противоположный, но остается постоянной по модулю. Во время столкновения, согласно третьему закону Ньютона, молекула действует на стенку с силой F 2 , равной по модулю силе F 1 и направленной противоположно.

Уравнение состояния идеального газа (уравнение Менделеева – Клапейрона). Универсальная газовая постоянная:

На основе зависимости давления газа от концентрации его молекул и температуры можно получить уравнение, связывающее все три макроскопических параметра: давление, объем и температуру - характеризующие состояние данной массы достаточно разреженного газа. Это уравнение называют уравнением состояния идеального газа.

Где - универсальная газовая постоянная

для данной массы газа, следовательно

Уравнение Клапейрона.

Количественные зависимости между двумя параметрами газа при фиксированном значении третьего параметра называют газовыми законами. А процессы, протекающие при неизменном значении одного из параметров, - изопроцессами.

Изотермический процесс – процесс изменения состояния термодинамической системы макроскопических тел при постоянной температуре.

Для газа данной массы произведение давления газа на его объем постоянно, если температура газа не меняется. – закон Бойля - Мариотта.

Изохорный процесс - процесс изменения состояния термодинамической системы макроскопических тел при постоянном объеме.

Для газа данной массы отношение давления к температуре постоянно, если объем газа не меняется. – закон Шарля.

Изобарный процесс - процесс изменения состояния термодинамической системы макроскопических тел при постоянном давлении.

Для газа данной массы отношение объема к температуре постоянно, если давление газа не меняется. – закон Гей-Люссака.