Радиочувствительность тканей и органов организма. Клеточная радиочувствительность

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реакция клетки на облучение. Клеточная радиочувствительность

В результате облучения, повреждающего абсолютно все внутриклеточные структуры, в клетке можно зарегистрировать множество самых разнообразных реакций -- задержку деления, угнетение синтеза ДНК, повреждение мембран и др. Степень выраженности этих реакций зависит от того, на какой стадии жизненного цикла клетки произведено облучение.

Синтез ДНК в клетке происходит в интерфазе, занимая в ней определенный промежуток времени. Это позволило разделить ннтерфазу на три периода -- период синтеза ДНК (S-период), пред- и постсинтетические периоды (соответственно G 1 и G 2) (От англ. Gap -- интервал.) Митоз, четвертый период цикла, обозначается буквой М. Продолжительность жизненного, или митотического, цикла -- время между двумя последовательными делениями клетки -- слагается из отдельных стадий, длительность которых в разных тканях варьирует относительно друг друга по величине, располагаясь, как правило, следующим образом: М < G 2

Рис. III.4. Митотическнй цикл: М - митоз, G 1 - предсннтетическнй период, S - период синтеза ДНК, G 2 - постсинтетический период. G 0 - фаза покоя (клетка может переходить в нее либо после завершения синтеза ДНК, либо по окончании митоза; в фазе покоя клетка находится до тех пор, пока некоторый стимул не побудит ее снова вступить в цикл соответственно в G 2 - или G 1 -периоды)

В активно обновляющихся тканях (эпителий ворсинок кишечника, костный мозг, кожа и др.), а также в быстрорастущих опухолях и клеточных культурах продолжительность цикла составляет от 10 до 48 ч. Наиболее продолжительны периоды G 1 и S, а самый кратковременный период -- митоз -- завершается в большинстве случаев в течение 30 -- 60 мин.

В малообновляющихся тканях большинство клеток находится в G 1 -периоде, длительность которого измеряется неделями, а иногда месяцами и даже годами (например, в ЦНС), что в последнее время обусловило выделение еще одной стадии -- G 0 ; клетки, находящиеся на этой стадии, принято считать вне цикла, или покоящимися. Такие клетки составляют резерв репопуляции в случае гибели части клеточного пула от различных причин. Таков, например, механизм посттравматической регенерации тканей или возобновления роста опухоли после ее облучения.

Многие из лучевых реакций клетки легко переносятся клеткой, так как являются следствием повреждения множественных структур, утрата которых очень быстро восполняется или просто остается незамеченной. Такие преходящие клеточные реакции называют физиологическими или кумулятивными эффектами облучения. К ним относятся различные нарушения метаболизма, в том числе ингибирование нуклеинового обмена или окислительного фосфорилирования, слипание хромосом и др.

Как правило, подобные реакции проявляются в ближайшие сроки после облучения и с течением времени исчезают. Наиболее универсальная из них -- временная задержка (угнетение) клеточного деления, часто называемая в литературе радиационным блокированием митозов. Снижение числа делящихся клеток после облучения было замечено уже вскоре после открытия рентгеновских лучей, что и послужило одним из оснований к применению этих лучей для подавления опухолевого роста. Эта реакция к настоящему времени наиболее хорошо изучена в количественном отношении на самых разнообразных объектах в экспериментах in vivo и in vitro для большого числа нормальных клеток и тканей, а также для опухолей человека и животных.

Рис. III.5. Динамика размножения клеток после облучения в разных дозах. А и А" -- икра вьюна; Б и Б" -- яйца морского ежа; В и В" -- почкование дрожжей (по В. И. Корогоднну, 1964): A, А", 1 -- необлученные зиготы. 2, 3, 4, 5--облученные (300 Гр) сперматозоиды, яйцеклетки, сперматозоиды и яйцеклетки до оплодотворения, зигота тотчас после оплодотворения соответственно: Б, Б".1 -- необлученные, 2, 3, 4--сперматозоиды, облученные непосредственно перед оплодотворением (1, 2, 10 Гр соответственно); В, В",1 -- необлученные. 2, 3 -- облученные 160 н 180 Гр соответственно

Проведенные эксперименты показали, что длительность задержки деления зависит от дозы ионизирующего облучения и проявляется у всех клеток облученной популяции, независимо от дальнейшей судьбы той или иной клетки -- выживет она или погибнет. Однако продолжительность этого эффекта различна у разных объектов, что наглядно представлено на рис. III.5, где сведены и проанализированы результаты экспериментов ряда исследователей. Во всех случаях после облучения деление клеток дрожжей прекращалось и возобновлялось спустя некоторое время, различное у разных объектов, но всегда растущее с дозой облучения. У каждого из объектов кривые первого пострадиационного деления имеют почти такую же форму, как и кривые соответствующих контрольных (необлученных) клеток, и лишь сдвинуты по оси абсцисс вправо. Это особенно хорошо видно при представлении данных в координатах "пробит-эффект -- логарифм времени".

(Термин "пробит" происходит от англ. probability unit -- вероятностная единица. Пробит-анализ -- количественная оценка экспериментальных данных, основанная на изучении зависимости между логарифмами доз и пробитами, соответствующими наблюдавшимся эффектам. В этих координатах S-образные или, как их называют, сигмоидные кривые выпрямляются.)

Рис. III.6 Сдвиг максимума митотической активности клеток почки человека при облучении в S-периоде (по И. Скайф v, 1969); стрелками показан сдвиг волны деления при соответствующей дозе облучения, Гр.

Многочисленные исследования показали, что для большинства изученных культур клеток задержка деления соответствует примерно 1 ч на каждый 1 Гр, т. е. около 0,6 мин на каждый сГр. Следовательно, эта реакция на облучение идентична у всех особей однородной популяции не только качественно, но и по величине, причем с увеличением дозы возрастает не доля реагирующих особей, а продолжительность задержки деления каждой облученной клетки. В этом состоит принципиальное отличие такого рода клеточных эффектов облучения от летальных поражений, анализ которых будет проведен ниже.

Время задержки деления клеток зависит и от стадии клеточного цикла, в которой находятся клетки при облучении; наиболее длительно оно в тех случаях, когда воздействию подвергаются клетки в стадии синтеза ДНК или в постсинтетической стадии, и самое короткое - при облучении в митозе, когда абсолютное большинство клеток, начав митоз, заканчивает его без задержки.

Из-за различий в длительности задержки деления, наблюдающейся на отдельных стадиях клеточного цикла, восстановление митотической активности при облучении активно пролиферирующих тканей происходит волнообразно, так как эти ткани представляют собой асинхронную клеточную популяцию, т. е. состоящую из клеток, находящихся на разных стадиях жизненного цикла.

Из рис. III.7 видно, что через 4 ч после облучения клеточное деление еще сильно подавлено, степень угнетения пропорциональна дозе. Восстановление митотической активности клетки происходит волнообразно, причем картина при всех использованных видах ионизирующих излучений однотипна.

Вскоре после первоначального падения митотический индекс достаточно резко повышается, иногда даже достигая исходного уровня, а затем вновь снижается. Это начальное повышение еще не является истинным увеличением количества митозов. Объяснением этому служит тот факт, что под влиянием облучения некоторые клетки запаздывают со вступлением в деление, что отражается в снижении митотического индекса сразу после облучения. Вероятно, эти клетки в момент облучения находились на наиболее чувствительной к излучению (по данному критерию) стадии интерфазы. Затем они начинают делиться, причем одновременно с клетками, которые к моменту облучения находились на менее чувствительной стадии, и потому вступили в митоз в обычное время. Так образуется компенсаторная волна увеличения митотического индекса, которая иногда может превышать исходные показатели. С увеличением дозы облучения и компенсаторная волна, и новое значение митотического индекса еще долго оказываются меньшими по сравнению с исходными, что объясняется подавлением способностей клеток к делению.

Рис. III.7 Динамика митотической активности костного мозга мышей после общего облучения. Цифрами у начала кривых обозначены дозы облучения

Многочисленные экспериментальные данные свидетельствуют о роли радиационного повреждения ядра (большей, чем цитоплазмы) в механизме угнетения клеточного деления; в то же время установлено, что оно не связано с повреждением хромосом.

Можно рассматривать задержку деления как проявление неспецифического компонента реакции клеток на облучение (тем более что она наблюдается в ответ на действие многих внешних факторов), имеющее защитно-приспособительный характер.

(Американский цитолог Д. Мэзия в предисловии к монографии, посвященной физиологии клеточного деления, справедливо заметил, что "...обобщения дают возможность улавливать доказательства существования некоего общего плана (иными словами, осмысленности явления), которые может поставить нам природа".)

Суждение о защитном характере задержки митозов основано на том, что продолжительность задержки отражает меру восстановления клеток от вызванных излучением поражений, например, путем разрушения гипотетических токсинов или ресинтеза метаболитов, необходимых для деления. В этом случае следовало бы ожидать, что чем больше времени есть у клетки для восстановления, тем вероятнее, что она успешно разделится и даст жизнеспособное потомство. Однако прямые наблюдения показали, что степень задержки митозов одинакова как для гибнущих, так и для сохранивших жизнеспособность клеток. Отсутствие связи между задержкой деления и гибелью клетки подтверждается и данными о разной величине ОБЭ для этих феноменов (И. Скайф, 1969), и разнонаправленным изменением радиочувствительности и задержки деления по стадиям цикла.

До сих пор нет достаточных данных для того, чтобы однозначно отнести задержку деления к проявлениям радиационного повреждения множественных внутриклеточных структур или оценить ее как защитную реакцию клеток на их повреждение;

Все сказанное относится к временной задержке первого пострадиационного деления, наблюдаемой после облучения в определенном, хоти и достаточно большом диапазоне доз (для большинства клеток млекопитающих в пределах 10 Гр). Еще менее изучен механизм задержки деления при повторных облучениях, а потому и более затруднена интерпретация.

Описываемую реакцию задержки деления следует отличать от полного подавления митоза, наступающего после воздействия больших доз, когда клетка значительное время продолжает жизнь, но необратимо утрачивает способность к делению. В результате такой необратимой реакции на облучение часто образуются патологические формы гигантских клеток, иногда даже содержащие несколько наборов хромосом вследствие их редупликации в пределах одной и той же не разделившейся клетки (эндомитоз).

Среди многих проявлений действия излучения на жизнедеятельность клетки подавление способности к делению является наиболее важным. В связи с этим под клеточной гибелью, или летальным эффектом облучения, в радиобиологии понимают утрату клеткой способности к пролиферации. Наоборот, выжившими клетками считают те, которые сохранили способность к неограниченному размножению, т. е. к клонообразованию. Таким образом, речь идет здесь о репродуктивной гибели клеток. Репродуктивная форма лучевой инактивации клеток наиболее распространена в природе, Она же и лучше изучена методами количественной радиобиологии в связи с тем, что ее можно наблюдать при культивировании клеток вне организма.

При наблюдении за облученными клетками линии L (мышиных фибробластов) было установлено, что их гибель происходит как в процессе 1-го пострадиационного деления, так и во 2-м, 3-м и 4-м митозах. На рис. 17 схематически показана судьба потомков одной клетки, облученной в дозе 2 Гр. Их гибель (фрагментация) наблюдалась только через 70 и 140 ч после облучения исходной клетки, т.е. соответственно после 2-го и 3-го деления. После облучения в дозе 4 Гр клетки линии L более чем в 80% случаев успешно заканчивали 1-е пострадиационное деление, но зато вероятность деления дочерних клеток (1-я генерация) и "внучек" (2-я генерация) составляла около 30%; остальные 70 % клеток, начав деление, погибали.

Другая разновидность репродуктивной гибели потомков облученных клеток -- формирование так называемых гигантских клеток возникающих в результате слияния двух соседних, чаще "сестринских" клеток. Такие клетки способны не более чем к 2--3 делениям, после чего они погибают. Гигантские клетки могут возникнуть без слияния при длительной задержке истинного деления (эндомитоз) облученных клеток или их потомков. Такие клетки также нежизнеспособны.

Какие же реакции приводят делящиеся и малодифференцированные клетки к гибели? Основной причиной репродуктивной гибели клеток являются структурные повреждения ДНК, возникающие под влиянием облучения. Они легко обнаруживаются, в частности, цитологическими методами в виде так называемых хромосомных перестроек или аберраций хромосом. При этом разорванные хромосомы могут соединяться неправильно, а очень часто отдельные фрагменты их просто теряются при делении. Возникающие хромосомные перестройки весьма разнообразны. Отметим лишь основные виды аберраций: фрагментация хромосом, формирование хромосомных мостов, дицентриков, кольцевых хромосом, появление внутри- и меж хромосомных обменов и т.п. Часть аберраций, как, например, мосты, механически препятствует делению клетки; появление обменов и ацентрических фрагментов приводит к неравномерному разделению хромосом и утрате генетического материала, вызывающей гибель клетки из-за нехватки метаболитов, синтез которых кодировался ДНК утраченной части хромосомы.

Рис. III.8. Результаты наблюдения за потомками клетки линии L, облученной на 5-стадии (по К. tpottv, 1969): 1 -- гибель клетки. 2 -- слияние двух клеток с образованием гигантской клетки

Долю клеток с хромосомными перестройками часто используют в качестве количественного показателя радиочувствительности, так как, с одной стороны, число таких перестроек четко зависит от дозы облучения, а с другой -- они, отражая летальное действие излучений, хорошо коррелируют с выживаемостью клеток.

Итак, рассмотренные виды лучевой инактивации клеток, наступающей после первого пострадиационного митоза и ведущей к прекращению клонобразования, называют репродуктивной или митотической формой гибели. Другая форма радиационной инактивации клеток -- интерфазная гибель -- наступает до вступления клетки в митоз. При очень больших дозах облучения это происходит непосредственно "под лучом" или вскоре после облучения. В диапазоне умеренных доз (до 10 Гр) гибель наступает в первые часы после облучения и может быть зарегистрирована в виде различных дегенеративных изменений клетки; чаще всего под микроскопом через 2--6 ч можно наблюдать клетки с резким пикнозом ядра и фрагментацией хроматина. Для размножающихся клеток в культуре ткани, а также для большинства клеток соматических тканей взрослых животных и человека интерфазная гибель регистрируется только после облучения при дозах в десятки и сотни грей. При меньших дозах наблюдается репродуктивная форма гибели, причиной которой, как упоминалось, в большинстве случаев являются структурные хромосомные повреждения. Количественный метод определения выживаемости клеток, млекопитающих после облучения впервые был разработан в 1956 г. Т. Паком и П. Маркусом для культуры клеток HeLa. Так как и по сей день он является основным методом, применяемым в количественной радиобиологии, будет подробно рассмотрен его первоначальный вариант, а также описаны некоторые дальнейшие его усовершенствования. Клетки снимают со стенок культурального сосуда раствором трипсина или версена (рис. III.9), пипетируют до получения взвеси из строго одиночных клеток и рассеивают по чашкам Петри так, чтобы в каждую чашку попало заданное количество клеток. На каждую дозу облучения и контроль берут по 5--8 чашек. После посева чашки с клетками облучают при нескольких дозах вплоть до 10-- 20 Гр и выращивают в термостате 7--14 дней до получения видимых невооруженным глазом колоний, содержащих не менее 50 клеток. Следовательно, облученная, но сохранившая жизнеспособность клетка и ее потомки должны совершить не менее шести последовательных делений. Выживаемость клеток при каждой дозе облучения определяют как отношение числа колоний, выросших в облученных чашках, к числу колоний, выросших в контроле (рис. III.9).

Рис. III.9. Техника клонирования клеток для определения их выживаемости после облучения (по методу Т. Пака, Р. Маркуса): / -- в две серии чашек Петри высевают одинаковое число клеток; // опытные чашки облучают, контрольные -- нет; /// через 10--14 дней выжившие клетки делятся и образуют видимые колонии (клоны)

Полученная по такому методу кривая выживания растущих в культуре клеток опухоли Эрлиха (линии EL.D) приведена на рис. III.10.

Рис. III.10. Выживаемость клеток ELD при действии г-излучения (""Cs) в культуре: точками показаны результаты отдельных экспериментов

В настоящее время радиобиологи имеют возможность в эксперименте количественно оценивать радиочувствительность многих тканей и опухолей, сравнивая кривые выживания клеток после облучения (в том числе in vivo).

Существуют и другие критерии радиочувствительности, хорошо коррелирующие с выживаемостью, но прежде чем они будут описаны, необходимо остановиться на общем анализе кривых выживания.

Кривые выживания самых различных клеток при действии рентгеновского, гамма- или любого другого редко ионизирующего излучения имеют форму, аналогичную приведенной на рис. III.10.

Рис. III.11. Кривые выживания клеток (кривые доза--эффект) при действии плотно ионизирующего излучения. А -- линейные координаты; Б -- полулогарифмические координаты: пунктиром обозначена 37%-ная выживаемость

Рис. III.12 Основные параметры кривой выживания (объяснение см. в тексте)

В системе полулогарифмических координат (дозу облучения откладывают по шкале абсцисс в нелинейном масштабе, а выживаемость на оси ординат в логарифмическом) кривая состоит из так называемого плеча и линейного участка, начинающегося обычно после доз 3--5 Гр.

Для упрощения последующих рассуждений необходимо отметить, что при облучении клеток плотно ионизирующими частицами кривые их выживания не имеют плеча и в полулогарифмических координатах прямолинейны на всем своем протяжении (рис. III.11).

Такая зависимость хорошо описывается уравнением вида

где N -- число выживших клеток из общего их числа, D -- любая доза облучения, D 0 -- доза, при которой доля живых клеток уменьшается в сравнении с исходной в е раз: N/N 0 = е -1 = 1/2,71 = 0,367. Таким образом, при дозе облучения, равной D 0 , выживает ~37%, а погибает ~63 % клеток.

Величина D 0 служит мерой радиочувствительности клеток и определяется по кривой выживания как доза, при которой выживает ~37 % клеток от исходного количества. Иногда поэтому ее называют D 37 , что в случае экспоненциальных кривых одно и то же, но для кривых, имеющих плечо, величины D 0 и D 37 , различны (рис. III.10).

Графическое представление данных (см. рис. III.8 - III.10) определяет бытующее иногда представление о существовании некоей "критической дозы", при которой якобы погибают все клетки, так как экстраполяция кривой выживания в полулогарифмическом масштабе приводит к пересечению с осью абсцисс. На самом деле при возрастании дозы облучения фракция выживших клеток (или вероятность выживания) лишь асимптотически стремится к нулю.

Представление о критической дозе, однако, не лишено смысла: при облучении ткани, где клетки находятся в близком контакте друг с другом, те из них, которые пережили облучение, могут погибнуть за счет автолиза и выхода ферментов из соседних клеток. Есть основания полагать, что снижение фракции выживших клеток до Ю -6 -- Ю -7 (при этом в 1 см 3 остается от 100 до 1000 живых клеток) приводит к полной гибели всех клеток под действием других (не связанных с облучением) процессов, и соответствующая доза облучения может рассматриваться как критическая. Для клеток, не контактирующих друг с другом, например находящихся в асцитной жидкости лейкозных клеток, представление о критической дозе неприменимо.

Кривые, имеющие плечо (см. рис. III.8, III.10), кроме величины D 0 , определяющей наклон ее линейного участка, характеризуются еще и так называемым экстраполяционным числом п. Оно определяется в месте пересечения ординаты экстраполированным прямолинейным участком кривой выживания. Здесь величина D 0 определяется как инкремент (приращение) дозы, снижающей выживаемость в е раз на прямолинейном участке кривой выживания.

Мерой способности клеток к репарации является величина плеча, оцениваемая квазипороговой дозой D q . Она измеряется длиной отрезка прямой, параллельной оси абсцисс, проведенной на уровне 100%-ной выживаемости от оси ординат до точки пересечения с экстраполированным участком кривой выживания (см. рис. III.10).

Летальные реакции клеток имеют специфическую особенность, отличающую их от рассмотренных выше обратимых преходящих клеточных эффектов.

Эта особенность состоит в том, что с увеличением дозы облучения увеличивается не только (и даже не столько) степень поражения всех облученных клеток, как это имеет место, например, в отношении задержки деления, сколько доля пораженных, т. е. погибших, клеток. Иными словами, с одной стороны, даже при самых малых дозах может быть зарегистрирован экстремальный эффект - гибель клетки (разумеется, с малой вероятностью), с другой - и при очень больших дозах (опять же с малой вероятностью) могут сохраниться отдельные жизнеспособные клетки.

Одним из часто используемых количественных методов оценки летального поражения пролиферирующих клеток служит подсчет числа клеток с аберрациями хромосом.

Согласно данным метафазного анализа (табл. III.1) существует полный параллелизм в изменении выживаемости клеток и долей безаберрантных клеток при облучении клеточной культуры, синхронизированной на отдельных периодах интерфазы, а также в условиях защиты или сенсибилизации. Из табл. III.1 видно, что при дозах облучения, различающихся даже в 9 раз, но вызывающих одно и то же подавление жизнеспособности клеток, одинаковой оказывается и доля безаберрантных клеток.

Из табл. III.1 также следует, что доля клеток без хромосомных аберраций несколько меньше доли выживших клеток, способных к образованию колоний. Это может быть объяснено тем, что некоторые аберрации обусловливают гибель только одного из потомков облученной клетки, вызывая образование неполноценных абортивных колоний. Близкое соответствие кривых гибели и снижения числа клеток аберраций хромосом наблюдается и при учете аберраций не в метафазе, а в анафазе (см. также рис. III.11).

Таблица III.1. Корреляция между аберрациями хромосом и выживаемостью клеток китайского хомячка при разных условиях облучения

Рис. III.11. Выживаемость (A) и доля клеток без аберраций хромосом (Б) при облучении культуры клеток китайского хомячка: 1 -- г-нзлучение 137 Cs, 2 -- протоны 200 МэВ

На рис. III.11 в отличие от данных, представленных в табл. III.1, число клеток без аберраций здесь несколько больше числа выживших клеток. Это определяется тем, что анафазный метод выявляет не все аберрации (по некоторым данным, в два раза меньше, чем метафазный), например, потому, что фрагменты увлекаются расходящимися хромосомами в анафазные "шапки", где их нельзя обнаружить. Но и в этом случае существует соответствие характера кривых, а одинаковое снижение эффекта облучения при переходе от г-излучения к протонам высоких энергий, выявляемое по обоим критериям, также свидетельствует о связи аберраций хромосом с клеточной гибелью. Отсутствие полного соответствия между выживаемостью клеток и возникновением аберраций (во многих работах отмечено 20 -- 30%-ное расхождение между уровнем погибших и аберрантных клеток) не умаляет роли аберраций хромосом в качестве пригодного количественного критерия клеточной радиочувствительности.

При анализе причин летального радиационного поражения клетки следует, прежде всего, рассмотреть вопрос об относительной радиочувствительности двух основных ее компонентов -- ядра и цитоплазмы.

Можно утверждать, что результаты абсолютного большинства многочисленных исследований дали весьма убедительные доказательства о несравненно большей радиочувствительности ядра и решающей роли его поражения в исходе облучения клети. Поскольку и сейчас приходится встречаться с противниками этой точки зрения, ниже будут приведены наиболее убедительные примеры доказательства ее справедливости. Рассмотренная выше корреляция между долей клеток с хромосомными аберрациями и летальным эффектом свидетельствует в пользу определяющей роли ядерного материала в исходе лучевого поражения клетки. Однако этот факт сам по себе еще нельзя однозначно интерпретировать как следствие большей радиочувствительности ядра, ибо можно предположить, что повреждения хромосом могут происходить и в результате опосредованных цитоплазматических влияний.

Рис. III.12. Схема опытов Б. Л. Астаурова (объяснение см. в тексте)

Прямые доказательства большей радиочувствительности ядра по сравнению с цитоплазмой были получены позже и другими исследователями в опытах с прицельным облучением ядра на объектах, в клетках которых оно строго фиксировано. Оказалось, например, что попадание уже одной б-частицы в ядро оплодотворенного яйца насекомого (наездника) вызывает гибель зародыша, которая в случае облучения цитоплазмы яйца регистрируется лишь после прохождения 15 млн. б-частиц.

Особый интерес представляют также эксперименты, в которых с помощью микропучка протонов (90% частиц находилось в поле диаметром 5 мкм) было показано, что структурные повреждения хромосом в клетках наступают уже после непосредственного их облучения 15--20 протонами, в то время как при облучении различных участков цитоплазмы сотнями тысяч частиц его влияния не обнаружено.

Приведенные примеры наглядно демонстрируют значительно большую радиочувствительность ядра по сравнению с цитоплазмой, однако они не отвергают роль последней в радиационном поражении ядерного аппарата. Более того, существует достаточно много экспериментальных данных о зависимости проявления и размера ядерных нарушений от степени облучения цитоплазмы, что является следствием сложных и пока малоизученных ядерно-цитоплазматических отношений. Важно, что для разных объектов удельный вес прямого поражения ядра и опосредованных влияний может сильно различаться, отражая особенности жизнедеятельности целых клеток и функционирования их основных органелл.

Итак, подводя итог современному состоянию этого вопроса, следует подтвердить правильность точки зрения о решающей роли поражения ядра как первопричины лучевой гибели клетки и его несравненно большей по сравнению с цитоплазмой радиочувствительности. Однако в реализации летального клеточного эффекта несомненна и роль цитоплазмы, которая выражена неодинаково у разных объектов и зависит от их функционального состояния и внешних условий.

Какие же внутриядерные структуры ответственны за жизнеспособность клетки? Естественно, что при этом важны события и поражения, возникающие и определяемые при дозах до 10 Гр, существенных для гибели млекопитающих, ибо в принципе не существует структур, не поражаемых при облучении: все зависит от использованной дозы.

В клетке содержится несколько десятков молекул ДНК, имеющих очень большую длину. (У млекопитающих на клетку приходится 3·10 9 -- 6·10 9 пар нуклеотидов, общая длина молекул ДНК при этом составляет от 1 до 2 м.). ДНК постоянно связана с белками, которые участвуют в поддержании структуры интерфазного хроматина, формировании хромосом и переносе генетической информации.

Облучение вызывает различные повреждения ДНК и ее комплексов. К их числу относят разрывы молекулы ДНК, образование щелочно-лабильных связей, потерю оснований и изменения их состава, изменения нуклеотидных последовательностей, сшивки ДНК--ДНК и ДНК--белок, нарушения комплексов ДНК с другими молекулами.

Различают одиночные разрывы, когда связь между отдельными атомными группировками нарушается в одной из нитей двунитчатой молекулы ДНК, и двойные, когда разрыв происходит сразу в близких участках двух цепей, что приводит к распаду молекулы. При любом разрыве нарушаются считывание информации с молекулы ДНК и пространственная структура хроматина.

Одиночные разрывы не приводят к поломкам молекулы ДНК, так как разорванная нить прочно удерживается на месте водородными, гидрофобными и другими видами взаимодействий с противоположной нитью ДНК и, кроме того, структура довольно хорошо восстанавливается мощной системой репарации. Многие авторы поэтому склонны думать, что одиночные разрывы сами по себе (если они не переходят в двойные) не являются причиной гибели клеток.

При дозах до 20 Гр двойные разрывы являются следствием одновременного повреждения обеих нитей ДНК. С увеличением дозы облучения, более того, возрастает вероятность перехода одиночных разрывов в двойные, так как увеличивается возможность того, что независимые разрывы в противоположных цепях возникают друг против друга, При действии излучений с небольшой плотностью ионизации (г- и рентгеновское излучение, быстрые электроны) 20--100 одиночных разрывов вызывают один двойной.

Плотно ионизирующие излучения вызывают значительно большее число двойных разрывов. Такие виды лучевого поражения макромолекул удается регистрировать непосредственно после облучения в виде аберраций хромосом.

Расчеты показывают, что уже при дозе 1 Гр в каждой клетке человека повреждается 5000 оснований молекул ДНК, возникает 1000 одиночных и 10 - 100 двойных разрывов, каждый из которых может стать причиной возникновения аберрации.

Исходя из этих представлений, выживаемость клеток во многих случаях может быть описана с помощью, так называемой линейно-квадратичной модели Чедвика и Линхаутса. Разрабатывая модель, авторы исходили из того, что при облучении клеток летальными являются двойные разрывы ДНК, которые появляются либо в результате односменного разрыва обеих спиралей ДНК одной ионизирующей частицей, либо в результате совпадений двух независимо образовавшихся одиночных разрывов комплементарных спиралей, оказавшихся напротив друг друга.

Согласно этой модели выживаемость клеток S выражается формулой

где D - поглощенная доза, а б и в -- параметры, характеризующие вероятность индукции и репарации разрывов ДНК в облученных клетках. (Данная модель позволяет во многих случаях более точно аппроксимировать экспериментальные данные о выживаемости клеток, чем при использовании формулы с параметрами D 0 и n. Однако наглядность последних и удобство их оценки определяет более широкое использование параметров D 0 и n, чем б и в.)

Кроме образования разрывов в облученной ДНК нарушается структура оснований, прежде всего тимина, что увеличивает число генных мутаций. Отмечается образование сшивок между ДНК и белком нуклеопротеинового комплекса.

Разработанные к настоящему времени методы позволяют в ряде случаев обнаружить радиационные нарушения в структуре интерфазного хроматина уже при облучении клетки дозой в несколько грей. Так, вязкость интерфазного хроматина в клетках тимуса уменьшается после облучения в дозе 1--2 Гр, а при дозе 1 Гр отмечается подавление синтеза РНК, вызванное нарушениями дезоксирибонуклеопротеинового комплекса.

В последние годы интенсивно исследуется ДНК-мембранный комплекс -- сложное структурное образование в области соединения нитей ДНК с ядерной мембраной, в состав которого помимо ДНК входят белок и липиды (рис. III.13). Как показывают данные М. Элкинда и соавторов (1972), распад комплекса и деградацию молекул ДНК можно зафиксировать после облучения клеток китайского хомячка при дозе всего 2 Гр.

Помимо структурных нарушений ДНК в облученной клетке наблюдается нарушение регуляции, прежде всего выдачи в цитоплазму информации от ДНК, а также нарушение функционирования многочисленных внутриклеточных мембран. В этом проявляется роль внеядерных органелл, а также сложных взаимоопределяющих влияний ядра и цитоплазмы.

Многие сложные процессы клеточного метаболизма протекают именно на мембранах, так как последние позволяют обеспечить нужное пространственное разделение реагирующих молекул. Не удивительно, что радиочувствительными оказываются именно те биохимические процессы, для которых необходима пространственная организация участвующих групп ферментов. Снижение энергетического обмена клетки, вызванное поражением митохондрий, в отдельных случаях удается наблюдать после облучения в дозах, равных нескольким Греям. Кроме того, нарушение целостности мембран может приводить к сдвигу ионного баланса клетки из-за выравнивания концентраций калия и натрия (в норме клетка накачивает внутрь калий и высвобождает в окружающую среду натрий), что также неблагоприятно отражается на ходе метаболических процессов.

Рис. III.13. Основные виды структурных радиационных повреждений:

1 - однонитчатые (одиночные) разрывы в молекуле ДНК, 2 - двунитчатые (двойные) разрывы ДНК, 3 - нарушение связи ДНК с белком, 4 - повреждение структуры ДНК мембранного комплекса, 5 - разрушение ядерной мембраны, 6 - повреждение мнтохондриальной мембраны

Наконец, важным последствием облучения является изменение эпигеномной (не связанной с ядерным материалом) наследственности клетки, носителем которой служат различные цитоплазматические органеллы. При этом снижается функциональная активность потомков облученных клеток, в чем может состоять одна из причин отдаленных последствий облучения. Однако главной причиной репродуктивной формы гибели клеток при облучении является повреждение ее генетического аппарата.

Многие радиационные повреждения репарируются. Здесь это явление будет рассмотрено на клеточном уровне. Феномен пострадиационного восстановления обусловлен тем, что при облучении в клетках, среди прочих, возникают и такие повреждения, которые обычно приводят клетку к гибели, но при определенных условиях могут быть устранены системами ферментативной репарации. Такие повреждения принято называть потенциальными. Их дальнейшая судьба после возникновения двоякая: либо они репарируются, и тогда клетка выживает, либо реализуются, и тогда она гибнет. Термин потенциальное повреждение -- чисто формальное, феноменологическое понятие, так как не определяет какое-либо конкретное молекулярное повреждение, а потому может применяться к любому виду радиационных поражений. В отношении репродуктивной гибели клеток наиболее изучены два вида потенциальных повреждений - сублетальные и потенциально летальные, различающиеся по способу их выявления.

Сублетальные повреждения выявляют методом фракционированного облучения, а потенциально летальные -- по изменению выживаемости клеток под влиянием изменения условий, в которых они находятся в первые часы после облучения. Например, не исключено, что часть двойных разрывов ДНК, образовавшихся при облучении клеток в предсинтетический период, может быть восстановлена за время, оставшееся до репликации ДНК, а те из них, что клетка не успела "залечить" до момента синтеза ДНК, становятся летальными и вызывают ее гибель, образуя аберрации хромосом. Очевидно, что эффективность репарации, т. е. долю выживших клеток, можно увеличить, если искусственно удлинить период G 1 .

Влияние условий пострадиационного культивирования на последующую судьбу клеток показано многими авторами на различных объектах и в разные годы. Ф. Шерман и Г. Чейз еще в 1949 г. обнаружили увеличение выживаемости облученных дрожжей в том случае, если помещать их на питательную среду не сразу после облучения, а выдержав некоторое время в буферном растворе. Только в 1959 г. В. И. Корогодину в четко поставленном эксперименте удалось воспроизвести тот же феномен, а главное, правильно объяснить его, доказав реальность существования истинного пострадиационного восстановления, что было зарегистрировано в качестве открытия. Соответствующие опыты столь изящны по своей простоте и убедительности, что могут служить примером экспериментального мастерства. После г-облучения дрожжей штамма Мегри-139-В в дозе 1.2 кГр суспензию клеток разводили 1:10 000 и делили на две части. Из одной производили посев на питательную среду в чашки Петри сразу после облучения и оценивали выживаемость, подсчитывая колонии через 96 ч инкубации при температуре 30? С. Другую половину суспензии выдерживали после облучения в течение 48 ч в голодной среде при той же температуре, а затем рассеивали по чашкам. Оказалось, что в первом случае выживало лишь около 0,2 % облученных клеток, во втором - выживаемость наблюдалась почти у 40 %, причем во всех изученных пробах. Результаты этих опытов, схема которых приведена на рис. III.14, можно рассматривать как прямое доказательство реальности пострадиационного восстановления дрожжевых клеток, способность к которому "внутренне присуща" облученным клеткам, и не зависит от наличия в популяции нелетально пораженных особей.

Рис. III.14. Схема опыта В. И. Корогоднна, доказывающая реальность существования пострадиационного восстановления дрожжевых клеток

Влияние условий пострадиационного культивирования клеток млекопитающих на их последующую судьбу продемонстрировано С. Н. Александровым (1959) на клетках рака молочной железы, выращиваемых в разных температурных условиях, а позднее И. М. Пархоменко (1963), которая помещала облученные клетки в фосфатный буфер или ингибировала синтез белка.

Во всех этих примерах речь идет о длительно (в течение нескольких часов) протекающих процессах -- медленное восстановление. Hapяду с ними в клетке возникает и другой тип потенциально летальных повреждений, которые реализуются в летальные в течение нескольких минут после облучения. Как показали опыты У. Деви (1972), реализация такого типа поражений в клетках китайского хомячка происходит в условиях нормального метаболизма; снижение температуры среды до 20°С во время или сразу после облучения затормаживает процессы реализации, но не влияет на одновременно идущие восстановительные реакции, в результате чего поражение клеток уменьшается.

В 1981 г. А. В. Глазуновым и Ю. Г. Капульцевичем у дрожжей обнаружено и быстрое восстановление. Оказалось, что выживаемость диплоидных дрожжей при высеве их после облучения на питательную среду, содержащую 8 или 10% NaCl, зависит от температуры во время облучения: понижение температуры с 20 до 3 - 0°С приводит к существенному снижению выживаемости. Выдерживание клеток, облученных при 0°С, в воде при 28°С уже через 30--40 мин приводит к быстрому повышению выживаемости.

Эффект быстрого восстановления жизнеспособности нельзя обнаружить, облучая клетки при комнатной температуре или высевая их на стандартную питательную среду, так как в этих условиях восстановление успевает завершиться. Этот тип пострадиационного восстановления у дрожжей вносит большой вклад в регистрируемую выживаемость этих клеток в стандартных условиях (при высеве облученных клеток на стандартную питательную среду) в отличие от медленного пострадиационного восстановления.

Рис. III.15. Быстрое (1) и медленное (2) восстановление жизнеспособности диплоидных дрожжей Saccharomyces cerevisiae после г-облучения в дозе 40 Гр

Для примера на рис. III.15 показана выживаемость дрожжей на солевой (10 % NaCl) (кривая 1) и стандартной (кривая 2) питательных средах в зависимости от времени выдерживания клеток в воде при 28? C. В первые 30--40 мин происходит быстрое увеличение выживаемости клеток на солевой среде до постоянного значения, которое сохраняется в течение последующих одного - двух часов, что соответствует завершению быстрого пострадиационного восстановления; дальнейший рост выживаемости обусловлен медленным восстановлением, заканчивающимся через 40 - 50 ч. При высеве облученных клеток на стандартную питательную среду (без NaCI) можно наблюдать лишь медленное восстановление жизнеспособности.

Быстрое восстановление наблюдали как после г-облучения, так и после облучения б-частицами 238 Pu. Рассматриваемый тип восстановления, как и медленное, отсутствует у гаплоидных дрожжей, с чем авторы связывают повышенную радиочувствительность гаплоидных дрожжей по сравнению с диплоидными.

Придавая большое научное и принципиальное значение рассмотренному феномену репарации потенциально летальных повреждений дрожжевых клеток, где он так сильно выражен, следует иметь в виду, что вклад такого типа репарации в повышение выживаемости клеток млекопитающих оказывается несоизмеримо меньшим. В экспериментах in vitro показано, что выживаемость многих видов клеток млекопитающих за счет восстановления от потенциально летальных повреждений может быть повышена не более чем в 2--3 раза (в зависимости от дозы).

В настоящее время еще не разработаны методы количественной оценки репарации потенциально летальных повреждений непосредственно in vivo, однако в косвенных экспериментах получены убедительные данные о реальности этого процесса и в организме. На многих перевивных опухолях экспериментальных животных показано, что выживаемость опухолевых клеток, оцениваемая in vitro, зависит от времени их рассева после облучения самих опухолей in vivo. Так, например, выживаемость клеток асцитной или солидной опухоли Эрлиха при посеве клеток не сразу, а через 2 ч после облучения в дозе 10 Гр возрастает вдвое, а при посеве клеток некоторых фибросарком через 6 ч после облучения последних она увеличивается в 2--5 раз. Наблюдаемое в этих экспериментах возрастание выживаемости происходит благодаря репарации части потенциально летальных повреждений, что свидетельствует о существовании аналогичного процесса и в организме, количественное выражение которого, по-видимому, может различаться у разных тканей.

Восстановление клеток китайского хомячка от сублетальных повреждений полностью проходит за 2 - 3 ч. У других клеток этот интервал может быть несколько большим; например, у клеток костного мозга мышей он равен 5 - 6 ч.

Характер кривых выживаемости клеток при фракционированном воздействии.

Рис. III.16. Восстановление плеча на кривой выживания клеток лимфомы мышей при повторном облучении (по Дж. Толмачу, 1970}: 1 - однократное облучение, 2 - повторное облучение через 4 ч после первого

На рис. III.16 представлены результаты соответствующих экспериментов, свидетельствующие, что при повторном облучении клеток, сохранивших жизнеспособность после первого облучения, форма кривой их выживаемости (2) повторяет соответствующую кривую при однократном облучении (1). На ней вновь возникает плечо (величина которого при полном восстановлении не отличается от регистрируемого при первом облучении), а наклон (т. е. D 0) не изменяется. Аналогичным образом величины указанных параметров не изменяются и при многократном облучении, что проверено на разнообразных клетках в культуре ткани.

Иными словами, радиочувствительность выживающих после облучения клеток не отличается от контрольных, так как степень их восстановления (по данному критерию) не уменьшается при повторных экспозициях.

Эффективность восстановления (ЭВ) от сублетальных повреждений оценивают по величине так называемого фактора восстановления -- отношения выживаемости клеток при фракционированном облучении к выживаемости при однократном облучении, или по величине разности доз двукратного (D 2) и однократного (D 1) облучения, требуемых для достижения одинакового эффекта (ЭВ = D 2 - D 1). В случае дробления дозы на N фракций формула имеет вид: ЭВ = (D 2 - D 1)(N -- 1). Величина фактора восстановления зависит от собственной интенсивности восстановления и от скорости перехода клеток в более чувствительные фазы цикла, причем эти процессы противоположно влияют на радиочувствительность клеток в момент 2-го облучения.

Фактор репарации сильно зависит также от дозы облучения, причем как от первого, так и от последующих. Если доза недостаточно велика и не выходит за пределы D q , репаративные возможности клетки не могут полностью выявиться и фактор репарации невелик.

Способность к восстановлению при фракционированном облучении хорошо коррелирует с величиной плеча, поэтому такие параметры кривой выживания, как п и особенно D q , позволяют предсказать степень поражения различных тканей при повторных облучениях, что и используют на практике. Отсутствие плеча на кривой выживания, как это имеет место, например, при воздействии плотноионизирующими излучениями или при использовании некоторых модифицирующих агентов, свидетельствует об ингибировании процессов репарации или образовании нерепарируемых повреждений.

Наиболее изучена репарация структурных повреждений ДНК, которым приписывают большую роль в клеточной гибели. Такие повреждения ДНК, как одно- и двунитевые разрывы, могут быть количественно определены в разное время после облучения специальными методами, например, с помощью седиментации ДНК в градиенте плотности сахарозы после мягкого лизиса клетки.

Основные типы репарации.

По времени осуществления различают дорепликативную, пострепликативную и репликативную репарации.

Дорепликативная репарация (до этапа удвоения ДНК) может происходить путем воссоединения разрывов, а также с помощью удаления (эксцизии) поврежденных оснований. В воссоединении одиночных разрывов участвует несколько ферментов. В простейшем случае разрывы могут быть воссоединены лигазой. В других ситуациях требуется полная ферментативная система репарации, включающая специфические эндонуклеазы, экзонуклеазы, ДНК-полимеразу, ДНК-лигазу, а также вспомогательные ферменты, обеспечивающие подготовку концов ДНК для заключительного акта репарации -- лигазного воссоединения.

Исследованиями, проведенными на бактериальной ДНК, выявлены три типа репарации одиночных разрывов -- сверхбыстрая, быстрая и медленная. Сверхбыстрая завершается в течение 1--2 мин и обеспечивается одной ДНК-лигазой. Быстрая репарация, осуществляемая с помощью ДНК-полимеразы 1, воссоединяет 90% разрывов, остающихся после сверхбыстрой репарации. Время воссоединения половины разрывов составляет в зависимости от температуры от 1 до 10 мин. Медленная репарация завершается за 40--60 мин, воссоединяя около двух разрывов на каждую цепь ДНК, оставшихся после сверхбыстрой и быстрой репараций.

Феномен репарации двухнитевых разрывов в ДНК впервые был обнаружен у Micrococcus radiodurens, а в последние годы показан и на клетках млекопитающих. В клетках HeLa полное восстановление молекулярной массы ДНК наступает в течение 2,5 ч пострадиационной инкубации. Механизм этого вида репарации неясен, а сам эффект восстановления двойных разрывов долго вообще не удавалось наблюдать, хотя в последние годы он был показан в ряде лабораторий.

Наряду с разрывами ДНК после облучения возникают множественные повреждения оснований, последние ликвидируются системой эксцизионной репарации, проходящей с помощью репаративного синтеза, который представляет собой многоэтапный процесс типа выщепление - замещение. В начале повреждение узнается специфической г-эндонуклеазой, после чего происходит выщепление (инцизия) поврежденного участка вблизи измененного основания, затем - экзонуклеотическая деградация поврежденной цепи с захватом смежных неповрежденных нуклеотидов и, наконец, - репаративный синтез в области образовавшегося дефекта при участии ДНК-полимеразы 1 и полинуклеотидлигазы комплементарного участка неповрежденной цепи ДНК в качестве матрицы (шаблона).

Пострепликативная репарация постулируется на основании того факта, что некоторые клетки млекопитающих выживают при большой дозе облучения, несмотря на пониженную способность к удалению пиримидиновых димеров. Механизм этого вида репарации точно не изучен, предполагают разные варианты синтеза ДНК на поврежденной матрице.

Репликативная репарация -- восстановление ДНК в процессе ее репликации. Этот тип репарации осуществляется удалением в ходе репликации повреждений в зоне точки роста цепи либо продолжающейся элонгацией в обход повреждений.

К настоящему времени, несмотря на значительный прогресс в изучении проблемы репарации, нерешенными остаются многие вопросы, касающиеся молекулярных механизмов этого процесса и его роли в пострадиационной выживаемости клеток. Результаты соответствующих экспериментов показывают, например, что связь восстановления жизнеспособности клетки с репарацией одиночных разрывов ДНК не безусловна. С одной стороны, последняя заканчивается в течение получаса, т. е. быстрее, чем восстанавливается сама клетка, а с другой -- полная репарация разрывов наблюдается и при очень больших дозах, составляющих десятки грей, когда выживают лишь одиночные клетки. Еще нет строгих данных о том, что "отремонтированная" ДНК обладает абсолютно теми же свойствами, что и исходная. (В равной степени это относится и к восстановлению клеток, регистрируемому по их выживаемости, ибо при этом неизвестна функциональная активность таких выживших клеток, а тем более судьба их потомков в отдаленные сроки.)

Как уже было показано, репарация повреждений ДНК - процесс метаболический; она осуществляется ферментами, постоянно присутствующими в клетке, участвующими, как в ее нормальном метаболизме, так и в реакциях восстановления от различных (не только радиационных) повреждений. Эти мощные репарационные системы, по всей видимости, ликвидируют и большую долю радиационных повреждений ДНК.

Поскольку пострадиационная репарация -- процесс ферментативный, ее интенсивность, а, следовательно, и судьба облученной клетки зависят от общего уровня клеточного метаболизма.

Для работы ферментов репарации требуется энергия. Если образование АТФ подавить, например, фторидом натрия, то скорость восстановления снижается. При небольшом уменьшении общей скорости метаболизма, например, понижением температуры до комнатной, эффективность восстановления не меняется. При снижении температуры до 20°С наблюдается временная задержка в восстановлении некоторых клеток. Интенсивность восстановления значительно снижается при 8?С, а при 2 - 5°С -- приостанавливается.

Подобные документы

    Влияние радиации на клетки живого организма. Радиочувствительность ядра, решающая роль его поражения в исходе облучения клетки (экспериментальные доказательства). Изменение эпигеномной наследственности. Способы защиты молекул от прямого повреждения.

    реферат , добавлен 21.05.2012

    Изучение процесса митоза как непрямого деления клетки и распространенного способа репродукции эукариотических клеток, его биологическое значение. Мейоз как редукционное деление клетки. Интерфаза, профаза, метафаза, анафаза и телофаза мейоза и митоза.

    презентация , добавлен 21.02.2013

    Клеточный цикл как период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или гибели. Принципы и методы его регуляции. Этапы и биологическое значение митоза, мейоза, обоснование данных процессов.

    презентация , добавлен 07.12.2014

    Характеристика жизненного цикла клетки, особенности периодов ее существования от деления до следующего деления или смерти. Стадии митоза, их продолжительность, сущность и роль амитоза. Биологическое значение мейоза, его основные этапы и разновидности.

    лекция , добавлен 27.07.2013

    Виды повреждения клетки. Стадии хронического повреждения клетки. Виды гибели клетки. Некроз и апоптоз. Патогенез повреждения клеточных мембран. Высокоспециализированные клетки с высоким уровнем внутриклеточной регенерации. Состояния соединительной ткани.

    презентация , добавлен 03.11.2013

    Концепции оценки радиочувствительности. Мера количественной оценки радиочувствительности биологического объекта. Радиочувствительность тканей по лучевым реакциям. Гипоксический механизм защиты. Изменение выживаемости под действием радиопротекторов.

    презентация , добавлен 16.04.2015

    Методы изучения клетки: микроспектромериз, цитофотометрия, флуоресцентная и ультрафиолетовая микроскопия. Способы деления клеток, их сходство и различия. Функции биологических мембран, диффузия (пассивная и облегченная) и активный транспорт молекул.

    контрольная работа , добавлен 01.06.2010

    Строение и функции оболочки клетки. Химический состав клетки. Содержание химических элементов. Биология опухолевой клетки. Клонирование клеток животных. А была ли Долли? Клонирование - ключ к вечной молодости? Культивирование клеток растений.

    реферат , добавлен 16.01.2005

    Ядро эукариотической клетки. Клетки, имеющие более двух наборов хромосом. Процесс деления у эукариот. Объединенные пары гомологичных хромосом. Онтогенез растительной клетки. Процесс разъединения клеток в результате разрушения срединной пластинки.

    реферат , добавлен 28.01.2011

    Анализ особенностей онтогенеза растительной клетки. Возникновение и накопление различий между клетками, образовавшимися в результате деления. Эмбриональная фаза онтогенеза, фазы растяжения, дифференцировки клетки, зрелости. Старение и смерть клетки.

Радиочувствительность - это чувствительность организма (или его тканей) к действию ионизирующих излучений.

Радиочувствительность определяют минимальной дозой ионизирующего излучения (см. Излучения ионизирующие), которая вызывает кратковременное изменение физиологической реакции организма. В течение длительного времени понятие радиочувствительности отождествляли с понятием радиопоражаемости. Однако радиопоражаемость характеризуется не кратковременными физиологическими сдвигами в организме, а более или менее длительными нарушениями функции и, как правило, морфологическими изменениями в тканях. Тем не менее в литературе общепринятым является термин «радиочувствительность», который употребляется как в истинном значении этого слова, так и для оценки радиопоражаемости.

Различные виды животного и растительного мира имеют неодинаковую радиочувствительность (видовая радиочувствительность). Так, например, собаки являются более радиочувствительными животными, чем кролики: при равномерном облучении абсолютно смертельной для собак считается доза 350 р, а для кроликов - 800-1000 р. Абсолютно смертельная доза общего облучения для человека - 600-700 р. Радиочувствительность изменяется в зависимости от времени года (сезонная радиочувствительность). Например, радиочувствительность собак и кроликов в осенне-зимний период значительно понижена. Радиочувствительность организма неодинакова в различные возрастные периоды (возрастная радиочувствительность), однако литературные данные по этому вопросу противоречивы. Противоречивы сведения и о половой радиочувствительности. На радиочувствительность оказывает влияние исходное физиологическое состояние организма, а также его индивидуальные свойства (индивидуальная радиочувствительность).

Различия в радиочувствительности имеются не только на уровне целого организма, но и на уровне его тканей, органов, клеток и даже молекул. Например, известно, что морфологические изменения в кроветворной ткани выявляются при сравнительно меньших дозах, чем в мышечной или костной. Молодые, быстро размножающиеся клетки более радиочувствительны, чем зрелые.

Накопленные в сведения по вопросу радиочувствительности широко используют в онкологической практике. Различия в тканевой радиочувствительности позволяют осуществлять лучевую терапию (см.) больных злокачественными новообразованиями: молодые, быстро размножающиеся опухолевые клетки обладают сравнительно высокой радиочувствительностью и поэтому при облучении повреждаются скорее, чем клетки здоровых тканей, неизбежно попадающих в . При лучевой терапии больных учитывают различия в возрастной радиочувствительности. Например, реакция детей на облучение проявляется раньше, чем у взрослых. Принимаются во внимание сведения об индивидуальной радиочувствительности. При оценке исходного состояния больных учитывают повышенную радиочувствительность организма в период , особую радиочувствительность тканей, в частности кожи, при воспалительных процессах.

Усилия радиобиологов направлены на изыскание методов, позволяющих повышать радиочувствительность опухоли при одновременном снижении радиочувствительности окружающих здоровых тканей и всего организма в целом.

В общем случае радиочувствительность органов зависит не только от радиочувствительности тканей, которые оставляют орган, но и от его функций. Желудочно-кишечный синдром, приводящий к гибели при облучении дозами 10–100 Гр, обусловлен в основном радиочувствительностью тонкого кишечника.

Легкие являются наиболее чувствительным органом грудной клетки. Радиационные пневмониты (воспалительная реакция легкого на действие ионизирующего излучения) сопровождаются потерей эпителиальных клеток, которые выстилают дыхательные пути и легочные альвеолы, воспалением дыхательных путей, легочных альвеол и кровеносных сосудов, приводя к фиброзам. Эти эффекты могут вызывать легочную недостаточность и даже гибель в течение нескольких месяцев после облучения грудной клетки.

В течение интенсивного роста кости и хрящи более радиочувствительны. После его окончания облучение приводит к омертвению участков кости - остеонекрозу - и возникновению спонтанных переломов в зоне облучения. Другим проявлением радиационного поражения является замедленное заживление переломов и даже образование ложных суставов.

Эмбрион и плод. Наиболее серьезные последствия облучения - гибель до или во время родов, задержка развития, аномалии многих тканей и органов тела, возникновение опухолей в первые годы жизни.

Органы зрения. Известны 2 вида поражения органов зрения – воспалительн6ые процессы в кнъюктевите и катаракта при дозе 6 Гр у человека.

Репродуктивные органы. При 2 Гр и более наступает полная стерилизация. Острые дозы порядка 4 Гр приводят к бесплодию.

Органы дыхания, ЦНС, эндокринные железы, органы выделения относятся к довольно устойчивы тканям. Исключение составляет щитовидная железа при облучении ее J131.

Очень высокая устойчивость костей, сухожилий, мышц. Абсолютно устойчива жировая ткань.

Радиочувствительность определяется, как правило, по отношению к острому облучению, притом однократному. Поэтому получается, что системы, состоящие из быстро обновляющихся клеток, более радиочувствительны.

РАДИОРЕЗИСТЕНТНОСТЬ

(от радио... и резистентность) , радиоустойчивость, устойчивость живых организмов к воздействию ионизирующих излучений. В целом радиорезистентность уменьшается по мере усложнения органического мира; она максимальна у низших организмов и минимальна у высших (например, для дрозофилы летальная доза составляет 85000 рад, для обыкновенной мухи - 10000, а для человека - 400 рад).

Различают два механизма лучевой гибели клеток: а) апоптоз, при котором гибель начинается с изменений ядерного аппарата – межнуклеосомной фрагментации хроматина, конденсации ядерного материала, образования апоптозных телец; эти изменения сопровождаются возрастанием проницаемости клеточных мембран; б) некротическая форма, при которой изменения в ядре вторичны, им предшествуют нарушения проницаемости биологических мембран и набухание клеточных органелл. Что касается индуцированных радиацией повреждений на уровне клеток, нужно отметить что многие из них легко переносятся клеткой, т. к. являются следствием повреждения структур, утрата которых быстро восполняется. Такие преходящие клеточные реакции называют физиологическими, их относят к кумулятивным эффектам облучения. Это различные нарушения метаболизма. Как правило, подобные реакции проявляются в ближайшие сроки после облучения и с течением времени исчезают. Наиболее универсальная из них – временное угнетение клеточного деления – радиационное блокирование митозов. Время задержки деления зависит от дозы облучения и возрастает при её увеличении, а также от стадии клеточного цикла, в которой находятся клетки при облучении: наиболее длительно оно в тех случаях, когда клетки облучаются в стадии синтеза ДНК или постсинтетической стадии, а самое короткое при облучении в митозе.


В отличие от временного угнетения, полное подавление митозов наступает после воздействия больших доз ИИ, когда клетка значительное время продолжает жить, но необратимо утрачивает способность к делению. В результате такой необратимой реакции на облучение часто образуются патологические формы гигантских клеток, содержащие несколько наборов хромосом вследствие их репликации в пределах одной и той же неразделившейся клетки.

Помимо прямых влияний радиации, при облучении имеют место и другие, вторичные механизмы гибели. Так распад клетки или ткани может быть следствием нарушения кровообращения, наличия кровоизлияний, развитие гипоксии. Прямое повреждение клеток влечет за собой цепь явлений, связанных с особенностями архитектоники ткани или органа. Развивается системное нарушение, модифицирующее первоначальное поражение клеток. Однако и эти последующие изменения обусловлены начальным клеточным повреждением.

Повреждения соматических клеток способствуют впоследствии развитию злокачественных опухолей, преждевременному старению; повреждение генетического аппарата половых клеток ведет к наследственной патологии. Эффекты действия ИИ могут длиться от доли секунд до столетий

Действие излучения на организм зависит от многих факторов. Определяющими факторами являются: доза, вид излучения, продолжительность облучения, размеры облучаемой поверхности, индивидуальная чувствительность организма. Возможные последствия облучения человека дозами, бульшими фонового уровня, делятся на детерминированные и стохастические (вероятностные).

К детерминированным эффектам относятся поражения, вероятность возникновения и степень тяжести которых растут по мере увеличения дозы облучения и для возникновения которых существует дозовый порог. К таким эффектам относят, например, незлокачественное повреждение кожи (лучевой ожог), катаракту глаз (потемнение хрусталика), повреждение половых клеток (временная или постоянная стерилизация).

Имеются данные многочисленных и длительных наблюдений за персоналом и населением, подвергшимся воздействию повышенных доз облучения . Из этих данных следует, что профессиональное длительное облучение дозами до 50 мЗв в год взрослого человека не вызывает никаких неблагоприятных соматических изменений, регистрируемых с помощью современных методов исследования. Детерминированные эффекты проявляются при достаточно высоких дозах облучения всего тела или отдельных органов.

Последствия для здоровья от доз облучения всего тела за короткий период (секунды, минуты или часы) бывают следующими:

· облучение дозой 0,25 Зв не приводит к заметным изменениям в организме;

· при дозе 0,25–0,5 Зв наблюдаются изменения показателей крови;

· доза 0,5–1,0 Зв вызывает снижение уровня лейкоцитов или белых кровяных телец, но вскоре нормальные уровни восстанавливаются;

· пороговой дозой, вызывающей лучевую болезнь, считается 1 Зв . Лучевая болезнь проявляется в виде тошноты, рвоты, кишечных спазмов, чувства усталости, апатии, повышенного потоотделения, головной боли;

· доза около 2 Зв может вызвать тошноту, головную боль, наблюдается снижение уровня лимфоцитов и тромбоцитов примерно на 50 %. Нормальные уровни восстанавливаются относительно быстро;

· при дозе около 3 Зв наблюдается рвота, слабость, высокая температура, обезвоживание организма, выпадение волос. Существует небольшой риск смерти, выжившие выздоравливают в течение нескольких недель или месяцев;

· при дозе 4–6 Зв происходит поражение слизистых оболочек внутренних органов и тканей костного мозга. 4 Зв создают существенную угрозу жизни, 5 Зв означают высокую вероятность смерти, а 6 Зв без интенсивного медицинского лечения почти определенно
означают смерть;

· при дозе свыше 6 Зв шансы выжить дольше нескольких недель весьма малы;

· при дозе свыше 10 Зв наступает смерть от обезвоживания.

Стохастическими эффектами считаются такие, для которых от дозы зависит только вероятность возникновения поражений, а не их тяжесть. Для стохастических эффектов отсутствует дозовый порог. К стохастическим эффектам относят злокачественные опухоли, индуцированные излучением, а также врожденные уродства, возникшие в результате мутаций и других нарушений в половых клетках. Стохастические эффекты не исключаются при малых дозах, так как не имеют дозового порога. Повреждения, вызываемые большими дозами облучения, обыкновенно проявляются в течение нескольких часов или дней. Малые дозы облучения могут «запустить» не до конца еще установленную цепь событий, приводящую к раку или к генетическим повреждениям. Раковые заболевания проявляются спустя много лет после облучения, как правило, не ранее чем через одно-два десятилетия. Врожденные пороки развития и другие наследственные болезни, вызываемые повреждением генетического аппарата, проявляются лишь в следующем или последующих поколениях (дети, внуки и более отдаленные потомки). Изучение генетических последствий облучения связано с большими трудностями. Невозможно отличить наследственные дефекты, полученные при облучении, от тех, которые возникли совсем по другим причинам. Около 10 % всех новорожденных имеют те или иные генетические дефекты. Генетические нарушения можно отнести к двум основным типам: хромосомные аберрации, включающие изменения числа или структуры хромосом, и мутации в самих генах.

Теоретически достаточно самой малой дозы, чтобы вызвать такие последствия, как рак или повреждение генетического аппарата. В то же время никакая доза облучения не приводит к этим последствиям во всех случаях. Даже при относительно больших дозах облучения далеко не все люди обречены на эти болезни: действующие в организме человека репарационные механизмы обычно ликвидируют все повреждения. Однако вероятность (или риск) наступления таких последствий больше у человека, который был облучен. И риск этот тем больше, чем больше доза облучения.

В 1955 г. Генеральная Ассамблея ООН основала Научный комитет по действию атомной радиации (НКДАР ООН). Комитет систематически анализирует все природные и искусственные радиоактивные источники в окружающей среде или используемые человеком. В своей работе НКДАР опирается на два основных допущения:

1) не существует пороговой дозы, за которой отсутствует риск заболевания раком; любая сколь угодно малая доза увеличивает вероятность заболевания раком для человека, получившего эту дозу;

2) вероятность (риск) заболевания раком возрастает прямо пропорционально дозе облучения.

НКДАР полагает, что при таком допущении возможна переоценка риска в области малых доз, но вряд ли возможна его недооценка.

Согласно имеющимся данным, первыми в группе раковых заболеваний, поражающих население в результате облучения, стоят лейкозы. По оценкам НКДАР, от каждой дозы облучения в 1 Зв от лейкозов в среднем умерли бы 2 человека из 1000. Самыми распространенными видами рака, вызванными действиями радиации, оказались рак молочной железы и рак щитовидной железы. По оценкам НКДАР, примерно у 10 человек из 1000 облученных отмечается рак щитовидной железы, а у 10 женщин из 1000 - рак молочной железы (в расчете на каждый зиверт индивидуальной поглощенной дозы). Однако обе разновидности рака в принципе излечимы, а смертность от рака щитовидной железы особенно низка. Рак легких тоже принадлежит к распространенным разновидностям раковых заболеваний среди облученных групп населения. Согласно оценкам НКДАР, 5 человек из 1000 умерли бы от рака легких в расчете на 1 Зв средней индивидуальной дозы облучения.

Рак других органов и тканей встречается реже среди облученных групп населения. Согласно оценкам НКДАР, из 1000 человек от рака желудка, печени или толстой кишки умер бы 1 человек (в расчете на 1 Зв средней индивидуальной дозы облучения). Риск возникновения рака костных тканей, пищевода, тонкой кишки, мочевого пузыря, поджелудочной железы, прямой кишки и лимфатических тканей составляет от 0,2 до 0,5 на каждую тысячу человек (в расчете на каждый зиверт индивидуальной дозы облучения).

Учеными получены неоспоримые доказательства вредного действия низкоинтенсивной радиации на отдельные системы живых организмов и на организм в целом . Малые дозы очень коварны, они провоцируют у человека разнообразные заболевания, которые обычно врачи не связывают с прямым действием радиации. Уровень наших знаний не позволяет в настоящее время однозначно принять определенные механизмы биологического действия малых доз радиации. Есть основания считать, что и для стохастических эффектов существует порог, величина которого остается невыясненной.

Лучева́я боле́знь - заболевание, возникающее в результате воздействия различных видов ионизирующих излучений и характеризующаяся симптомокомплексом, зависящим от вида поражающего излучения, его дозы, локализации источника радиоактивных веществ, распределения дозы во времени и теле человека.

У человека лучевая болезнь может быть обусловлена внешним облучением и внутренним - при попадании радиоактивных веществ в организм с вдыхаемым воздухом, через желудочно-кишечный тракт или через кожу и слизистые оболочки, а также в результате инъекции.

Общие клинические проявления лучевой болезни зависят, главным образом, от полученной суммарной дозы радиации. Дозы до 1 Гр (100 рад) вызывают относительно лёгкие изменения, которые могут рассматриваться как состояние предболезни. Дозы свыше 1 Гр вызывают костно-мозговую или кишечную формы лучевой болезни различной степени тяжести, которые зависят главным образом от поражения органов кроветворения. Дозы однократного облучения свыше 10 Гр считаются абсолютно смертельными.

Первый период (1-2 суток) характеризуется появлением головокружений, головных болей, общего недомогания, слабости. Могут иметь место покраснения кожи, слизистых оболочек, носовые кровотечения, расстройства сердечной деятельности, тошнота, рвота, поносы. Появляются слезоточение, учащенное мочеиспускание. Развивается лихорадочное состояние.

Большие дозы приводят к смерти уже в первом периоде.
Второй период характеризуется улучшением общего состояния и исчезновением острых симптомов, самочувствие пострадавшего улучшается и он как бы выздоравливает. Но несмотря на улучшение самочувствия пострадавшего, болезнь прогрессирует. Об этом свидетельствует картина крови. Количество белых кровяных шариков катастрофически падает. Скрытый период протекает в зависимости от дозы в среднем около недели (от нескольких дней до 2-3 недель).

В третьем периоде вновь возникают клинические симптомы: головная боль, рвота, понос. Повышается температура, падает вес больного. В коже, слизистых оболочках, внутренних органах развиваются множественные кровоизлияния. Количество белых кровяных шариков продолжает резко уменьшаться. Развиваются тяжелая ангина и общее заражение организма (сепсис).
Четвертый период наступает через 2-3 недели. В этом периоде или наступает медленное выздоровление с временными ухудшениями, продолжающееся неделями или месяцами, или заболевание приводит к смерти.
Течение острой лучевой болезни в зависимости от дозы облучения может быть различным по тяжести. Выздоровление или смерть могут наступить в любом периоде.

I степень (легкая) возникает при воздействии ионизирующего излучения в дозе 1-2,5 Гр. Первичная реакция отмечается через 2-3 часа послу облучения, для неё характерно головокружение и тошнота. Латентная фаза продолжается от 25до 30 суток. В первые 1-3 дня количество лимфоцитов (в 1 мкл крови) снижается до 1000 - 500 клеток (1-0,5 109/л), лейкоцитов в разгаре болезни - до 3500-1500 (3,5 - 1,5 109/л), тромбоцитов на 26-28-е сутки - до 60 000-10 000 (60-40 109/л. Инфекционные осложнения возникают редко, изменений кожи и слизистых оболочек и кровоточивости не наблюдается. Восстановление медленное, но полное.
II степень (средней тяжести) развивается при воздействии ионизирующего излучения в дозе 2,5 - 4 Гр. Первичная реакция проявляется через 1 - 2 часа в виде головной боли, тошноты, иногда рвоты. Может появиться эритема кожи. Латентная фаза продолжается от 20 - 25 суток. Число лимфоцитов в первые 7 суток снижается до 500, число гранулоцитов в фазе разгара (20 - 30-е сутки) - до 500 клеток в 1 мкл крови (0,5 109/л); СОЭ - 25 - 40 мм/ч. Для этой степени характерны инфекционные осложнения, изменения слизистой оболочки рта и глотки, при числе тромбоцитов менее 40 000 в 1 мкл крови (40 109/л) выявляются незначительные признаки кровоточивости - петехии в коже. Возможны летальные исходы, особенно при запоздалом и неадекватном лечении.
III степень (тяжелая)возникает при воздействии ионизирующего излучения в дозе 4 - 10 Гр. Первичная реакция резко выражена, наступает через 30 - 60 минут в виде повторяющейся рвоты, повышению температуры тела, головной боли, эритеме кожи. В первые сутки количество лимфоцитов составляет 300 - 100, лейкоцитов с 9 -17-го дня - менее 500, тромбоцитов - менее 20 000 в 1 мкл крови. Латентная фаза длится от 10 до 15 дней. В разгаре болезни наблюдается выраженная лихорадка, поражаются слизистая оболочки рта и носоглотки, развиваются различные инфекции - бактериальные, вирусные, грибковые) в легких, кишечнике и других органах, умеренная кровоточивость. В первые 4 - 6 недель возрастает частота летальных исходов.
IV степень (крайне тяжелая) возникает при воздействии ионизирующего излучения в дозе более 10 Гр. При этой степени развивается глубокое нарушение кроветворения, которое характеризуется ранней стойкой лимфопенией - менее 100 клеток в 1 мкл крови (0,1 109/л), агранулоцитозом, начиная с 8-х суток тромбоцитопенией - менее 20 000 в 1 мкл крови (20 109/л), а затем анемией. Увеличение дозы облучения приводит к более сильному проявлению всех симптомов, сокращению продолжительности латентной фазы. При этом первостепенное значение приобретают поражения других органов - кишечника, кожи, головного мозга, а также общая интоксикация. Летальный исход наблюдается практически в 100% случаев.

Нарушение кроветворения и системы крови . Отмечается уменьшение числа всех форменных элементов крови, а также функциональная их неполноценность. В первые же часы после облучения отмечается лимфопения, позднее - недостаток гранулоцитов, тромбоцитов и еще позже - эритроцитов. Возможно опустошение костного мозга. Характерным признаком лучевой болезни является геморрагический синдром . В патогенезе этого синдрома наибольшее значение имеет снижение количества тромбоцитов, содержащих биологические факторы свертывания крови. Причиной тромбоцитопении является не столько разрушение тромбоцитов, сколько нарушение созревания их в костном мозге. Большое значение имеет нарушение способности тромбоцитов к склеиванию, так как именно при агрегации тромбоцитов выделяются из них биологические факторы свертывания крови. Кроме того, тромбоциты играют важную роль в поддержании целостности сосудистой стенки, ее упругости и механической резистентности.

Нарушение структуры сосудистой стенки приводит к функциональной неполноценности сосудов и нарушению кровообращения в тех сосудах, где происходит обмен веществ между кровью и клетками. Паралитическое расширение и переполнение кровью системы микроциркуляции, истинны и капиллярный стаз усугубляют дистрофические и дегенеративные изменения в тканях, обусловленные прямым действием излучения и первичными радиохимическими реакциями.

Если в результате хромосомных повреждений клетка не погибает, изменяются ее наследственные свойства. Соматическая клетка может подвергнуться злокачественному перерождению, а хромосомные аберрации в половых клетках приводят к развитию наследственных болезней.

Снижается иммунная реактивность . Активность фагоцитоза понижена, образование антител угнетено или полностью подавлено, поэтому инфекция - наиболее раннее и тяжелое осложнение облучения. Ангина носит некротический характер. Часто причиной гибели больного является пневмония.

Бурно развивается инфекция в кишечнике. Патология пищевого канала - одна из причин гибели организма. Барьерная функция слизистой оболочки кишечника нарушена, что приводит к всасыванию в кровь токсинов и бактерий. Нарушение функции пищеварительных желез, кишечная аутоинфекция, тяжелое состояние полости рта приводят к истощению организма.

Нарушение со стороны нервной системы . Структурные изменения не всегда соответствуют функциональным, и в этом смысле нервная ткань обладает очень высокой чувствительностью по отношению к любым воздействиям, в том числе к радиационным. Буквально через несколько секунд после облучения нервные рецепторы подвергаются раздражению продуктами радиолиза и распада тканей. Импульсы поступают в измененные непосредственным облучением нервные центры, нарушая их функциональное состояние. Изменение биоэлектрической активности головного мозга можно зарегистрировать в первые же минуты после облучения. Таким образом, нервно-рефлекторная деятельность нарушается до появления других типичных симптомов лучевой болезни. С этим связаны вначале функциональные, а затем и более глубокие нарушения функций органов и систем.

Попавшие в организм радионуклиды участвуют в обмене веществ по принципу, аналогичному тому, как это происходит для их стабильных изотопов: они выводятся из организма через те же самые выделительные системы, что и их стабильные носители.

Основное количество радиоактивных веществ выводится через желудочно-кишечный тракт и почки, в меньшей степени – через легкие и кожу. У беременных и лактирующих животных часть ра­дионуклидов выделяется с плодом и молоком.

Скорость выведения радионуклидов зависит от их природы, а также от вида, возраста, физиологического состояния животных и ряда других факторов.

Время, в течение которого исходное количество ра­дионуклида уменьшится вдвое, называют эффективным периодом полувыведения. Снижение концентрации радиоизотопов про­исходит за счет двух основных факторов: физического их распада и истинного выведения. Эффективный период полувыведения долгоживущих изотопов определяется в основном биологическим периодом полувыведения, короткоживущих – периодом полураспада.

На эффективный период полувыведения влияют вид, возраст, функциональное состояние организма, особенности поступления, распределения радионуклидов и другие факторы.

Период полураспада Иод-131 8,02070 суток

В связи с бета-распадом, иод-131 вызывает мутации и гибель клеток, в которые он проник, и окружающих тканей на глубину нескольких миллиметров.

30% короткоживущего йода-131 при поступлении в организм человека накапливается в щитовидной железе, остальные 70% распределяются равномерно по всему организму. Суточная потребность в нерадиоактивном йоде - 150 мкг. Йод поступает в организм с воздухом, водой, пищей, причем на море с воздухом может поступать до 35 мкг йода в сутки. Йод долго задерживается в щитовидной железе: биологический период его полувыведения - 120 суток, из остального организма - 12 суток. Эффективный период полувыведения - 7,5 суток. Наличие его в организме можно определить с помощью счетчика излучения человека - в щитовидной железе (110 Бк) и в моче (3,7 Бк/л).

Стро́нций-90 Период полураспада 28,79 лет

Стронций является аналогом кальция, поэтому он наиболее эффективно откладывается в костной ткани. В мягких тканях задерживается менее 1 %. За счёт отложения в костной ткани, он облучает костную ткань и костный мозг. Так как у красного костного мозга взвешивающий коэффициент в 12 раз больше, чем у костной ткани, то именно он является критическом органом при попадании стронция-90 в организм, что увеличивает риск заболевания раком костного мозга. А при поступлении большого количества изотопа может вызвать лучевую болезнь.

Образуется преимущественно при делении ядер в ядерных реакторах и ядерном оружии.

В окружающую среду 90 Sr попадает преимущественно при ядерных взрывах и выбросах с АЭС.

Стронций радиоактивный, образовавшийся при взрывах, попадает в почву и воду, усваивается растениями и затем с растительной пищей или с молоком животных, питающихся этими растениями, проникает в организм человека.

Эффективный период полувыведения Sr 90 из организма человека составляет 15,3 года. Таким образом, в организме создается постоянный очаг радиоактивности, воздействующий на костную ткань и костный мозг. Исходом такого облучения в отдаленные сроки могут быть лучевые остеосаркомы и лейкозы.

Цезий-137 период полураспада 30,1671 лет

Внутрь живых организмов цезий-137 в основном проникает через органы дыхания и пищеварения. Хорошей защитной функцией обладает кожа (через неповрежденную поверхность кожи проникает только 0,007 % нанесенного препарата цезия, через обожженную - 20 %; при нанесении препарата цезия на рану всасывание 50 % препарата наблюдается в течение первых 10 мин, 90 % всасывается только через 3 часа). Около 80 % попавшего в организм цезия накапливается в мышцах, 8 % - в скелете, оставшиеся 12 % распределяются равномерно по другим тканям

Биологический период полувыведения накопленного цезия-137 для человека принято считать равным 70 суткам (согласно данным Международной комиссии по радиологической защите). Тем не менее, скорость выведения цезия зависит от многих факторов - физиологического состояния, питания и др. (например, приводятся данные о том, что период полувыведения для пяти облученных человек существенно различался и составлял 124, 61, 54, 36 и 36 суток)

Развитие радиационных поражений у человека можно ожидать при поглощении дозы примерно в 2 Гр и более. Симптомы во многом схожи с острой лучевой болезнью при гамма-облучении: угнетённое состояние и слабость, диарея, снижение массы тела, внутренние кровоизлияния. Характерны типичные для острой лучевой болезни изменения в картине крови. Дозам в 148, 370 и 740 МБк соответствуют лёгкая, средняя и тяжелая степени поражения, однако лучевая реакция отмечается уже при единицах МБк.

239Pu имеет период полураспада 2,4х10^4 лет.

Период полураспада плутония-238 составляет 87,7(1) года.

При поступлении с водой и пищей, плутоний менее ядовит, чем такие известные вещества, как кофеин, ацетаминофен, некоторые витамины, псевдоэфедрин и множество растений и грибов. Он чуть менее вреден этилового спирта, но вреднее табака и, тем более, всех запрещённых наркотиков. С химической точки зрения при приёме внутрь, он ядовит как свинец и другие тяжёлые металлы (Кто пробовал, утверждают, что у плутония типичный вкус металла). Спорообразующие палочки, вызывающие ботулизм, бактерии вызывающие столбняк, мухоморы и т.п. намного страшнее плутония. Не так уж опасен плутоний и при вдыхании – с точки зрения ингаляции это – рядовой токсин (примерно соответствует парам ртути).

Тем не менее, плутоний, естественно, опасен, т.к. при вдыхании и при приёме пищи, концентрируется непосредственно в кроветворных участках костей и может вызвать заболевание даже через много лет после поступления в организм. Особенно опасно попадание радиоактивных веществ внутрь организма. В связи с тем, что α-излучение плутония производит большие необратимые изменения в скелете, печени, селезёнке и почках, все изотопы плутония относят к группе элементов с особо высокой радиотоксичностью (группа А токсичности). Эти изменения трудно диагностировать; они не проявляются настолько быстро, чтобы можно было принять меры

к искусственному выведению плутония с помощью растворов комплексующих реагентов.

Плутоний может попадать в организм через раны и ссадины, путем вдыхания или заглатывания.

Однако наиболее опасный путь попадания его в организм - поглощение из легких.

Плутоний в своём четырехвалентном состоянии уже в течение нескольких суток на 70-80% отлагается в тканях печени человека и на 10-15% - в костных тканях.

Попавший в организм плутонии выделяется медленно. Скорость выделения такова, что через 50 лет после попадания в организм остается 80% усвоенного количества. Период биологического полувыведения плутония 80-100 лет при нахождении в костной ткани, т.о. концентрация его там практически постоянна. Период полувыведения из печени - 40 лет. Хелатные добавки могут ускорить выведение плутония. Максимально допустимым содержанием плутония в организме считается такое количество, которое может находиться неограниченное время в организме взрослого человека, не причиняя ему вреда. В настоящее время эта величина для 239Pu установлена равной 0,047 мккюри что эквивалентно 0,75 мкг.

Противолучевая защита физическая - применение специальных устройств и способов для защиты организма от действия внешних ионизирующих излучений или попадания радиоактивных веществ в организм. Существуют стационарные и передвижные защитные устройства. К передвижным защитным устройствам относятся широко используемые в радиологической практике ширмы и экраны. Стационарными являются защитные стены, окна, двери и др., обеспечивающие защиту от источников излучения более надежно, чем передвижные устройства. Толщина и выбор защитного материала для стационарной защиты определяются видом используемого излучения и его энергией. Защиту от γ- или рентгеновского излучений обеспечивают с помощью материалов, имеющих высокий удельный вес (кирпич, бетон, свинец, вольфрам или свинцовые стекла). С возрастанием энергии излучения удельный вес защитного материала или его толщина должны увеличиваться. Качество защиты выражается свинцовым эквивалентом (который определяется толщиной слоя свинца в миллиметрах), ослабляющим излучение данного вида в такой же степени, как и использованный защитный материал. Защиту от нейтронного излучения или протонного излучения осуществляют материалами, имеющими в своем составе водород (например, вода, парафин, органическое стекло).

Продовольствие в зависимости от степени зараженности вывозится полностью или частично в незараженный район и подвергается дезактивации. В некоторых случаях продовольствие может быть оставлено на месте; для последующего снижения зараженности в пределах допустимых уровней.

При вывозе из зараженного района продовольствие, погруженное на автомашины, укрывается сверху и с боков чистыми (незараженными) кусками брезента. На некотором удалении от района заражения автомобиль обтирают (обмывают) и затем направляют к месту разгрузки. При разгрузке все продовольствие обязательно подвергается дозиметрическому контролю и рассортировывается на незараженное, зараженное в пределах допустимых уровней и зараженное выше допустимых уровней.

Незараженное и зараженное в пределах допустимых уровней продовольствие направляется на склад, причем продукты, зараженные в пределах допустимых уровней, размещаются отдельно от незараженных и выдаются на довольствие в последнюю очередь.

Продукты, зараженные выше допустимых уровней, подвергаются дезактивации. Заключение о пригодности этих продуктов в пищу после дезактивации дает медицинский врач. Продовольствие, заготавливаемое из местных средств, подвергается тщательному дозиметрическому контролю.

При хранении продовольствия в твердой негерметической таре сначала дезактивируется тара, после этого продукты извлекаются из тары и подвергаются дозиметрическому контролю для установления необходимости их дезактивации.

Дезактивация продовольствия производится на специальных площадках, оборудованных стеллажами для хранения продуктов и столами для их обработки. Площадки обеспечиваются бочками или баками для обмывания продуктов, носилками, ведрами, щетками и другим необходимым инвентарем. Для удобства проведения дезактивации продовольствие группируется по видам упаковки: продовольствие в бочках, в ящиках и герметичной таре (консервы), в ящиках и картонных коробках, в тканевых и бумажных мешках и т. д.

После дезактивации продовольствие направляется на чистый участок площадки, где подвергается вторичному дозиметрическому контролю. При выдаче дезактивированного продовольствия со склада в накладных должна быть сделана отметка «дезактивировано».

В зависимости от вида продовольствия, его упаковки, характера и степени заражения дезактивация производится следующими способами:

Удалением зараженного наружного слоя продуктов;

Заменой зараженной тары на чистую;

Обмыванием внешней поверхности тары водой с одновременным обтиранием ветошью.

Готовая пища, оказавшаяся в зараженном районе, подвергается особо тщательному дозиметрическому контролю и в случае заражения подлежит уничтожению.

Для обезвреживания тары в зависимости от материала, из которого она изготовлена, могут применяться следующие способы дезактивации:

Встряхивание и выколачивание;

Обтирание ветошью, смоченной водой или моющим раствором (деревянная, стеклянная и металлическая тара);

Обмывание струей воды или моющего раствора;

Удаление наружного слоя тары (при наличии двойных мешков, деревянной тары, бумажных прокладок и т. п.).

Работы по дезактивации проводятся в индивидуальных средствах противохимической защиты (противогаз, фартук, чулки, перчатки). К работе по дезактивации допускаются только лица, заранее обученные. Лица, имеющие повреждения кожных покровов, к работе не допускаются. У всех работающих ногти должны быть коротко острижены.

Противолучевая защита - это совокупность специальных мероприятий и средств, предназначенных для предохранения организма человека от лучевого воздействия в условиях научно-исследовательской и производственной деятельности.
Существуют физические и химические (биологические) методы и средства противолучевой защиты.

Химическая (биологическая) противолучевая защита. Ослабление лучевого поражения достигается при помощи введения в организм до начала воздействия ионизирующей радиации определенных соединений разнообразных химических классов. В настоящее время известно несколько сотен радиозащитных средств (протекторов) и их комбинаций, которые оказывают противолучевое действие. Средства химической противолучевой защиты обычно классифицируют на основании их общих химических свойств. Так, например, выделяют класс протекторов - аминотиолов, серусодержащих аминокислот, цианофоров и т. д.
По особенностям действия на организм все средства химической противолучевой защиты можно разделить на две группы: 1) средства, действующие при однократном введении; 2) средства, действующие при повторных введениях. К первой группе относят протекторы, которые вводят в организм незадолго до облучения однократно в дозах, оказывающих значительный сдвиг в физиологических и биохимических процессах организма (аминотиолы, цианофоры и др.). Ко второй группе относят некоторые витамины, гормоны.
Средства химической противолучевой защиты первой группы, как правило, оказываются эффективными при облучении животных в смертельных дозах. Средства противолучевой защиты второй группы используют при воздействии излучений в сублетальных дозах.
Механизм действия средств противолучевой защиты первой группы определяется способностью этих соединений образовывать временные связи с биологически важными макромолекулами, вызывать временную, локальную тканевую гипоксию, резко изменять течение всех основных биохимических радиочувствительных реакций к моменту облучения. Механизм действия противолучевой защиты второй группы обусловлен повышением общей радиорезистентности тканей, повышением прочности кровеносных сосудов, активизацией процессов кроветворения и т. п.
К веществам второй группы могут быть отнесены, например, вещества, обладающие свойствами витамина Р (цитрин, морин, гесперидин), аскорбиновая кислота, комбинации витаминов Р и Сидр. Имеются данные о радиозащитном действии биотина, тиамина (витамина B1), витаминов В6 и В12, гормонов эстрадиола, стильбэстрола, адреналина и др.
Особенно эффективно и перспективно комбинированное использование средств противолучевой защиты первой и второй группы. Из многочисленных средств противолучевой защиты в клинической практике при лучевой терапии больных злокачественными новообразованиями нашли пока применение лишь несколько протекторов: β-меркаптоэтиламин (цистамин, меркамин, бекаптан, ламбратен), дисульфидная форма Р-меркаптоэтиламина (цистамин), пропамин, аминоэтилизотиоуроний и некоторые др.
Противолучевую защиту широко используют в радиобиологических лабораториях при изучении первичных механизмов действия ионизирующей радиации на организм и механизмов действия протекторов.
Поиски новых средств химической противолучевой защиты ведутся во многих радиобиологических лабораториях различных стран.

По происхождению миграцию радионуклидов разделяют на несколько типов: природную и техногенную (иногда ее называют антропогенной). По природной миграцией радионуклидов понимают миграцию, вызванную природными явлениями – разливы рек и паводки, пожары, дожди, ураганы и т.д. Под техногенной миграцией понимают движение элементов, обусловленное деятельностью человека – ядерные взрывы, аварии на ядерных энергетических установках, предприятиях по добыче и переработке урана, каменного угля, руды и т.д.)
Существуют отличия в направлении движения радионуклидов в окружающей среде. Выделяют вертикальную миграцию радионуклидов (извержение вулканов, дожди, вспашка почвы, выращивание леса и т.д.), а также горизонтальную миграцию (разливы рек, перенос радиоактивной пыли и аэрозолей ветром, миграция живых организмов и т.д.). Существует смешанный тип миграции радионуклидов (ядерные взрывы, большие пожары, добыча и переработка нефти, производство и внесение минеральных удобрений и т.д.).
Загрязнение радионуклидами наземных и водных экосистем приводит к вовлечению этих элементов в трофические (пищевые) цепочки. Пищевые цепочки представляют собой ряд последовательных этапов по которым осуществляется трансформирование вещества и энергии в экосистеме. Все живые организмы связаны между собой, поскольку они являются объектами питания. При загрязнении одной из цепей радиоактивными веществами осуществляется миграция и последовательное накопление нуклидов в других элементах трофической цепи.

РАДИОЭКОЛОГИЧЕСКИЕ ПОСЛЕДСТВИЯ АВАРИИ НА ЧАЭС

В результате аварии на ЧАЭС во внешнюю среду поступило около 10^19 Бк общей активности

радиоактивных веществ, в том числе 6,3⋅10^18 Бк радиоактивных благородных газов. По некоторым оценкам величина выброса считается более высокой.

Формирование радиоактивного загрязнения Беларуси началось сразу после взрыва реактора.

Метеорологические условия движения радиоактивных воздушных масс с 26 апреля по 10 мая 1986 года в совокупности с дождями определили масштабность загрязнения республики. На территории Беларуси в результате сухого и влажного осаждения выпали около 2/3 радиоактивных веществ.

Радиоактивные выбросы привели к значительному загрязнению местности, населенных пунктов,

водоемов. Радиационно-экологическая обстановка в Беларуси характеризуется сложностью и

неоднородностью загрязнения территории различными радионуклидами и присутствием их во многих компонентах природной среды. В начальный период после катастрофы уровни загрязнения короткоживущими радионуклидами йода во многих регионах республики были настолько велики, что вызванное ими облучение квалифицируется как период «йодного удара».

Полученные многочисленные данные за прошедшие после аварии годы свидетельствуют о

серьезных нарушениях у всех категорий населения, подвергшихся воздействию чернобыльской

катастрофы. При этом рост показателей заболеваемости отмечался практически по всем основным классам болезней кровообращения, дыхания, пищеварения, эндокринной, нервной, мочеполовой и других. Различия между категориями пострадавших заключаются лишь в частоте заболеваний по отдельным органам и величине дозы облучения.

В последние годы тенденции к росту заболеваемости пострадавшего населения по основным

классам болезней не наблюдается. Тем не менее, заболеваемость по многим болезням остается

значительно выше, чем не пострадавшего населения.

В первую очередь следует отметить рост болезней щитовидной железы (узловой зоб,

аденома, тиреоидит, гипотиреоз), заболеваемость которыми в 2-4 раза выше, чем у проживающих на незагрязненных территориях. Особое беспокойство вызывает начавшееся с 1990 года резкоеувеличение заболеваемости раком щитовидной железы, обусловленное формированием высоких индивидуальных и коллективных доз облучения населения в результате «йодного удара» в первый период после аварии, зобной эндемией, неправильно проведенной йодной профилактикой. Резко увеличилось число больных раком щитовидной железы среди облученных в возрасте 0-18 лет на момент аварии. В 1999 году в этой группе было зарегистрировано 1105 случаев рака щитовидной железы. Наибольшее число больных детей выявлено в Гомельской и Брестской областях. Радиационно-индуцированный рак щитовидной железы имеет преимущественно папиллярное гистологическое строение. Даже маленькая солитарная опухоль способна прорастать в капсулу железы, соседние ткани шеи и распространяться по лимфатическим путям. Агрессивность карциномы, проявляющаяся экстратиреоидной инвазией и метастазированием, нарастает по мере увеличения размеров первичного очага опухоли.

Популяционная заболеваемость раком щитовидной железы до десятилетнего возраста уже

полностью реализована, заболеваемость по остальным возрастам будет увеличиваться по мере

взросления облученной популяции. В настоящее время наблюдается снижение показателей

заболеваемости раком этой локализации у детей и рост у взрослого населения. Пик

заболеваемости переместился в подростковый и молодежный возраст, т.е. затронул тех, кто на

момент аварии был ребенком.

Клетки имеют разное строение и выполняют различные функции (например, нервные, мышечные, костные и т.д.). Чтобы понять механизмы , определяющие естественную радиочувствительность организма (без чего невозможно правильно оценить последствия облучения человека), необходимо последовательно рассмотреть клеточные и тканевые аспекты радиочувствительности , так как клетка - основная биологическая единица, в которой реализуется воздействие поглощенной при облучении энергии , что в последующем приводит к развитию лучевого поражения. Среди многих проявлений жизнедеятельности клетки наиболее чувствительна в отношении ионизирующего излучения ее способность к делению. Под клеточной гибелью (или летальным эффектом) понимают утрату клеткой способности к пролиферации, а выжившими считают клетки, сохранившие способность к неограниченному размножению.

В зависимости от связи летального эффекта с процессом деления различают две основные формы радиационной гибели клеток: интерфазную (до деления клетки или без него) и репродуктивную (после первого или нескольких последующих циклов деления). Для большинства клеток характерна репродуктивная форма лучевой гибели, основной причиной которой являются структурные повреждения хромосом, возникающие в процессе облучения.. Гибель таких аберрантных клеток или их потомков происходит вследствие неравномерного разделения или частичной утраты жизненно необходимого генетического материала из-за неправильного соединения разорванных хромосом или отрыва их фрагментов.

Определение доли клеток с хромосомными аберрациями часто используют в качестве надежного количественного показателя радиочувствительности, т.к. с одной стороны, число таких поврежденных клеток четко зависит от дозы ионизирующего излучения, а с другой - отражая его летальное действие.

Группы клеток образуют ткани, из которых состоят органы и системы (пищеварительная, нервная, кровеносная системы, железы внутренней секреции и т.д.).

Ткань – это не просто сумма клеток, это уже система, имеющая свои функции. Она имеет свою систему саморегуляции и, установлено, что клетки ткани, которые активно делятся, более подвержены действию радиации. Поэтому мышцы, мозг, соединительные ткани у взрослых организмов достаточно устойчивы к воздействию радиации. Клетки же костного мозга, зародышевые клетки, клетки слизистой оболочки кишечника являются наиболее уязвимыми.

Кроме того, на тканевую радиочувствительность оказывают большое влияние и другие факторы: степень кровоснабжения, величина облучаемого объема и др. Таким образом, радиочувствительность ткани нельзя рассматривать только с позиций составляющих ее клеток без учета морфофизиологических факторов. Например, эритробласты изменяют свою радиочувствительность в зависимости от места их нахождения в организме - в селезенке или костном мозге. Все это усложняет оценку радиочувствительности тканей, органов и целого организма, но не отвергает принципиального и ведущего значения цитокинетических параметров, определяющих тип и выраженность лучевых реакций на всех уровнях биологической организации.

Следует иметь в виду, что при переходе от изолированной клетки к ткани, к органу и организму все явления усложняются. Эго происходит потому, что не все клетки поражаются в равной степени, а тканевой эффект не равен сумме клеточных эффектов: ткани, а тем более органы и системы нельзя рассматривать как простую совокупность клеток. Находясь в составе ткани, клетки в значительной степени зависимы и друг от друга, и от окружающей среды. Митотическая активность, степень дифференцированности, уровень и особенности метаболизма, а также другие физиологические параметры отдельных клеток не безразличны для их непосредственных «соседей», а, следовательно, и для всей популяции в целом. Общеизвестно, например, что заживление раны происходит вследствие временного ускорения размножения оставшихся клеток, обеспечивающего рост ткани и замещение вызванных травмой тканевых утрат, после чего тип клеточного деления нормализуется.

На органном уровне радиочувствительность зависит не только от радиочувствительности тканей, составляющих данный орган, но и от его функций. Следует рассмотреть действие излучения на отдельные органы и системы при внешнем облучении.

Семенники . Клетки семенников находятся на разных стадиях развития. Наиболее радиочувствительны клетки – сперматогонии, наиболее радиорезистентные – сперматозоиды. При воздействии однократного облучения в дозе 0,15-2 Гр возникает временная олигоспермия, свыше 2,5 Гр – временная стерильность, а в дозе более 3,5 Гр наблюдается стойкая стерильность.

Яичники . В яичниках взрослой женщины содержится популяция незаменяемых овоцитов (их образование заканчивается в ранние сроки после рождения). Женские половые клетки высоко радиочувствительны в процессе митотического деления и неспособны к регенерации. Воздействие однократного облучения в дозе 1 - 2 Гр на оба яичника вызывает временное бесплодие и прекращение менструаций на 1-3 года. При остром облучении в диапазоне доз 2,5 - 6 Гр развивается стойкое бесплодие.

    Органы пищеварения . Наибольшей радиочувствительностью обладает тонкий кишечник. Далее по снижению радиочувствительности следуют полость рта, язык, слюнные железы, пищевод, желудок, прямая и ободочная кишки, поджелудочная железа, печень.

    Сердечно-сосудистая система . В сосудах большей радиочувствительностью обладает наружный слой сосудистой стенки, что объясняется высоким содержанием коллагена. Сердце считается радиорезистентным органом, однако при локальном облучении в дозах 5-10 Гр можно обнаружить изменения миокарда. При дозе 20 Гр отмечается поражение эндокарда.

    Органы дыхания . Лёгкие взрослого человека - стабильный орган с низкой пролиферативной активностью. Последствия облучения легких проявляются не сразу. При локальном облучении может развиться радиационный пневмонит, сопровождающийся потерей эпителиальных клеток, воспалением дыхательных путей и легочных альвеол, приводящий к фиброзу. Это часто лимитирует лучевую терапию. При однократном воздействии гамма-излучения LD 50 для человека составляет 8-10 Гр, а при фракционировании в течение 6-8 недель- 30-30 Гр.

    Органы выделения . Почки достаточно радиорезистентны. Однако облучение почек в дозах более 30 Гр за 5 недель может привести к развитию хронического нефрита (это может быть лимитирующим фактором при проведении лучевой терапии опухолей органов брюшной полости).

    Орган зрения. Возможны два типа поражений глаз: воспалительные процессы в конъюнктиве и склере (при дозах 3 - 8 Гр) и катаракта (при дозах 3 -10 Гр). У человека катаракта появляется при облучении в дозе 6 Гр. Наиболее опасным является нейтронное облучение.

    ЦНС . Эта высоко специализированная ткань человека радиорезистентна. Клеточная гибель наблюдается при дозах свыше 100 Гр.

    Эндокринная система характеризуется низкой скоростью обновления клеток, поэтому являются радиорезестентной. Наиболее РЧ органами эндокринной системы являются половые железы . Далее по снижению РЧ следуют: гипофиз, щитовидная железа, островки поджелудочной железы, паращитовидная железа.

    Костно-мышечная система и сухожилия . У взрослых они радиорезистентны. В пролиферативном состоянии (в детском возрасте или при заживлении переломов) радиочувствительность этих тканей повышается. Наибольшая радиочувствительность скелетной ткани характерна для эмбрионального периода, так как особенно интенсивная пролиферация остеобластов и хондробластов у человека происходит на 38-85 сутки эмбрионального развития. Мышцы – высокорадиорезистентны.

В целом поражения всего организма определяются дву­мя факторами:

1) радиочувствительностью тканей, органов и сис­тем, существенных для выживания организма;

2) величиной поглощен­ной дозы облучения и ее распреде­лением в пространстве и времени.

Каждый в отдельности и в сочетании друг с другом эти факторы определяют преимущественный тип лучевых реакций (местные или общие), специфику и время проявления (непосредственно после облучения, вскоре после облучения или в отдаленные сроки) и их значимость для организма .

  • Занятие № 2 Токсикология радионуклидов Биологическое действие ии
  • Занятие № 3 Радиационные повреждения на различных уровнях организации Радиационная безопасность
  • 1.10. Контрольные вопросы для подготовки к зачёту
  • 1.11. Основная и дополнительная литература
  • Часть 2
  • Раздел 1 (лекции № 1–2) радиобиология как предмет. Физические основы радиобиологии
  • После изучения данного раздела Вы должны будете
  • Глава 1.1. Радиобиология как предмет
  • 1.1.1. Радиобиология как предмет
  • Задачи радиобиологии:
  • 1.1.2. История открытия радиации
  • 1.1.3.Три этапа развития радиобиологии
  • Глава 1.2. Физико-химические основы радиобиологии
  • 1.2.1. Характеристика атомного ядра
  • 1.2.2. Ядерные силы, дефект массы
  • 1.2.3. Типы ядерных превращений
  • 1.2.4. Закон радиоактивного распада
  • 1.2.5. Активность радиоактивного элемента
  • Основные физические величины, используемые в радиационной биологии
  • Глава 1.3. Природа ионизирующих излучений
  • 1.3.1. Виды ии
  • Энергия квантов и длины волн различных природных излучений
  • 1.3.2. Взаимодействие радиоактивных излучений с веществом
  • Раздел 2 (лекции № 3–4) основы радиоэкологии
  • Глава 2.1. Естественный и антропогенный радиационный фон
  • 2.1.1. Космическое излучение, его природа, характеристики.
  • 2.1.2. Естественный радиационный фон
  • Действие ионизирующего излучения на внешнюю среду
  • 2.1.3. Радиоактивные элементы земных пород и пищи
  • Характеристики основных изотопов
  • 2.1.4. Семейства радиоактивных элементов
  • Семья радионуклидов урана
  • 2.1.5. Радиационные пояса Земли
  • Глава 2.2. Антропогенный радиационный фон
  • 2.2.2. Деление и синтез ядер
  • 2.2.3. Строительные материалы
  • Глава 2.3. Перемещения радиоактивных веществ в биосфере
  • 2.3.1. Общие закономерности
  • 2.3.2. Поведение радионуклидов в атмосфере
  • 2.3.3. Поведение радионуклидов в почве
  • Классификация химических элементов по коэффициентам накопления
  • 2.3.4. Поведение радионуклидов в воде
  • Глава 2.4. Экологические проблемы атомной промышленности
  • 2.4.1. Радиоактивные отходы
  • Классификация жидких и твердых радиоактивных отходов по удельной радиоактивности
  • Классификация твердых радиоактивных отходов по уровню радиоактивного загрязнения
  • 2.4.2. Возможности технических средств радиационной разведки (рдр)
  • Раздел 3 (лекции № 5–7) биологическое действие ионизирующего излучения на живые объекты
  • После изучения данного раздела Вы должны будете
  • Глава 3.1. Токсичность радионуклидов
  • 3.1.1. Факторы, обуславливающие токсичность радионуклидов
  • Коэффициенты относительной биологической эффективности (обэ) для разных видов излучения
  • Типы распределения радиоактивных элементов в организме
  • 3.1.2. Классификация радионуклидов по их токсичности для человека и животных
  • Глава 3.2. Накопление радионуклидов в органах и тканях
  • 3.2.1. Особенности биологического действия инкорпорированных радионуклидов
  • 3.2.2. Биологическое действие инкорпорированного j131
  • 3.2.3. Биологические эффекты при внутреннем облучении i37Cs
  • 3.2.4. Комбинированное действие инкорпорированных Cs137 и j131
  • Глава 3.3. Механизм биологического действия ии
  • 3.3.1. Прямое и непрямое действие радиации
  • 3.3.2. Свободнорадикальные процессы
  • 3.3.3. Теории непрямого действия ии. Теория липидных радиотоксинов
  • Глава 3.4. Воздействие ии на различных уровнях
  • 3.4.1. Этапы воздействия
  • 3.4.2. Молекулярный уровень
  • 3.4.3. Репарационные системы
  • 3.4.4. Клеточный уровень
  • 3.4.5. Восстановление после облучения на клеточном уровне
  • 3.4.6. Радиочувствительность
  • Средняя летальная доза в рентгенах
  • 3.4.7. Радиочувствительность клеток костного мозга и крови. Закон Бергонье-Трибондо
  • Глава 3.6. Радиочувствительность организмов и тканей
  • 3.6.1. Радиочувствительность при внешнем облучении
  • 3.6.2. Тканевая радиочувствительность
  • 3.6.3. Механизмы радиоэмбриологического эффекта и оценка его последствий
  • 3.6.4. Общие принципы функционирования самообновляющейся системы на примере костного мозга
  • Глава 3.7. Лучевая болезнь человека
  • 3.7.1. Лучевая болезнь человека как биологический эффект
  • Шкала зависимости биологических эффектов при общем облучении организма
  • 3.7.2. Олб при относительно равномерном облучении
  • 3.7.3. Острые лучевые поражения при неравномерном поражении
  • Глава 3.9. Хроническая лучевая болезнь и влияние малых доз радиации
  • 3.9.1. Хроническая лучевая болезнь
  • 3.9.2. Действие малых доз радиации
  • Минимальная абсолютно летальная доза для различных видов
  • Принципиальные отличия между облучением в больших и малых дозах
  • 3.9.3. Опосредованные эффекты облучения
  • Глава 3.10. Отдаленные последствия облучения
  • 3.10.1. Формы и проявления отдалённых последствий
  • 3.10.2. Механизм отдалённых последствий
  • Глава 3.11. Процессы восстановления в облучённом организме
  • 3.11.1. Кинетика восстановления организма после тотального облучения
  • 3.11.2. Фазное изменение радиорезистентности организма в раннем пострадиационном периоде
  • Раздел 4 (лекции № 8)
  • 4.1.2. Планируемое повышенное облучение
  • Глава 4.3. Требования к ограничению облучения населения
  • 4.3.1. Ограничение техногенного облучения в нормальных условиях
  • 4.3.2. Ограничение медицинского облучения
  • 4.3.3. Санитарные правила
  • Определение класса работ в лаборатории
  • Раздел 5 (лекция № 9) ионизирующее излучение на службе у человека
  • 5.1. Циклотрон и его применение
  • 5.2. Использование радиоактивных изотопов в качестве индикаторов (меченых атомов)
  • 5.3. Датировака событий с помощью радиоуглерода
  • 5.4. Радиобиология – Продовольственной программе
  • Оптимальные условия совместного использования облучения и умеренного нагрева для продления сроков хранения фруктовых соков
  • Продление сроков хранения свежей рыбы и морских продуктов при гамма-облучении
  • Учебное издание
  • Радиобиология Курс лекций
  • 210038, Г. Витебск, Московский проспект, 33.
  • Глава 3.6. Радиочувствительность организмов и тканей

    3.6.1. Радиочувствительность при внешнем облучении

    Млекопитающие и человек обладают наибольшей радиочувствительностью к облучению по сравнению с птицами, рыбами и т. д. различие в радиочувствительности проявляется также и в органах, составляющих организм как единое целое. Клетки одного органа также имеют неодинаковую чувствительность и неодинаковую способность к регенерации после лучевого поражения.

    Для количественного изучения радиочувствительности организма используют кривые выживания или смертности (рис. 30).

    Рис.30. Кривая смертности для млекопитающих.

    Для всех видов млекопитающих такая кривая всегда имеет S-образную форму. Это объясняется тем, что при облучении в начальном диапазоне доз, гибели не наблюдается (вплоть до так называемой «минимально летальной дозы» – это 4 Гр), а начиная с некоторой дозы («минимально абсолютно летальной дозы» – это 9 Гр) погибают все животные. Так как вся смертность регистрируется в интервале между этими дозами, на этом отрезке кривая круто поднимается вверх, приближаясь к 100%.

    Из-за различной радиочувствительности органов и тканей для организма небезразлично, будет ли облучаться весь организм или только его часть, или организм получит общее, но неравномерное облучение. Общее равномерно облучение вызывает наибольший радиобиологический эффект. В общем случае радиочувствительность органов зависит не только от радиочувствительности тканей, которые оставляют орган, но и от его функций.

    Степень радиочувствительности тканей характеризуют по ряду признаков. Органы по функционально-биохимическим признакам, определяющим сорбционный показатель тканей, можно распределить по радиочувствительности по убывающей последовательности: большие полушария, мозжечок, гипофиз, надпочечники, тимус, лимфатические узлы, спинной мозг, ЖКТ, печень, селезёнка, легкие, почки, сердце, кожа и костная ткань.

    3.6.2. Тканевая радиочувствительность

    Для выявления скрытых радиационных поражений медленно обновляющихся тканей (костная, мышечная, нервная) Стрелин сочетал облучение с последующим нанесением механической травмы. Удавалось выявить консерватизм лучевого поражения, проявляющегося в утрате или угнетении способности облученной ткани к посттравматической регенерации. Опыты позволили установить, что и ионизирующее излучение действует и на медленно обновляющиеся ткани, поэтому они оказываются потенциально неполноценными в функциональном отношении. Важной причиной, определяющей степень и вероятность развития отдаленных последствий в этих тканях, является величина разовых доз и общая продолжительность облучения. С этим связано проявление репарации, характерной для этих тканей. Следствием скрытых повреждений, возникающих в клетках этих тканей, являются различные осложнения лучевой терапии: миелиты, циститы, заболевания сердца, почек, печени, возможно возникновение злокачественных новообразований. Под действием эквивалентных доз количество хромосомных аберрации в клетках печени и костного мозга будут одинаковы. Поэтому понятия радиочувствительности применимо к различным органам и тканям вполне относительно.

    По морфологическим признакам развивающихся пострадиационных изменений органы делят на три группы:

      Органы, чувствительные к радиации ;

      Органы, умеренно чувствительные к облучению ;

      Органы, резистентные к действию радиации (см. рис. 31).

    Рис. 31. Радиочувствительность органов и тканей.

    Заболевания крови. При общем облучении в пределах полулетальных и летальных дозах развивается типичный кроветворный синдром, который характеризуется панцитопенией уменьшение числа форменных элементов в крови в результате аплазии кроветворной ткани. Одновременно с количественными наблюдаются морфологические и биохимические изменения в клетках. Восстановление картины происходит медленно, в течении нескольких месяцев.

    Кроветворные органы являются наиболее радиочувствительными среди других систем, изменение картины периферической крови является следствием поражения гемопоэтической ткани. Нарушения процессов кроветворения наступает очень рано и в дальнейшем развивается пофазно.

    Легкие. Легкие являются наиболее чувствительным органом грудной клетки. Радиационные пневмониты сопровождаются потерей эпителиальных клеток, которые выстилают дыхательные пути и легочные альвеолы, воспалением дыхательных путей, легочных альвеол и кровеносных сосудов, приводя к фиброзам. Эти эффекты могут вызывать легочную недостаточность, и даже гибель в течение нескольких месяцев после облучения грудной клетки. Данные, полученные при лучевой терапии, показывают, что пороговые дозы, вызывающие острую легочную гибель,– около 25 Гр рентгеновского или гамма-излучения, а после облучения легких дозой 50 Гр гибель составляет 100%.

    Гонады (половые железы). Вследствие крайне высокой радиочувствительности половых клеток на ранних стадиях развития уже при дозах0,05- 0,1 Гр у большинства животных и человека происходит массовая гибель клеток, а после 2–4 Гр – стерильность. Зрелые клетки – сперматозоиды, напротив, крайне резистентны. Поэтому плодовитость сохраняется до тех пор, пока не истощится запас жизнеспособных зрелых, половых клеток. Но и после этого, наступающая стерильность носит временный характер, так как постепенно происходит восстановление сперматогенеза из сохранившихся сперматогоний.

    Физиологическая регенерация в половых органах самок млекопитающих проявляется в основном не в смене отдельных клеток, а в циклически повторяющихся процессах развития, регулируемых эндокринным аппаратом и охватывающих целые клеточные комплексы. Наиболее чувствительный элемент яичника – яйцеклетка. Воздействие однократных острых доз 1–2 Гр на оба яичника вызывает временное бесплодие и прекращение менструаций на 1–3 года. Острые дозы порядка 4 Гр приводят к бесплодию. Стерильность самок возникает при меньших дозах, чем у самцов, но, как правило, необратима. Это связывают с тем, что образование женских половых клеток заканчивается ещё до рождения и во взрослом состоянии яичники не способны к активной регенерации. Поэтому, если облучение вызвало гибель всех потенциальных яйцеклеток, то плодовитость утрачивается необратимо. Как результат поражения яичников изменяются и вторичные половые признаки.

    Влияние радиации на зрение. Известны два типа поражения глаз – воспалительные процессы в конъюнктиве и склере при дозах, близких к вызывающим поражения кожи, и катаракта при дозах 3–8 Гр и катаракта при дозах 3–10 Гр, причем величина дозы зависит от вида животных. У человека катаракта появляется при облучении дозой 6 Гр. Наиболее опасны в этом случае нейтроны, при облучении которыми частота заболеваний в 3–9 раз выше, чем при гамма-излучении. Причины образования катаракты полностью не выяснены. Считается, что ведущую роль при этом играет первичное поражение клеток ростковой зоны хрусталика, и относительно меньше влияние нарушение его питания.

    Органы пищеварения. Все органы пищеварения проявляют реакции на ИИ. По степени радиочувствительности они распределяются следующим образом: тонкий кишечник, слюнные железы, желудок, прямая и ободочная кишка, поджелудочная железа и печень. При действии большими дозами радиации на весь организм или только на область живота наступает быстрое поражение кишечника, в результате чего развивается желудочно-кишечный синдром. Среднелетальные и более высокие дозы вызывают выраженные изменения в кишечной стенки. Большую роль также играет нарушение барьерно-иммунной функции кишечника, в результате чего микрофлора попадает внутрь организма и вызывает токсикоз и сепсис. Средние сроки наступления смерти 7–10 дней.

    Слюнные железы отвечают на действие радиации сдвигами секреции. Секреция желудочных желез при общем облучении изменяется в зависимости от исходного состояния. Функции кишечника меняются волнообразно: в первые дни наступает повышение, затем снижение, которое продолжается до развития восстановительных процессов или до гибели организма. Изменения функции поджелудочной железы зависят от дозы: малые дозы стимулируют, а большие – угнетают. В печении изменяются метаболические процессы, угнетается желчеобразование, возникают кровоизлияния и некрозы.

    Сердечно-сосудистая система. Вэкспериментах на мышах было обнаружено, что наиболее радиочувствителен наружный слой сосудистой стенки из-за высокого содержания в нем подверженного перерождению коллагена–белка соединительной ткани, который обеспечивает выполнение стабилизирующей и опорной функций. Показательно, что через 4– 5 месяцев после облучения некоторые сосуды оказались полностью лишенными внешней оболочки. Причем в коже мышей уже при дозах 4–15 Гр было обнаружено последующее уменьшение восстановления сосудов.

    При исследовании сердца обнаружены непосредственные и отдаленные изменения в миокарде после локального облучения дозами 5–10 Гр. Получены также данные о значительной радиочувствительности клеточного слоя, выстилающего внутреннюю оболочку сердца и створки клапанов, что способствовало образованию внутрижелудочковых тромбов через полгода после локального облучения области сердца мышей дозами порядка 20 Гр.

    Эндокринные железы. Клетки эндокринных желез высокоспециализированы и медленно делятся. Чувствительность эндокринных желез на лучевой раздражитель является в основном опосредованной реакцией и осуществляется она рефлекторным путём через нервную систему. Поэтому предполагают, что наблюдаемые после общего облучения нарушения баланса гормонов, особенно щитовидной железы, надпочечников и гонад, могут быть следствием реакции гипоталамо-гипофизарной системы, главное назначение которой – регуляция вегетативных функций организма (деятельность внутренних органов, желез, сосудов).

    Органы выделения. Считают, что почки достаточно устойчивы к облучению, но именно их повреждения являются ограничением для облучения опухолей брюшной полости при лучевой терапии. При острой лучевой болезни наблюдаются кровоизлияния различной интенсивности, застойные и дистрофические явления. Облучение обеих почек дозой, большей 30 Гр, за 5 недель может вызвать неизлечимый хронический нефрит с летальным исходом. Механизм поражения слабо изучен, однако известно, что именно радиационные циститы приводят к серьезным осложнениям лучевой терапии.

    Кости и сухожилия. Втечение интенсивного роста кости и хрящи более радиочувствительны. После его окончания облучение приводит к омертвению участков кости – остеонекрозу – и возникновению спонтанных переломов в зоне облучения. Другим проявлением радиационного поражения является замедленное заживление переломов, и даже образование ложных суставов.

    Мышцы. Мышечная ткань- наиболее радиорезистентная ткань, морфологические изменения её возникают при местном облучении несколькими сотнями Гр. В мышцах клеточного обновления почти не происходит. Слабая мышечная атрофия была обнаружена только при дозах порядка 60 Гр. При общем облучении изменения в мышцах возникают уже в ранние сроки лучевой болезни. От дозы 3–5 Гр при облучении всего тела умирает примерно половина всех облученных в течение одного – двух месяцев вследствие поражения клеток костного мозга. Локальные дозы, допустимые при лучевой терапии опухолей, могут быть значительно выше.

    Радиочувствительность определяется, как правило, по отношению к острому облучению, притом однократному. Поэтому системы, состоящие из быстро обновляющихся клеток, более радиочувствительны.

    Если облучение является хроническим то быстро обновляющиеся клетки не будут сильно реагировать на этот фон, а для мало делящихся или совсем не делящихся клеток доза, которую они набирают в течение длительного времени, будет соответствовать той же дозе при остром облучении. Получается наоборот, что в этом случае более уязвимы те органы и ткани, которые считаются более радиочувствительными. Конечно, это происходит при определенной мощности дозы. Исследования радиочувствительности в этом случае никто не проводил, поэтому наше предположение, хотя оно и совершенно очевидно, остается только предположением.

    Кожные покровы. Кожа и её производные – весьма активно обновляющиеся системы и поэтому в целом кожа более радиочувствительна. Наряду с высокой чувствительностью эпидермальные клетки хорошо восстанавливают сублетальные повреждения. Максимально переносимая доза жёсткого рентгеновского излучения составляет при однократном внешнем воздействии около 1000 рад. Радиационное повреждение кожи представляет собой комплекс поражений тканей эпидермиса, дермы и подкожных слоев. При облучении умеренными дозами (3–8 Гр) возникает характерное покраснение кожи – эритема, которая проходит обычно через 24–58 часов. Вторая фаза наступает через 2–3 недели. Она сопровождается потерей поверхностных слоев эпидермиса. Состояние кожи близко к первой степени термических ожогов, например, солнечных, и может длиться несколько недель, затем проходит. На коже остаются темные пятна. При облучении кожи дозой 10 Гр вторая фаза эритемы продолжается около недели, затем появляются волдыри, изъязвления, сопровождающиеся выделением жидкости. Состояние кожи напоминает при этом вторую степень термических ожогов, заживление может длиться неделями с последующим формированием непроходящих рубцов. При дозе порядка 50 Гр эпидермис разрушается, дерма и подкожные слои повреждаются. Лучевые реакции проявляются раньше, заживление язв и других повреждений может продолжаться годы и иметь рецидивы.

    Клетки волосяных фолликулов являются довольно радиочувствительными, и облучение дозой 4–5 Гр уже влияет на рост волос. После облучения такой дозой волосы начинают редеть и выпадают в течение 1–3 недель. В более поздний период рост волос может возобновиться. Однако при облучении дозой порядка 7 Гр происходит постоянная потеря волос. При дозах, вызывающих эпиляцию, происходит стойкое разрушение большинства сальных и поровых желез.

    Эмбрион и плод. Наиболее серьезные последствия облучения – гибель до или во время родов, задержка развития, аномалии многих тканей и органов тела, возникновение опухолей в первые годы жизни.

    В период формирования органов облучение вызывает внутриутробную гибель или гибель сразу после рождения. ЛД 50 для внутриутробной гибели мышей составляет 1–1,5 Гр в период раннего формирования органов, а к зародышевому достигает 7 Гр. Облучение на стадии формирования органов приводит к высокой смертности сразу после рождения. Кроме того, облучение дозой 1 Гр или большей после имплантации вызывает пороки развития у 100% потомства, что влечет за собой гибель в младенчестве или во взрослом состоянии. Аномалии могут развиться во всех важнейших органах и тканях тела. Хотя и считается, что в зародышевый период ЛД 50 более высока, можно наблюдать некоторые микроскопические повреждения при дозе 1 Гр.

    Аномалии развития плода человека, вызываемые облучением, экспериментально удается воспроизвести при облучении эмбрионов мыши и крысы на сравнимых стадиях развития. Сопоставляя стадии их эмбриональных структур в двух периодах беременности, можно построить соответствующую кривую, коррелирующую эквивалентные возрасты эмбрионов мыши и человека. Правда, скорости развития эмбриона мыши и человека различаются с возрастом, особенно после 14-го дня, однако средний коэффициент приведения между ними равен приблизительно 13. Поэтому экстраполяция результатов облучения эмбрионов мыши на эффекты у плода человека обладает большой долей вероятности, что и позволяет получать информацию о специфической чувствительности к излучению отдельных органов человека. С учетом приведенного коэффициента период наибольшей радиочувствительности эмбриона человека сильно растянут во времени. Он начинается, вероятно, с зачатия и кончается приблизительно 38-м днем после имплантации; в этот период развития у эмбриона человека начинают формироваться зачатки всех органов посредством быстрой дифференцировки из клеток первичных типов. Подобные превращения у эмбриона человека в период между 18-м и 38-м днем происходят почти в каждой из тканей. Так как переход любой клетки из эмбрионального состояния в состояние зрелости – наиболее радиочувствительный период ее формирования и жизни, то все ткани в это время оказываются высоко-радиочувствительными. Мозаичность процесса дифференциации эмбриона и связанное с ним изменение числа наиболее радиочувствительных клеток определяют степень радиочувствительности той или иной системы или органа и вероятность появления специфической аномалии в каждый момент времени. Поэтому фракционированное облучение приводит к более тяжелым повреждениям, так как воздействие захватывает разнообразные типы зародышевых клеток и их различное распределение, что приводит к повреждению большого количества зачатков органов, находящихся на критических стадиях развития. В этот период максимальное поражение может быть вызвано самыми малыми дозами ионизирующего излучения, для получения аномалий в более поздний период эмбрионального развития требуется воздействие больших доз излучения. Приблизительно через 40 дней после зачатия грубые уродства вызвать трудно, а после рождения – невозможно. Однако следует помнить, что в каждый период развития эмбрион и плод человека содержат некоторое количество нейробластов, отличающихся высокой радиочувствительностью, а также отдельные зародышевые клетки, способные аккумулировать действие излучения.

    Как показали результаты изучения последствий облучения беременных женщин во время атомной бомбардировки в городах Хиросима и Нагасаки, степень проявления аномалий и их особенности в основном соответствовали ожидаемым. Так, согласно одному из обследований у 30 женщин, находившихся в 2000 м от эпицентра взрыва и имевших серьезные симптомы лучевого воздействия, примерно в половине случаев отмечена внутриутробная смертность плода, гибель новорожденных или младенцев, а у четырех из 16 выживших детей наблюдалась умственная отсталость. Согласно данным другого наблюдения почти у половины (45%) детей, родившихся от матерей, подвергшихся облучению при сроках беременности 7–15 недель, имелись признаки умственной отсталости. Кроме того, у потомства женщин, перенесших облучение в первой половине беременности, отмечены микроцефалия, задержка роста, монголизм и врожденные пороки сердца, частота и степень аномалий были выше в тех случаях, когда пострадавшие матери находились на расстоянии менее 2000 м от эпицентра взрыва. Но и в этих случаях не наблюдалось таких резких неврологических нарушений, какие были получены при облучении мышей; вероятно, это связано с малой выживаемостью таких детей. Эти наблюдения относятся лишь к 6–8-летним детям, а в этом возрасте еще не проявляются многие нарушения, которые могут быть обнаружены только в юношеском и более позднем возрасте.

    Следует иметь в виду, что облучение эмбриона в малых дозах может вызвать такие функциональные изменения в клетке, которые невозможно зарегистрировать современными методами исследования, но которые способствуют развитию болезненного процесса через много лет после облучения. Следовательно, все отдаленные последствия облучения эмбриона могут быть выражены в большей степени, нежели при облучении взрослого организма. Так, например, частота лейкемий у потомства матерей, подвергавшихся рентгеновскому облучению во время беременности, приблизительно удваивается.

    Облучение, эмбриона человека в период первых двух месяцев ведет к 100%-ному поражению, в период от 3 до 5 месяцев – к 64%, в период от 6 до 10 месяцев – к 23% поражения эмбрионов.

    Если суммировать экспериментальные данные, можно сделать вывод, что во время беременности млекопитающих облучение дозой 0,5 Гр приводит к гибели эмбрионов при имплантации, порокам развития при формировании органов, потере клеток и недоразвитию тканей в зародышевый период. Более того, некоторые эксперименты показали увеличение количества пороков при дозе 0,1 Гр, поэтому считают, что не существует пороговой дозы, ниже которой облучение не вызывало бы никакого эффекта для млекопитающих. В зарубежной литературе до 1986 г. были, например, приведены такие цифры для человека: облучение эмбриона или зародыша дозой 0,05 Гр в течение трех первых месяцев беременности может увеличить предрасположенность к раку в 10 раз. Приводятся также доказательства того, что внутриутробная диагностика с использованием рентгеновского излучения в дозах 0,002-0,200 Гр может вызвать развитие опухолей у детей. Единого мнения среди специалистов нет, но многие национальные и международные комитеты осуществляют контроль за профессиональным и клиническим облучением женщин.