Среднеквадратическое приближение таблично заданных функций. Среднеквадратическое приближение функции Метрические и линейные нормированные пространства

Среднеквадратическое приближение функции.

Рассмотрим задачу наилучшего среднеквадратичного приближения функции полиномом
по системе
.

Определение 1.

Обобщенным полиномом порядка m по системе { k } называется линейная комбинация

где C k – произвольные вещественные коэффициенты.

Задача. Найти полином
, наименее уклоняющийся от функции f в метрике L 2 , т.е. удовлетворяющий условию:

Теорема 1.

Если система
линейно независима, то задача наилучшего среднеквадратичного приближения по этой системе однозначно разрешима.

Запишем квадрат расстояния между функцией и полиномом:

(1)

Очевидно, что величина
- неотрицательно определенная квадратичная функция переменных
, а такая функция достигает минимального значения. Таким образом, решение задачи среднеквадратичного приближения существует.

Докажем единственность решения.

Запишем необходимые условия минимума:

, i=0,…,m .

Вычисляя частные производные по c i выражения (1), получим линейную cистему уравнений:

(2)

Система (2) называется нормальной системой .

Выпишем определитель этой системы

(3)

Определитель системы (3) – так называемый определитель Грама системы
. Известно, что если система
- линейно независима, то определитель
0 (легко доказывается от противного). Согласно условию теоремы
0 и система (2) имеет единственное решение.

1.6. Классические ортогональные многочлены и их применение в задачах приближения функций.

Пусть H- гильбертово пространство со скалярным произведением и, соответственно, нормой
. Важным примером такого пространства является так называемое пространство
- пространство функций f(x), для которых конечен интеграл:

(1)

Здесь h(x)- так называемая весовая функция , удовлетворяющая условиям:


Если же =(0,+), то должно выполняться условие:

т.е. должны существовать любые моменты весовой функции.

Определение 1.

Для
определено скалярное произведение:

(2)

и соответственно норма:

согласно условию (1).

Используя неравенство Коши – Буняковского - Шварца, получаем

Поэтому скалярное произведение существует для

Определение 2.

Расстояние между элементами f и g определяется равенством:

.

Возникает вопрос о том, как понимать нулевой элемент. Если норма
, следует ли отсюда, что f=g? Вводится терминология: f=g почти всюду, то есть они могут отличаться в конечном числе точек.

Определение 3.

f и g ортогональны на отрезке с весом h(x), если =0 (кратко пишут
).

Если в гильбертовом пространстве взять любую линейно независимую систему
, i=0,1,2,…, то ее можно ортогонализировать.

Рассмотрим в качестве примера систему:
При
конечный набор степенных функций линейно независим, поэтому на базе этой системы можно построить ортогональные полиномы. Известна следующая рекуррентная процедура ортогонализации (процедура Грама - Шмидта):

(3)

Коэффициенты b k+1,j определяются из условий ортогональности:

Последовательно умножая (3) на
получаем

(4)

Пример 1.

Пусть h(x)1, =[-1,1].

Построить первые три ортогональных полинома по процедуре (3) - (4).


Далее имеем:

следовательно,

Для системы ортогональных многочленов на отрезке [-1,1] с весом h(x)=1 справедлива формула Родрига:

(5)

Из (5) последовательно получаем:

Получаемые таким образом полиномы называются полиномами Лежандра.

Замечание.

Найденные по процедуре (3) – (4) ортогональные многочлены могут лишь множителями отличаться от тех, которые строятся по явной формуле Родрига (5).

Квадрат нормы у этих полиномов равен:

То есть эти многочлены не нормированы, так как

Для всех классических многочленов существует рекуррентная формула. Для полиномов Лежандра она имеет следующий вид:

Пусть
Рассмотрим среднеквадратичное приближение:

где
- среднеквадратичная ошибка аппроксимации,

- отрезок ряда Фурье для функции f(x) по системе ортогональных многочленов {P k (x)}.

В силу ортогональности многочленов Лежандра, система нормальных уравнений (2) из §1.5 становится диагональной, и ее решение приводит к следующим выражениям для коэффициентов c k:

(7)

то есть обеспечивается минимум нормы в L 2 .

Распишем подробно ошибку аппроксимации

С другой стороны

в силу ортогональности.

Подставляя в (8), получим

. (9)

Пример 2.

Пусть f(x)=|x|.

Аппроксимировать f(x) на [-1,1] в среднеквадратичном многочленом второй степени. Вычислить среднеквадратичную ошибку.

Используем ортогональную систему Лежандра:


Коэффициенты c k находим по формуле (7), учитывая вид полиномов Лежандра:

1.7. Некоторые общие свойства ортогональных полиномов.

    Многочлен P n (x) ортогонален любому алгебраическому многочлену m-ой степени M m (x) при m

M m (x) можно единственным образом представить в виде линейной комбинации многочленов Лежандра:

Равенство (10) тождественное, поэтому коэффициенты a k единственным образом вычисляются путем приравнивания коэффициентов при старших степенях. Умножая обе части (10) на P n (x), имеем

в силу ортогональности системы

    Полином P n (x) имеет на отрезке [-1,1] ровно n действительных и различных корней.

Заметим, что в силу теоремы Гаусса многочлен P n (x) не может иметь более чем n корней (вообще говоря, комплексных). Пусть P n (x) имеет меньше, чем n простых действительных корней. Обозначим их
По этим точкам построим фундаментальный многочлен

Рассмотрим многочлен:
- многочлен степени (k+n), который имеет нули
четной кратности. Значит, новый многочлен
сохраняет знак при переходе через эти нули, т.е. сохраняет знак на [-1,1]. Отсюда следует, что

Но это противоречит свойству 1, так как P n (x) обязательно должен быть ортогонален M k (x).

    Между двумя соседними нулями многочлена P n (x) лежит ровно один нуль многочлена P n-1 (x).

Доказывается по индукции с помощью рекуррентного соотношения (6).

    При n- четном многочлен P n (x) – четная функция от x, при n- нечетном, P n (x) – нечетная функция от x.

Наряду с многочленами Лежандра классическими ортогональными многочленами называют следующие системы многочленов (далее (a,b) – промежуток ортогональности, r(x) – весовая функция).

1) Многочлены Якоби {Р п (l ,m) (х )} - при а = -1, b = 1 r(х ) = (1-х ) l (1 + x ) m , l > -1, m > -1. Специальные частные случаи многочленов Якоби соответствуют следующим значениям l и m: l = m- ультрасферические многочлены (их иногда называют многочленами Гегенбауэра); l = m = - 1 / 2 , т. е. -многочлены Чебышева 1-го рода T n (x ); l = m = 1 / 2 , т. е. - многочлены Чебышева 2-го рода U n (x );

2) Многочлены Лагерра L n (x ) - при а = 0, b = + ∞ и r(х ) = е (их наз. также многочленами Чебышева - Лагерра) и обобщённые многочлены Лагерра - при . 3) М ногочлены Эрмита Н n (х ) - при а = -∞, b = + ∞ и (их называют также многочленами Чебышева - Эрмита).

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

Подобные документы

    Решение систем линейных алгебраических уравнений методом простой итерации. Полиномиальная интерполяция функции методом Ньютона с разделенными разностями. Среднеквадратическое приближение функции. Численное интегрирование функций методом Гаусса.

    курсовая работа , добавлен 14.04.2009

    Численные методы представляют собой набор алгоритмов, позволяющих получать приближенное (численное) решение математических задач. Два вида погрешностей, возникающих при решении задач. Нахождение нулей функции. Метод половинного деления. Метод хорд.

    курс лекций , добавлен 06.03.2009

    Понятие определенного интеграла, его геометрический смысл. Численные методы вычисления определенных интегралов. Формулы прямоугольников и трапеций. Применение пакета Mathcad для вычисления интегралов, проверка результатов вычислений с помощью Mathcad.

    курсовая работа , добавлен 11.03.2013

    Численные методы решения систем линейных уравнений: Гаусса, простой итерации, Зейделя. Методы аппроксимации и интерполяции функций: неопределенных коэффициентов, наименьших квадратов. Решения нелинейных уравнений и вычисление определенных интегралов.

    курсовая работа , добавлен 27.04.2011

    Методы оценки погрешности интерполирования. Интерполирование алгебраическими многочленами. Построение алгебраических многочленов наилучшего среднеквадратичного приближения. Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений.

    лабораторная работа , добавлен 14.08.2010

    Решение нелинейных уравнений методом касательных (Ньютона), особенности и этапы данного процесса. Механизм интерполирования функции и численное интегрирование. Приближенное решение обыкновенных дифференциальных уравнений первого порядка методом Эйлера.

    курсовая работа , добавлен 16.12.2015

    Численные методы поиска безусловного экстремума. Задачи безусловной минимизации. Расчет минимума функции методом покоординатного спуска. Решение задач линейного программирования графическим и симплексным методом. Работа с программой MathCAD.

    курсовая работа , добавлен 30.04.2011

3. Среднеквадратическое приближение функции

3.1 Постановка задачи

Разработать схему алгоритма и написать программу на языке Turbo Pascal 7.0 для выполнения среднеквадратического приближения функции, заданной в узлах.

3.2 Математическая формулировка задачи

Пусть имеется множество функций , принадлежащих линейному пространству функций. Под близостью в среднем интерполируемой и интерполирующей функций будем понимать результат оценки интеграла

, (3.1)

где - весовая функция.

Такое приближение называют среднеквадратичным.

3.3 Обзор существующих численных методов решения задачи

Задача среднеквадратичного приближения возникает во многих областях прикладных исследований, например, при статистической обработке данных эксперимента с использованием регрессивного анализа, при оценивании параметров моделей, в задачах фильтрации и т.п.

Когда уровень неопределенности в задании приближаемой функции f(x i), i=1..m, достаточно велик, что характерно для обработки экспериментальных данных, бессмысленно требовать выполнения условий интерполирования; кроме того, число точек задания функции f(x i) часто весьма велико. Все это делает применение интерполирования мало перспективным по причинам плохой обусловленности задачи высокой размерности и проблем сходимости процесса интерполяции

Одной из наиболее простых и, поэтому, широко используемых приближающих функций является алгебраический полином

Метод среднеквадратичного приближения обеспечивает построение полинома Pn(x), исходя из минимизации величины

Рассмотренный метод приближения минимизирует среднеквадратичное уклонение аппроксимирующего полинома от аппроксимируемой функции, но не гарантирует от значительных локальных ошибок. Для предотвращения подобной возможности используют полиномы наилучшего равномерного приближения.

в пространстве параметров a 0 , a 1 ,...,a n. Существуют различные подходы к решению задачи минимизации функции D(a). Простейший из них приводит к необходимости решения нормальной системы линейных алгебраических уравнений

Однако, уже при n > 5 матрица такой системы оказывается настолько плохо обусловленной, что полученные из (3.4) значения a j оказываются мало пригодными для вычисления P n (x). Поэтому, при необходимости построения полиномов наилучшего среднеквадратичного приближения более высоких степеней применяют другие алгоритмы, например, метод сингулярного разложения.

3.4 Численный метод решения задачи

Можно рассмотреть две задачи:

1 - подобрать функцию так, чтобы выполнялось неравенство

2 - найти наилучшее приближение, т.е. такую функцию , чтобы было справедливым соотношение

. (3.6)

Разложим функцию по системе линейно независимых функций :

. (3.7)

В дальнейшем для сокращения записи будем пользоваться определением скалярного произведения в пространстве функций :

.

Подставляя (3.7) в условие (3.6), получим

Дифференцируя это выражение по и приравнивая производные нулю, получим

. (3.8)

Определитель этой системы есть определитель Грама функций . В силу их линейной независимости этот определитель не равен нулю. Следовательно, из системы (3.8) можно найти коэффициенты , определяющие функцию согласно (3.6) и минимизирующие интеграл от погрешности . Таким образом, наилучшее среднеквадратичное приближение существует и оно единственно.

При использовании ортонормированной системы функций система (3.8) упрощается:

,

т.е. являются коэффициентами Фурье, а наилучшее приближение есть ряд Фурье, обрываемый на каком-то члене.

Доказано, что в любом линейно нормированном пространстве при линейной аппроксимации вида (3.4) наилучшее приближение существует, хотя оно может быть не единственным.

В тех случаях, когда функции не ортогональны, при определитель Грама уменьшается, приближаясь к нулю. Тогда система становится плохо обусловленной и ее решение дает большую погрешность. В этой ситуации обычно берут не более пяти-шести членов в сумме (3.7).

В качестве чаще всего используют полиномы Лежандра, Чебышева, Лагерра, Эрмита, ортогональные с заданным весом.

Рассмотрим частный случай, когда необходимо найти наилучшее приближение функции, заданной таблично. Для вещественных функций, заданных на конечном множестве точек, скалярное произведение определяется формулой

, (3.9)

где - число заданных узлов.

Условие наилучшего среднеквадратичного приближения записывается следующим образом:

. (3.10)

Полагая , где , и подставляя этот многочлен в (3.10), придем к системе (3.8), в которой скалярные произведения вычисляют согласно (3.9). Описанная процедура аппроксимации носит название метода наименьших квадратов.

Наиболее употребительный вариант метода наименьших квадратов соответствует случаю степенного вида функций , т.е. , причем .

Система уравнений (3.8) при этом принимает вид

, , (3.11)

Сформировать более высокий уровень абстракции и обобщения, чем тот, на который ориентировалось традиционное преподавание». Следовательно, традиционные формы обучения не в состоянии поднять математическое мышление младших школьников на более высокий уровень. Как же решает эту проблему нетрадиционное обучение? Какие свойства математического мышления развивает решение нестандартных задач? Во- ...

сети, построенной на основе различных топологий. Программное обеспечение прикладных систем, предназначенных для профессиональной деятельности руководителя, включает: · системные программные средства; · базовые пакеты прикладных программ; · средства сетевой поддержки компьютеров в локальных и глобальных сетях; · системы прикладного программирования; · тестовые программные средства. ...

ЛАБОРАТОРНАЯ РАБОТА

СРЕДНЕКВАДРАТИЧНОЕ ПРИБЛИЖЕНИЕ ТАБЛИЧНО ЗАДАННЫХ ФУНКЦИЙ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ

Цель : Ознакомление студентов с основными методами интерполяции и аппроксимации таблично заданных функций. Закрепление на практике полученных знаний в области аппроксимации таких функций.

Задача : Научить студентов практическому применению полученных теоретических знаний при решении задач сглаживания результатов эксперимента полиномами, как при алгоритмизации таких задач, так и при их программировании.

ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

Интерполяция и аппроксимация

В практике часто встречается ситуация, когда некоторая функция f (x ) задана таблицей ее значений в отдельных точках х = x 0 , x 1 , … , x n [a , b ], например, дискретные показания прибора во времени, а следует вычислить функцию f (x ) в некоторых промежуточных точках. Эту задачу можно решить приближенно, заменяя функцию f (x ) более простой непрерывной функцией F (x ). Существуют два основных способа такой замены: интерполяция и аппроксимация .

Суть интерполирования – в построении такой легко вычисляемой функции F (x ), которая совпадает с функцией f (x ) в точках х = x 0 , x 1 , … , x n . Иными словами, график функции F (x ) в плоскости Оху должен проходить через точки х = x 0 , x 1 , … , x n , в которых задана функция f (x ). При этом, точки х = x 0 , x 1 , … , x n называют узлами интерполирования, а функцию F (x ) – интерполяционной. В качестве интерполяционной функции в большинстве случаев выбирают полиномы. Так, линейная интерполяция состоит в простом последовательном соединении точек (x 0 , f (x 0)), (x 1 , f (x 1)), … ,

(x n , f (x n )) отрезками прямых, т.е. в построении n полиномов первой степени. Значение функции f (x ) в точке х *, где х * (x i ,x i +1), i = 0, 1, … , n – 1, вычисляется в этом случае достаточно просто:

f (x *) = f (x i ) + · (х *–x i ).

Квадратичная интерполяция состоит в соединении последовательных троек узлов интерполяции параболами. Кубическая интерполяция – четверок – кубическими параболами и т.д. Интерполяционные полиномы степени (n – 1)есть гладкие функции, проходящие через все узлы интерполяции. При наложении дополнительных условий на соединение функции F (x )в точках (x 1 , f (x 1)), (x 2 , f (x 2)), … , (x n -1 , f (x n -1)) получим т.н. сплайн-интерполяцию. Для построения интерполяционных многочленов разработано множество методов: Ньютона, Стирлинга, Лагранжа и др.

Во многих случаях, имея значения функции в n + 1 узлах, удобно вместо интерполяционного многочлена находить полином степени m <n , который бы хорошо приближал (аппроксимировал) рассматриваемую функцию. При этом требование совпадения функций f (x ) иF (x ) в точках (x 0 , f (x 0)), (x 1 , f (x 1)), … , (x n , f (x n )) заменяется на требование минимизации суммарного отклонения между значениями функций f (x ) и F (x ) в точках х = x 0 , x 1 , … , x n .

Одним из основных методов построения аппроксимизационного полинома является метод наименьших квадратов, по которому требуется, чтобы сумма квадратов отклонений между значениями функции и значениями приближающей функции в узлах должна быть минимальной. Почему квадратов? Потому что сами отклонения между значениями функций может быть как положительными, так и отрицательными, и их сумма не дает истинного представления о различии между функциями за счет компенсации положительныхи отрицательных значений. Можно взять модули отклонений, однако положительные квадраты этих отклонений более удобны в работе.

Среднеквадратическое приближение таблично заданных функций

(метод наименьших квадратов)

Пусть в узлах x 0 , x 1 , … , x n имеем значения у 0 , у 1 , … , у n функции f (x ). Среди полиномов m -й степени (m <n )

P m (x ) = a 0 + a 1 x + a 2 x 2 + … + a m x m (1)

найти такой, который доставляет минимум выражению

S = .(2)

Неизвестными являются коэффициенты полинома (1). Сумма (2) представляет собой квадратичную форму от этих коэффициентов. Кроме того, формула (2) показывает, что функция S = S (a 0 , a 1 , … , a m ) не может принимать отрицательных значений. Следовательно, минимум функции S существует.

Применяя необходимые условия экстремума функции S = S (a 0 , a 1 , … , a m ), получаем систему линейных алгебраических уравнений для определения коэффициентов a 0 , a 1 , … , a m :

, (k = 0, 1, 2, … , m )(3)

Полагая с p = , d p = , запишем систему (3) в матричном виде

С a = d , (4)

С = – матрица системы, а = {a 0 , a 1 , … , a m } T – вектор неизвестных, d = {d 0 , d 1 , … , d m } T – вектор правых частей системы.

Если среди узлов x 0 , x 1 , … , x n нет совпадающих и m n , то система (4) имеет единственное решение a 0 = ,a 1 = , … , a m = . Тогда полином

= + x + x 2 + … + x m

является единственным полиномом степени m , обладающим минимальным квадратичным отклонением S * = S min.

Погрешность среднеквадратического приближения функции характеризуется величиной δ = .

Самый простой и наиболее часто используемый вид аппроксимации (среднеквадратического приближения) функции – линейная. Приближение данных (x i , y i ) осуществляется линейной функцией y (х )= ax + b . На координатной плоскости (x , y ) линейная функция, как известно, представляется прямой линией.

Пример . Сгладить систему точек прямойy = ax + b .

х –1 0 1 2 3 4
у 0 2 3 3,5 3 4,5

Строим рабочую таблицу :

абочую таблицу:№ x i y i x i 2 x i y i ax i + b ax i + b y i (ax i + b y i ) 2
1 –1 0 1 0 0,81 0,81 0,6561
2 0 2 0 0 1,55 –0,45 0,2025
3 1 3 1 3 2,29 –0,71 0,5041
4 2 3,5 4 7 3,03 –0,47 0,2209
5 3 3 9 9 3,77 0,77 0,5929
6 4 4,5 16 18 4,51 0,01 0,001
9 16 31 37

Система для определенияa и b имеет вид: Решим ее с помощью

формул Крамера:

Δ = = 105, Δ 1 = = 78, Δ 2 = = 163,

a = = = 0,74, b = = = 1,55.

Искомое уравнение y = 0,74x + 1,55.

Для того чтобы сгладить дискретные функции Альтмана, и тем самым внести в теорию идею непрерывности, применялось среднеквадратичное интегральное приближение многочленом разных степеней.

Известно, что последовательность интерполяционных многочленов по равноотстоящим узлам не обязательно сходится к функции, если даже функция бесконечно дифференцируема. Для приближаемой функций с помощью подходящего расположения узлов удаётся снизить степень полинома. . Структура функций Альтмана такова, что удобнее использовать приближение функции не с помощью интерполяции, а с построением наилучшего среднеквадратичного приближения в нормированном линейном пространстве. Рассмотрим основные понятия и сведения при построении наилучшего приближения . Задачи приближения и оптимизации ставятся в линейных нормированных пространствах.

Метрические и линейные нормированные пространства

К наиболее широким понятиям математики относятся "множество" и "отображение". Понятие "множество", "набор", "совокупность", "семейство", "система", "класс" в нестрогой теории множеств считаются синонимами.

Термин "оператор" тождествен термину "отображение". Термины "операция", "функция", "функционал", "мера" - частные случаи понятия "отображение" .

Термины "структура", "пространство" при аксиоматическом построении математических теорий также приобрёл в настоящее время основополагающую значимость. К математическим структурам принадлежат теоретико-множественные структуры (упорядоченные и частично упорядоченные множества); абстрактно-алгебраические структуры (полугруппы, группы, кольца, тела, поля, алгебры, решетки); дифференциальные структуры (внешние дифференциальные формы, расслоенные пространства) , , , , , , .

Под структурой понимается конечный набор, состоящий из множеств носителя (основное множество), числового поля (вспомогательное множество) и отображение, заданных на элементах носителя и числах поля. Если в качестве носителя взято множество комплексных чисел, то оно играет роль и основного, и вспомогательного множества. Термин "структура" тождественен понятию "пространство" .

Чтобы задать пространство, необходимо прежде всего задать множество-носителя со своими элементами (точками), обозначаемых латинскими и греческими буквами

В качестве носителя могут выступать множества элементов действительных (или комплексных): чисел; векторов, ; Матриц, ; Последовательностей, ; Функций;

В качестве элементов носителя могут выступать также множества: действительной оси, плоскости, трёхмерного (и многомерного) пространства, перестановки, движения; абстрактные множества.

Определение. Метрическое пространство есть структура, образующая тройку, где отображение есть неотрицательная действительная функция двух аргументов для любых x и y из M и удовлетворяющая трём аксиомам.

  • 1-- неотрицательность; , при.
  • 2- - симметричность;
  • 3- - аксиома рефлексивности.

где - это расстояния между элементами.

В метрическом пространстве задаётся метрика и формируется понятие о близости двух элементов из множества носителя.

Определение. Действительное линейное (векторное) пространство есть структура, где отображение - аддитивная операция сложения элементов, принадлежащих, а отображение - операция умножения числа на элемент из.

Операция означает, что для любых двух элементов однозначно определен третий элемент, называемый их суммой и обозначаемый через, причем выполняются следующие аксиомы.

Коммутативное свойство.

Ассоциативное свойство.

В существует особый элемент, обозначаемый через такой, что для любого выполняется.

для любого существует, такой, что.

Элемент называется противоположным к и обозначается через.

Операция означает, что для любого элемента и любого числа определен элемент, обозначаемый через и выполняется аксиомы:

Элемент (точки) линейных пространства называется также векторами. Аксиомами 1 - 4 задаётся группа (аддитивная), называемая модулем и представляющая собой структуру.

Если операция в структуре не подчиняется никакими аксиомам, то такую структуру называют группоидом. Эта структура предельно бедна; в ней нет ни одной аксиоме ассоциативности, то структура называется моноидом (полугруппа).

В структуре с помощью отображения и аксиомами 1-8 задаётся свойство линейности.

Итак, линейное пространство является групповым модулем, в структуру которого добавлена еще одна операция - умножения элементов носителя на число с 4 аксиомами. Если вместо операции задать наряду с еще одну групповую операцию умножения элементов с 4 аксиомами и постулировать аксиому дистрибутивности, то возникает структуру, называемая полем.

Определение. Линейное нормированное пространство есть структура, в которой отображение удовлетворяет следующие аксиомами:

  • 1. причём тогда и только тогда, когда.
  • 2. , .
  • 3. , .

И так в всего 11 аксиом.

Например, если в структуру поля вещественных чисел, где - действительные числа, добавить модуль, обладающий всеми тремя свойствами нормы, то поле вещественных чисел становится нормированным пространством

Распространены два способа введения нормы: либо путём явного задания интервального вида однородно-выпуклого функционала , , либо путём задания скалярного произведение , .

Пусть, тогда вид функционала можно задать бесчисленным количеством способов, меняя величину:

  • 1. , .
  • 2. , .

………………..

…………….

Второй распространённый способ приём задания состоит в том, что в структуру пространства вводится ещё одного отображение (функция двух аргументов, обычно обозначаемое через и называемое скалярным произведением).

Определение. Евклидово пространство есть структура в которой скалярное произведение содержит норму и удовлетворяет аксиомам:

  • 4. , причём тогда и только тогда, когда

В евклидовом пространстве норма порождается формулой

Из свойств 1 - 4 скалярного произведения следует, что выполняются все аксиомы нормы. Если скалярное произведение в виде, то норма будет вычисляться по формуле

Норму пространства невозможно задать с помощью скалярного произведения , .

В пространствах со скалярным произведением появляются такие качества, которые отсутствуют в линейных нормированных пространствах (ортогональность элементов, равенство параллелограмма, теорема Пифагора, тожество Аполлония, неравенство Птолемея . Введение скалярного произведения даёт способы более эффективного решения задач аппроксимации.

Определение. Бесконечная последовательность элементов в линейном нормированном пространстве называется сходящейся по норме (просто сходящейся или имеющей предел в), если существует такой элемент, что для любого найдется номер, зависящий от такой, что при выполняется

Определение. Последовательность элементов в называется фундаментальной, если для любого существует номер, зависящий от, что любого и выполняются (Треногин Колмогоров, Канторович, с 48)

Определение. Банаховым пространством называется такая структура, в которой любая фундаментальная последовательность сходится по норме.

Определение. Гильбертовым пространством называется такая структура в которой любая фундаментальная последовательность сходится по норме, порождённой скалярным произведением.