Тема. Теория вероятностей

Либерт Елена

Азарт и жажда разбогатеть дали толчок возникновению новой чрезвычайно существенной математической дисциплины: теории вероятностей. В разработке ее основ принимали участие математики такого масштаба, как Паскаль и Ферма, Гюйгенс.

Скачать:

Предварительный просмотр:

МБОУ СШ №8 г. Ярцево Смоленской области

Проект по математике:

«История возникновения теории вероятностей»

Подготовила: ученица 11 класса

средней школы №8 Либерт Елена

Руководитель: учитель математики

Борисенкова Ольга Владимировна

Г. Ярцево, 2015г.

История возникновения теории вероятностей…………………………………………………………..…...3

Средневековая Европа и начало Нового времени……………………….4

XVII век: Паскаль, Ферма, Гюйгенс…..………………………………….5

XVIII век……..…………………………………………………………….7

XIX век. Общие тенденции и критика……………………….…………..7

Применение теории вероятности в XIX-XX веках……………….…..…8

  1. Астрономия………………………………………………………….8
  2. Физика………………………….……………………………………9
  3. Биометрия……………...……………………………………………9
  4. Сельское хозяйство………………………..………………………..9
  5. Промышленность …………………………………………………..10
  6. Медицина…………………………………………………………....10
  7. Биоинформатика……………...…………………………………….10
  8. Экономика и банковское дело…….……………………………….11

История возникновения теории вероятностей

Французский дворянин, некий господин де Мере, был азартным игроком в кости и страстно хотел разбогатеть. Он затратил много времени, чтобы открыть тайну игры в кости. Он выдумывал различные варианты игры, предполагая, что таким образом приобретет крупное состояние. Так, например, он предлагал бросать одну кость по очереди 4 раза и убеждал партнера, что по крайней мере один раз выпадет при этом шестерка. Если за 4 броска шестерка не выходила, то выигрывал противник.

В те времена еще не существовала отрасль математики, которую сегодня мы называем теорией вероятностей, а поэтому, чтобы убедиться, верны ли его предположения, господин Мере обратился к своему знакомому, известному математику и философу Б. Паскалю с просьбой, чтобы он изучил два знаменитых вопроса, первый из которых он попытался решить сам. Вопросы были такие:

Сколько раз надо бросать две игральные кости, чтобы случаев выпадения сразу двух шестерок было больше половины от общего числа бросаний?

Как справедливо разделить поставленные на кон двумя игроками деньги, если они по каким-то причинам прекратили игру преждевременно?

Паскаль не только сам заинтересовался этим, но и написал письмо известному математику П. Ферма, чем спровоцировал его заняться общими законами игры в кости и вероятностью выигрыша.

Таким образом, азарт и жажда разбогатеть дали толчок возникновению новой чрезвычайно существенной математической дисциплины: теории вероятностей. В разработке ее основ принимали участие математики такого масштаба, как Паскаль и Ферма, Гюйгенс (1629-1695), который написал тракта «О расчетах при азартных играх», Яков Бернулли (1654-1705), Муавр (1667-1754), Лаплас (1749- 1827), Гаусс (1777-1855) и Пуассон (1781-1840). В наше время теория вероятности используется почти во всех отраслях знаний: в статистике, синоптике (прогноз погоды), биологии, экономике, технологии, строительстве и т. д.

Средневековая Европа и начало Нового времени

Первые задачи вероятностного характера возникли в различных азартных играх - костях, картах и др. Французский каноник XIII века Ришар де Фурниваль правильно подсчитал все возможные суммы очков после броска трёх костей и указал число способов, которыми может получиться каждая из этих сумм. Это число способов можно рассматривать как первую числовую меру ожидаемости события, аналогичную вероятности. До Фурниваля, а иногда и после него, эту меру часто подсчитывали неверно, считая, например, что суммы 3 и 4 очка равновероятны, так как оба могут получиться «только одним способом»: по результатам броска «три единицы» и «двойка с двумя единицами» соответственно. При этом не учитывалось, что три единицы в самом деле получаются только одним способом: ~1+1+1, а двойка с двумя единицами - тремя: ~1+1+2;\;1+2+1;\;2+1+1, так что эти события не равновероятны. Аналогичные ошибки неоднократно встречались и в дальнейшей истории науки.

В обширной математической энциклопедии «Сумма арифметики, геометрии, отношений и пропорций» итальянца Луки Пачоли (1494) содержатся оригинальные задачи на тему: как разделить ставку между двумя игроками, если серия игр прервана досрочно. Пример подобной задачи: игра идёт до 60 очков, победитель получает всю ставку в 22 дуката, в ходе игры первый игрок набрал 50 очков, второй - 30, и тут игру пришлось прекратить; требуется справедливо разделить исходную ставку. Решение зависит от того, что понимать под «справедливым» разделом; сам Пачоли предложил делить пропорционально набранным очкам (55/4 и 33/4 дуката); позднее его решение было признано ошибочным.

Распределение суммы очков после бросания двух костей

Крупный алгебраист XVI века ДжероламоКардано посвятил анализу игры содержательную монографию «Книга об игре в кости» (1526 год, опубликована посмертно). Кардано провёл полный и безошибочный комбинаторный анализ для значений суммы очков и указал для разных событий ожидаемое значение доли «благоприятных» событий: например, при бросании трёх костей доля случаев, когда значения всех 3 костей совпадают, равна 6/216 или 1/36. Кардано сделал проницательное замечание: реальное количество исследуемых событий может при небольшом числе игр сильно отличаться от теоретического, но чем больше игр в серии, тем доля этого различия меньше. По существу, Кардано близко подошёл к понятию вероятности:

Итак, имеется одно общее правило для расчёта: необходимо учесть общее число возможных выпадений и число способов, которыми могут появиться данные выпадения, а затем найти отношение последнего числа к числу оставшихся возможных выпадений.

Другой итальянский алгебраист, Никколо Тарталья, раскритиковал подход Пачоли к решению задачи о разделе ставки: ведь если один из игроков ещё не успел набрать ни одного очка, то алгоритм Пачоли отдаёт всю ставку его сопернику, но это трудно назвать справедливым, поскольку некоторые шансы на выигрыш у отстающего всё же имеются. Кардано и Тарталья предложили свои (различные) способы раздела, но впоследствии и эти способы были признаны неудачными.

Исследованием данной темы занимался и Галилео Галилей, написавший трактат «О выходе очков при игре в кости» (1718 год, опубликован посмертно). Изложение теории игры у Галилея отличается исчерпывающей полнотой и ясностью. В своей главной книге «Диалог о двух главнейших системах мира, птоломеевой и коперниковой» Галилей также указал на возможность оценки погрешности астрономических и иных измерений, причём заявил, что малые ошибки измерения вероятнее, чем большие, отклонения в обе стороны равновероятны, а средний результат должен быть близок к истинному значению измеряемой величины. Эти качественные рассуждения стали первым в истории предсказанием нормального распределения ошибок.

XVII век: Паскаль, Ферма, Гюйгенс

В XVII веке начало формироваться отчётливое представление о проблематике теории вероятностей и появились первые математические (комбинаторные) методы решения вероятностных задач. Основателями математической теории вероятностей стали Блез Паскаль и Пьер Ферма.

Перед этим математик-любитель шевалье де Мере обратился к Паскалю по поводу так называемой «задачи об очках»: сколько раз нужно бросать две кости, чтобы ставить на одновременное выпадение хотя бы раз двух шестёрок было выгодно? Паскаль и Ферма вступили в переписку друг с другом по поводу данной задачи и родственных вопросов (1654). В рамках этой переписки учёные обсудили ряд проблем, связанных с вероятностными расчётами; в частности, рассматривалась старая задача о разделе ставки, и оба учёных пришли к решению, что надо разделить ставку соответственно остающимся шансам на выигрыш. Паскаль указал де Мере на ошибку, допущенную им при решении «задачи об очках»: в то время как де Мере неверно определил равновероятные события, получив ответ: 24 броска, Паскаль дал правильный ответ: 25 бросков.

Паскаль в своих трудах далеко продвинул применение комбинаторных методов, которые систематизировал в своей книге «Трактат об арифметическом треугольнике» (1665). Опираясь на вероятностный подход, Паскаль даже доказывал (в посмертно опубликованных заметках), что быть верующим выгоднее, чем атеистом.

Гюйгенс, вначале использовал термин «стоимость», а термин «ожидание» появился впервые при переводе трактата Гюйгенса Ван Схоутеном на латинский язык и стал общепринятым в науке.

В книге большое число задач, некоторые с решениями, другие «для самостоятельного решения». Из последних особый интерес и оживлённое обсуждение вызвала «задача о разорении игрока». В несколько обобщённом виде она формулируется так: у игроков A и B есть a и b монет соответственно, в каждой игре выигрывается одна монета, вероятность выигрыша A в каждой игре равна p, требуется найти вероятность полного его разорения. Полное общее решение «задачи о разорении» дал Абрахам де Муавр полвека спустя (1711). В наши дни вероятностная схема «задачи о разорении» используется при решении многих задач типа «случайное блуждание».

Гюйгенс проанализировал и задачу о разделе ставки, дав её окончательное решение: ставку надо разделить пропорционально вероятностям выигрыша при продолжении игры. Он также впервые применил вероятностные методы к демографической статистике и показал, как рассчитать среднюю продолжительность жизни.

К этому же периоду относятся публикации английских статистиков Джона Граунта (1662) и Уильяма Петти (1676, 1683). Обработав данные более чем за столетие, они показали, что многие демографические характеристики лондонского населения, несмотря на случайные колебания, имеют достаточно устойчивый характер - например, соотношение числа новорождённых мальчиков и девочек редко отклоняется от пропорции 14 к 13, невелики колебания и процента смертности от конкретных случайных причин. Эти данные подготовили научную общественность к восприятию новых идей.

Граунт также впервые составил таблицы смертности - таблицы вероятности смерти как функции возраста. Вопросами теории вероятностей и её применения к демографической статистике занялись также Иоганн Худде и Ян де Витт в Нидерландах, которые в 1671 году также составили таблицы смертности и использовали их для вычисления размеров пожизненной ренты. Более подробно данный круг вопросов был изложен в 1693 году Эдмундом Галлеем.

XVIII век

На книгу Гюйгенса опирались появившиеся в начале XVIII века трактаты Пьера де Монмора «Опыт исследования азартных игр» (опубликован в 1708 и переиздан с дополнениями в 1713 году) и Якоба Бернулли «Искусство предположений» (опубликован уже после смерти учёного, в том же 1713 году). Последний имел для теории вероятностей особенно большое значение.

XIX век

Общие тенденции и критика

В XIX веке число работ по теории вероятностей продолжало расти, были даже компрометирующие науку попытки распространить её методы далеко за разумные пределы - например, на область морали, психологии, правоприменения и даже богословия. В частности, валлийский философ Ричард Прайс, а следом за ним и Лаплас, считали возможным рассчитать по формулам Байеса вероятность предстоящего восхода Солнца, Пуассон пытался провести вероятностный анализ справедливости судебных приговоров и достоверности показаний свидетелей. Философ Дж. С. Милль в 1843 году, указав на подобные спекулятивные применения, назвал исчисление вероятностей «позором математики». Эта и другие оценки свидетельствовали о недостаточной строгости обоснования теории вероятностей.

Математический аппарат теории вероятностей тем временем продолжал совершенствоваться. Основной сферой её применения в тот период была математическая обработка результатов наблюдений, содержащих случайные погрешности, а также расчёты рисков в страховом деле и других статистических параметров. Среди главных прикладных задач теории вероятностей и математической статистики XIX века можно назвать следующие:

найти вероятность того, что сумма независимых случайных величин с одинаковым (известным) законом распределения находится в заданных пределах. Особую важность эта проблема представляла для теории ошибок измерения, в первую очередь для оценки погрешности наблюдений;

установление статистической значимости различия случайных значений или серий таких значений. Пример: сравнение результатов применения нового и старого видов лекарств для принятия решения о том, действительно ли новое лекарство лучше;

исследование влияния заданного фактора на случайную величину (факторный анализ).

Уже к середине XIX века формируется вероятностная теория артиллерийской стрельбы. В большинстве крупных стран Европы были созданы национальные статистические организации. В конце века область применения вероятностных методов начала успешно распространяться на физику, биологию, экономику, социологию.

Применение теории вероятности в XIX-XX веках.

В 19 и 20 столетиях теория вероятностей проникает сначала в науку (астрономию, физику, биологию), потом в практику (сельское хозяйство, промышленность, медицину), и наконец, после изобретения компьютеров, в повседневную жизнь любого человека, пользующегося современными средствами получения и передачи информации. Проследим применение в различных областях.

1.Астрономия.

Именно для использования в астрономии был разработан знаменитый “метод наименьших квадратов” (Лежандр 1805, Гаусс 1815). Главной задачей, для решения которой он был первоначально использован, стал расчет орбит комет, который приходилось производить по малому числу наблюдений. Ясно, что надежное определение типа орбиты (эллипс или гипербола) и точный расчет ее параметров оказывается трудным, так как орбита наблюдается лишь на небольшом участке. Метод оказался эффективным, универсальным, и вызвал бурные споры о приоритете. Его стали использовать в геодезии и картографии. Сейчас, когда искусство ручных расчетов утрачено, трудно представить, что при составлении карт мирового океана в 1880-х годах в Англии методом наименьших квадратов была численно решена система, состоящая из примерно 6000 уравнений с несколькими сотнями неизвестных.

2.Физика.

Во второй половине 19 века была в работах Максвелла, Больцмана и Гиббса была развита статистическая механика, которая описывала состояние разряженных систем, содержащих огромное число частиц (порядка числа Авогадро). Если раньше понятие распределения случайной величины было преимущественно связано с распределением ошибок измерения, то теперь распределенными оказались самые разные величины – скорости, энергии, длины свободного пробега.

3.Биометрия.

В 1870-1900 годах бельгиец Кетле и англичане Френсис Гальтон и Карл Пирсон основали новое научное направление – биометрию, в которой впервые стала систематически и количественно изучаться неопределенная изменчивость живых организмов и наследование количественных признаков. В научный оборот были введены новые понятия – регрессии и корреляции.

Итак, вплоть до начала 20 века основные приложения теории вероятности были связаны с научными исследованиями. Внедрение в практику – сельское хозяйство, промышленность, медицину произошло в 20 веке.

4.Сельское хозяйство.

В начале 20 века в Англии была поставлена задача количественного сравнения эффективности различных методов ведения сельского хозяйства. Для решения этой задачи была развита теория планирования экспериментов, дисперсионный анализ. Основная заслуга в развитии этого уже чисто практического использования статистики принадлежит сэру Рональду Фишеру, астроному по образованию, а в дальнейшем фермеру, статистику, генетику, президенту английского Королевского общества. Современная математическая статистика, пригодная для широкого применения в практике, была развита в Англии (Карл Пирсон, Стьюдент, Фишер). Стьюдент впервые решил задачу оценки неизвестного параметра распределения без использования байесовского подхода.

5.Промышленность.

Введение методов статистического контроля на производстве (контрольные карты Шухарта). Сокращение необходимого количества испытаний качества продукции. Математические методы оказываются уже настолько важными, что их стали засекречивать. Так книга с описанием новой методики, позволявшей сократить количество испытаний (“Последовательный анализ” Вальда), была издана только после окончания второй мировой войны в 1947 году.

6.Медицина.

Широкое применение статистических методов в медицине началось сравнительно недавно (вторая половина 20 века). Развитие эффективных методов лечения (антибиотики, инсулин, эффективная анестезия, искусственное кровообращение) потребовало достоверных методов оценки их эффективности. Возникло новое понятие “Доказательная медицина”. Начал развиваться более формальный, количественный подход к терапии многих заболевании – введение протоколов, guidelines.

С середины 1980-х годов возник новый и важнейший фактор, революционизировавший все приложения теории вероятностей – возможность широкого использования быстрых и доступных компьютеров. Почувствовать всю громадность произошедшего переворота можно, если учесть, что один современный персональный компьютер превосходит по быстродействию и памяти все компьютеры СССР и США, имевшиеся к 1968 году, времени, когда уже были осуществлены проекты, связанные со строительством атомных электростанций, полетами на Луну, созданием термоядерной бомбы. Сейчас методом прямого экспериментирования можно получать результаты, которые ранее были недоступны – thinkingofunthinkable.

7.Биоинформатика.

Начиная с 1980-х годов количество известных последовательностей белков и нуклеиновых кислот стремительно возрастает. Объем накопленной информации таков, что только компьютерный анализ этих данных может решать задачи по извлечению информации.

8.Экономика и банковское дело.

Широкое применение имеет теория риска. Теория риска есть теория принятия решений в условиях вероятностной неопределенности. С математической точки зрения она является разделом теории вероятностей, а приложения теории риска практически безграничны. Наиболее продвинута финансовая область приложений: банковское дело и страхование, управление рыночными и кредитными рисками, инвестициями, бизнес-рисками, телекоммуникациям. Развиваются и нефинансовые приложения, связанные с угрозами здоровью, окружающей среде, рисками аварий и экологических катастроф, и другими направлениями.

2.1. Выбор математического аппарата теории надежности

Сделанное выше определение надежности явно недоста­точно, так как оно носит лишь качественный характер и не позволяет решать различные инженерные задачи в процессе проектирования, изготовления, испытания и эксплуатации авиационной техники. В частности, оно не позволяет решать такие важные задачи, как, например:

Оценивать надежность (безотказность, восстанавливае­мость, сохраняемость, готовность и долговечность) существую­щих и создающихся новых конструкций;

Сравнивать надежность разнотипных элементов и си­стем;

Оценивать эффективность восстановления неисправных самолетов;

Обосновывать планы ремонта и состав запасных частей, потребных для обеспечения планов летной работы;

Определять объем, периодичность, стоимость выполне­ния подготовок к полету, регламентных работ и всего комп­лекса технического обслуживания;

Определять затраты времени, снл и средств, потребные для восстановления неисправных технических устройств.

Трудность определения количественных характеристик на­дежности вытекает из самой природы отказов, каждый из ко­торых является результатом совпадения ряда неблагоприят­ных факторов, таких, как, например, перегрузки, местные отклонения от расчетных режимов работы элементов и си­стем, изъяны материалов, изменение внешних условий и др., обладающих причинными связями разной степени и разной природы, вызывающих внезапные концентрации нагрузок, пре­вышающих расчетную нагрузку.

Отказы авиационной техники зависят от многих причин, in поддающихся предварительной оценке с точки зрения их чычимости как первостепенные или второстепенные. Это по — чюляет рассматривать число отказов и время их появления 1 качестве случайных величин, т. е. величин, которые в зави — пмости от случая могут принимать различные значения, при — м ыранее неизвестно какие именно.

Установление количественных зависимостей классически — III методами при такой сложной ситуации практически не — 1к 11 можно, так как многочисленные второстепенные случай­ные факторы играют такую заметную роль, что выделить пер­вое м’пенные, главные факторы из множества других нельзя. Кроме того, применение только классических методов ис — ’ ледования, основанных на рассмотрении вместо явления его прощенной и идеализированной модели, построенной на учете. ишь главных факторов и пренебрежении второстепенными, всегда дает верный результат.

Полому для изучения таких явлений в настоящее время при достигнутом уровне развития науки и техники лучшим обрн юм могут быть использованы теория вероятностей и ма — | емн і нческая статистика - науки, изучающие закономернос — III в случайных явлениях и в некоторых случаях хорошо до — IIі>’111)110111110 классические методы.

К цоегоннетнам этих методов следует отнести следующие і рн обе юя гельегна:

І) сіаіін’іірнч’кііе методы, не раскрывая индивидуальных її и причин пі лглыюго отказа, устанавливают вместо

……… і. і рvniiiiiHи о pc iyиі. і.іга массовой эксплуатации с

Mill…………. (ІКНІМО (игрой І носімо) в УСЛОВИЯХ

" in in hi і " її і ими ‘іпм і причин;

‘ І "і ими) ні і ii’ii kii методов полученные резуль-

1 » ……… і і ими поиски м подои соответствуют всему

1 .. пік» pcarn. in. iK уїловин эксплуатации, а не той или мі шріїїНініїоїі и сильно упрощенной схеме; м І..І основании массовых наблюдений за появлением от­ит і і. июни і ся возможным выявить общие закономерности, инженерный анализ которых открывает путь для повышения ПНДІ кносш авиационной техники в процессе ее создания и но иержанни на заданном уровне в процессе эксплуатации.

Указанные достоинства этого математического аппарата делают его пока единственно приемлемым для исследования допросов надежности авиационной техники. Вместе с тем, в практике следует учитывать специфические ограничения, при­зі

сущие статистическим методам, которые не могут дать ответа на вопрос, будет ли данное техническое устройство функциони­ровать безотказно на протяжении интересующего нас периода или нет. Эти методы дают возможность только определить ве­роятность безотказной работы того или иного экземпляра авиационной техники и оценить риск того, что за интересую­щий нас период эксплуатации произойдет отказ.

Выводы, полученные статистическим путем, всегда опира­ются на прошлый опыт эксплуатации авиационной техники, а поэтому оценка будущих отказов будет строгой лишь при до­статочно точном совпадении всего комплекса условий эксплу­атации (режимы работы, условия хранения).

Для анализа и оценки восстанавливаемости и готовности авиационной техники к полету также применяют эти мето­ды, используя закономерности теории массового обслужива­ния и особенно некоторые разделы теории восстановления.

Неволина Екатерина Николаевна Екатеринбург УрГЭУ Руководитель – Кныш А. А. Практическое применение теории вероятностей. Актуальность. Теория вероятностей является одним из разделов математики, изучающим случайные события, случайные величины, их свойства и операции над ними. Методы теории вероятностей все шире находят свое применение в различных областях науки и техники, а также в обычной жизни. Особенность данного раздела науки заключается в рассмотрении таких явлений, в которых присутствует неопределенность. В статье мне бы хотелось рассмотреть примеры некоторых задач, демонстрирующих практическое применение теории вероятностей. Задачи с экономическим содержанием. 1. Одна из фирм собирается заключить контракт на поставку товара с сетью магазинов. При условии, что конкурент фирмы не станет одновременно претендовать на заключение контракта, вероятность заключения контракта оценивается в 0,85, В противном случае вероятность получения контракта составляет 0,6. По оценкам экспертов компании вероятность того, что конкурент выдвинет свои предложения по заключению контракта, равна 0,55. Чему равна вероятность заключения контракта для этой фирмы? . Данная задача решается с помощью формулы полной вероятности. 2. Экономист-аналитик условно подразделяет экономическую ситуацию в стране на «хорошую», «посредственную» и «плохую» и оценивает их вероятности для данного момента времени в 0,2; 0,7 и 0,15 соответственно. Некоторый индекс экономического состояния возрастает с вероятностью 0,65, когда ситуация «хорошая»; с вероятностью 0,35, когда ситуация посредственная, и с вероятностью 0,1, когда ситуация «плохая». Пусть в настоящий момент индекс экономического состояния возрос. Чему равна вероятность того, что экономика страны на подъеме? . Задача решается с помощью формулы Байеса. 3. Банк выдаёт 9 кредитов. Вероятность невозврата кредита равна 0,2 для каждого заёмщика. Какова вероятность того, что трое заёмщиков не выплатят кредит? Задача решается с помощью формулы Бернулли. 5. Деталь считается годной при отклонении Х линейного размера в абсолютном выражении меньше 1 мм. Отклонение Х является величиной, распределенной по нормальному закону, со среднем квадратическим отклонением   0.35 . Найти количество бракованных деталей в одной партии произведенных деталей (размер партии 1000 шт.), стоимость потерь от брака при себестоимости партии 15 млн. руб., доход от реализации оставшихся годных деталей и экономические потери при рыночной цене 19 000 руб. за единицу продукции . Рассмотрим решение данной задачи. Т.к. Х – отклонение линейного размера в абсолютном выражении, то математическое ожидание М(Х)=а=0. Подставив в формулу  P  X     2      значения    0.35 и   1, получим P X  1  0,9956. Таким образом, в партии из 1000 деталей годными будут 995 деталей. При себестоимости партии 15 млн. руб. себестоимость каждой детали составит в среднем 15 000 руб. Стоимость потерь от брака составят 75000 рублей. Доход от реализации годных деталей по рыночной цене составит 995∙19000 =18,905 млн. руб. В связи с невозможностью реализовать часть продукции экономические потери составят 5∙19000=95000 руб. Методы теории вероятностей также используются в ставках на спорт. С помощью теории вероятностей стало возможным предугадывать и оценивать исходы различных матчей, а также выявлять продуктивность отдельно взятого игрока. Так, например, если мы рассматриваем баскетбол, то в качестве продуктивности игрока можно рассматривать вероятность его попадания в кольцо с различных точек. Приведем примеры задач. 1. На соревнованиях по баскетболу центровой игрок команды «N» бросает мяч в кольцо. За каждый забитый мяч команда получает 2 очка. Найти вероятность того, что за данный бросок центровым команда не получит ни одного очка (0 очков полагается лишь за промах). 2. Две равносильные баскетбольные команды играют в баскетбол. Что вероятнее: вести счет одну четверть из двух или две четверти из четырех (равный счет во внимание не принимается)? Данная задача решается с помощью формулы Бернулли. Итак, нахождение закономерностей в случайных явлениях - это задача теорий вероятности. Теория вероятности - это инструмент для изучения не видимых и многозначных взаимосвязей разных явлений во многочисленных областях науки, техники и экономики. Теория вероятности дает возможность правильно посчитать колебания спроса, предложения, цен и других экономических показателей. Теория вероятности есть часть базовой науки как статистика и прикладная информатика. Так как без теории вероятностей не может работать не одна прикладная программа, и компьютер в целом. И в теории игр она тоже является основной . Список использованных источников: 1. Вентцель Е. С. Теория вероятностей [Электрон. ресурс] : Учеб. пособие. – Москва. – Высшая школа, 1999. – 576 c. – Режим доступа: http://sernam.ru/book_tp.php 2. Методические указания для студентов по проведению практических работ по дисциплине «Математика» [Электрон. ресурс]. – Мончегорск, 2013. – Режим доступа: http://www.studfiles.ru/preview/3829108/ 3. Хуснутдинов, Р. Ш. Математика для экономистов в примерах и задачах [Электрон. ресурс] : учеб. пособие / Р. Ш. Хуснутдинов, В. А. Жихарев. – Санкт-Петербург: Лань, 2012. - 656 с. - Режим доступа: https://e.lanbook.com/book/4233

В статье рассмотрены основные задачи, в которых применяются различные методы теории вероятностей.

  • Анализ динамических рядов (на примере отрасли пчеловодства)
  • Применение теории вероятностей и математической статистики в страховой деятельности
  • Самоанализ как начальный этап в освоении технологий самоменеджмента
  • Средства стохастической подготовки обучающихся на основе информационных технологий

Теория вероятностей – это наука, изучающая использование специфических методов для решения задач, которые возникают при рассмотрении случайных величин. Она раскрывает закономерности, которые относятся к массовым явлениям. Эти методы не могут предсказать исход случайного явления, но могут предсказать суммарный результат. Следовательно, если мы изучим законы, которые управляют случайными событиями, то сможем при необходимости изменить ход этих событий. В свою очередь, математическая статистика - это раздел математики, который изучает методы сбора, систематизации, обработки и использования статистических данных для получения научно обоснованных выводов и принятия на их основе решений.

Почему же для обработки простых наборов данных требуется целая наука? Потому что эти данные, как бы мы не старались, никогда не являются точными, содержат случайные ошибки. Это могут быть и погрешности измерительных приборов, и человеческие ошибки, а так же неоднородность данных или, конечно, их недостаточность.

Обычно исследователь многократно повторяет свой опыт, получая большое количество однотипных данных, которые надо обработать и сделать весомые выводы, которые позволят не только продвинуться глубже в изучении предмета, но и сделать выводы, прогнозы, принять важные экономические решения и т.д.

Именно математическая статистика дает методы для обработки данных, алгоритмы для проверки статистических гипотез, критерии адекватности и значимости выбранной модели или закона, обоснованные границы точности для параметров распределения, которые мы можем получить исходя из наших данных и т.п.

Существует интересная история, которая говорит о том, что своим появлением теория вероятности обязана азартным играм. Основателем теории вероятностей считается французский ученый Блез Паскаль, который занимался в таких областях как физика, математика, философия. Однако на самом деле, Паскаль в своих работах обобщил опыт своего друга, известного в свое время Шевалье де Мере. Де Мере был азартным игроком, он увлекся расчетами того, сколько раз необходимо будет бросить игральные кости, чтобы заветные две шестерки выпали более, чем в половине случаев. Эти, казалось бы, не слишком серьезные вычисления, заставили Шевалье более глубоко заняться изучением вопроса вероятности, а позднее – вызвали интерес Паскаля.

В России наибольший интерес к теории вероятностей возник в первой половине XIX в. Значительный вклад в развитие науки теории вероятностей внесли русские ученые: П.Л. Чебышев, А.А. Марков, А.М. Ляпунов. Современный вид теория вероятностей получила благодаря аксиоматизации, предложенной Андреем Николаевичем Колмогоровым. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики.

Практическое применение теории вероятностей велико. Во многих сферах и областях жизни применяются методы теории вероятностей. Рассмотрим некоторые из них на конкретных примерах.

1. В случайном эксперименте дети симметричную монету бросают трижды. Найти вероятность того, что орел выпадет ровно два раза.

Шаг первый - выписываем все возможные комбинации уже для 3 бросков! Это будут: ООО, ООР, ОРО, ОРР, РОО, РОР, РРО, РРР. Бросков всего на один больше, а комбинаций возможных уже n=8 .

Теперь из этого списка надо оставить только те комбинации, где О встречается 2 раза, то есть: ООР, ОРО, РОО, их будет m=3. Тогда вероятность события P=m/n=3/8=0.375P=m/n=3/8=0.375.

2. Для прядения бабушка смешала поровну черный и окрашенный хлопок. Какова вероятность что среди 1200 единиц окажется больше половины черного хлопка.

Решение. Общее число вариантов события - 1200. Теперь определим общее число благоприятных вариантов. Благоприятные варианты будут в том случае, когда количество черных единиц больше половины, то есть 601, 602 и так до 1200. То есть 599 благоприятных вариантов. Таким образом, вероятность благоприятного исхода составит
599 / 1200 = 0,499 .

3. Ребенок имеет на руках 5 кубиков с буквами: А, К, К, Л, У. Какова вероятность того, что ребенок соберет из кубиков слово "кукла"?

Решение: Используем формулу классической вероятности: P=m/n, где n - число всех равновозможных элементарных исходов, m - число элементарных исходов, благоприятствующих осуществлению события. Число различных перестановок из букв А, К, К, Л, У равно n=5!1!2!1!1!=1⋅2⋅3⋅4⋅51⋅2=60, из них только одна соответствует слову "кукла" (m=1), поэтому по классическому определению вероятности вероятность того, что ребенок соберет из кубиков слово "кукла" равна P=1/60.

4. Мужчина на шахматную доску случайным образом поставил две ладьи. Какова вероятность, что они не будут бить одна другую?

Решение: Используем классическое определение вероятности: P=m/n, где m - число исходов, благоприятствующих осуществлению события, а n - число всех равновозможных элементарных исходов. Число всех способов расставить ладьи равно n=64⋅63=4032 (первую ладью ставим на любую из 64 клеток, а вторую - на любую из оставшихся 63 клеток). Число способов расставить ладьи так, что они не будут бить одна другую равно m=64⋅(64−15)=64⋅49=3136 (первую ладью ставим на любую из 64 клеток, вычеркиваем клетки, которые находятся в том же столбце и строке, что и данная ладья, затем вторую ладью ставим на любую из оставшихся после вычеркивания 49 клеток).

Тогда искомая вероятность P=3136/4032=49/63=7/9=0,778.

Ответ: 7/9.

5. Студент пришел на зачет, зная только 40 вопросов из 60. Какова вероятность сдачи зачета, если после отказа отвечать на вопрос преподаватель задает еще один?

Решение: Вероятность того, что преподаватель задал студенту вопрос, на который он не знал ответа (событие А) равна Р(А) = . Найдем вероятность того, что на второй вопрос преподавателя студент знает ответ (событие В) при условии, что ответа на первый вопрос студент не знал. Это условная вероятность, так как событие А уже произошло. Отсюда Р А (В) = 40/59. Искомую вероятность определим по теореме умножения вероятностей зависимых событий. Р(А и В) = Р(А)* Р А (В) = 40/59*20/60 = 0,23.

Таким образом, наша жизнь без применения теории вероятностей невозможна.

Список литературы

  1. Анасова, Т.А., Теория вероятностей [Электронный ресурс] : курс лекций для обучающихся по программе бакалавров и магистров высших учеб. заведений / Т. А. Анасова, Э. Ф. Сагадеева; М-во сел. хоз-ва РФ, Башкирский ГАУ. - Уфа: [БашГАУ], 2014. - 68 с.
  2. Гизетдинова, А. И., Применение актуарных расчетов в страховании [Текст] / А. И. Гизетдинова, Э. Ф. Сагадеева // Тенденции и перспективы развития статистической науки и информационных технологий: сборник научных статей, посвящается юбилею профессора кафедры статистики и информационных систем в экономике Рафиковой Н. Т. / Башкирский ГАУ. - Уфа, 2013. - С. 192-194.
  3. Кабашова, Е.В. Математическая экономика. Модуль 1. Обобщенные модели экономики [Электронный ресурс] : учеб. пособие / Е.В. Кабашова, Э.Ф. Сагадеева. – Уфа: Башкирский ГАУ, 2013. – 68 с.
  4. Кабашова, Е.В. Математическая экономика. Модуль 2. Глобальные модели экономики [Электронный ресурс] : учеб. пособие / Е.В. Кабашова, Э.Ф. Сагадеева. – Уфа: Башкирский ГАУ, 2013. – 64 с.
  5. Научные основы развития сельского хозяйства Республики Башкортостан [Текст] / К. Б. Магафуров; Башкирский ГАУ. - Уфа: Изд-во БГАУ, 2003. - 112 с.
  6. Сагадеева, Э. Ф., Опыт кураторской работы в Башкирском государственном аграрном университете [Текст] / Э. Ф. Сагадеева // Проблемы повышения качества учебно-методической работы в вузе: опыт и инновации: сборник научных трудов / Российский университет кооперации, Башкирский кооперативный институт (филиал). - Уфа, 2009. - Вып. 11. - С. 128-131.
  7. Сагадеева, Э. Ф., Выполнение актуарных расчетов с использованием коммутационных чисел с применением ЭВМ [Текст] / Э. Ф. Сагадеева, Р. Р. Бакирова // Потребительская кооперация и отрасли экономики Башкортостана: инновационные аспекты развития: сборник научных трудов / Российский университет кооперации, Башкирский кооперативный институт (филиал). - Уфа, 2008. - [Вып.10]. - С. 132-138.

Неволина Екатерина Николаевна Екатеринбург УрГЭУ Руководитель – Кныш А. А. Практическое применение теории вероятностей. Актуальность. Теория вероятностей является одним из разделов математики, изучающим случайные события, случайные величины, их свойства и операции над ними. Методы теории вероятностей все шире находят свое применение в различных областях науки и техники, а также в обычной жизни. Особенность данного раздела науки заключается в рассмотрении таких явлений, в которых присутствует неопределенность. В статье мне бы хотелось рассмотреть примеры некоторых задач, демонстрирующих практическое применение теории вероятностей. Задачи с экономическим содержанием. 1. Одна из фирм собирается заключить контракт на поставку товара с сетью магазинов. При условии, что конкурент фирмы не станет одновременно претендовать на заключение контракта, вероятность заключения контракта оценивается в 0,85, В противном случае вероятность получения контракта составляет 0,6. По оценкам экспертов компании вероятность того, что конкурент выдвинет свои предложения по заключению контракта, равна 0,55. Чему равна вероятность заключения контракта для этой фирмы? . Данная задача решается с помощью формулы полной вероятности. 2. Экономист-аналитик условно подразделяет экономическую ситуацию в стране на «хорошую», «посредственную» и «плохую» и оценивает их вероятности для данного момента времени в 0,2; 0,7 и 0,15 соответственно. Некоторый индекс экономического состояния возрастает с вероятностью 0,65, когда ситуация «хорошая»; с вероятностью 0,35, когда ситуация посредственная, и с вероятностью 0,1, когда ситуация «плохая». Пусть в настоящий момент индекс экономического состояния возрос. Чему равна вероятность того, что экономика страны на подъеме? . Задача решается с помощью формулы Байеса. 3. Банк выдаёт 9 кредитов. Вероятность невозврата кредита равна 0,2 для каждого заёмщика. Какова вероятность того, что трое заёмщиков не выплатят кредит? Задача решается с помощью формулы Бернулли. 5. Деталь считается годной при отклонении Х линейного размера в абсолютном выражении меньше 1 мм. Отклонение Х является величиной, распределенной по нормальному закону, со среднем квадратическим отклонением   0.35 . Найти количество бракованных деталей в одной партии произведенных деталей (размер партии 1000 шт.), стоимость потерь от брака при себестоимости партии 15 млн. руб., доход от реализации оставшихся годных деталей и экономические потери при рыночной цене 19 000 руб. за единицу продукции . Рассмотрим решение данной задачи. Т.к. Х – отклонение линейного размера в абсолютном выражении, то математическое ожидание М(Х)=а=0. Подставив в формулу  P  X     2      значения    0.35 и   1, получим P X  1  0,9956. Таким образом, в партии из 1000 деталей годными будут 995 деталей. При себестоимости партии 15 млн. руб. себестоимость каждой детали составит в среднем 15 000 руб. Стоимость потерь от брака составят 75000 рублей. Доход от реализации годных деталей по рыночной цене составит 995∙19000 =18,905 млн. руб. В связи с невозможностью реализовать часть продукции экономические потери составят 5∙19000=95000 руб. Методы теории вероятностей также используются в ставках на спорт. С помощью теории вероятностей стало возможным предугадывать и оценивать исходы различных матчей, а также выявлять продуктивность отдельно взятого игрока. Так, например, если мы рассматриваем баскетбол, то в качестве продуктивности игрока можно рассматривать вероятность его попадания в кольцо с различных точек. Приведем примеры задач. 1. На соревнованиях по баскетболу центровой игрок команды «N» бросает мяч в кольцо. За каждый забитый мяч команда получает 2 очка. Найти вероятность того, что за данный бросок центровым команда не получит ни одного очка (0 очков полагается лишь за промах). 2. Две равносильные баскетбольные команды играют в баскетбол. Что вероятнее: вести счет одну четверть из двух или две четверти из четырех (равный счет во внимание не принимается)? Данная задача решается с помощью формулы Бернулли. Итак, нахождение закономерностей в случайных явлениях - это задача теорий вероятности. Теория вероятности - это инструмент для изучения не видимых и многозначных взаимосвязей разных явлений во многочисленных областях науки, техники и экономики. Теория вероятности дает возможность правильно посчитать колебания спроса, предложения, цен и других экономических показателей. Теория вероятности есть часть базовой науки как статистика и прикладная информатика. Так как без теории вероятностей не может работать не одна прикладная программа, и компьютер в целом. И в теории игр она тоже является основной . Список использованных источников: 1. Вентцель Е. С. Теория вероятностей [Электрон. ресурс] : Учеб. пособие. – Москва. – Высшая школа, 1999. – 576 c. – Режим доступа: http://sernam.ru/book_tp.php 2. Методические указания для студентов по проведению практических работ по дисциплине «Математика» [Электрон. ресурс]. – Мончегорск, 2013. – Режим доступа: http://www.studfiles.ru/preview/3829108/ 3. Хуснутдинов, Р. Ш. Математика для экономистов в примерах и задачах [Электрон. ресурс] : учеб. пособие / Р. Ш. Хуснутдинов, В. А. Жихарев. – Санкт-Петербург: Лань, 2012. - 656 с. - Режим доступа: https://e.lanbook.com/book/4233