Теория кристаллического поля квадрат расположение лиганда. Модели химической связи

И Джоном Ван Флеком для описания низших состояний катионов переходных металлов, окруженных лигандами - как анионами, так и нейтральными молекулами. Теория кристаллического поля была в дальнейшем объединена [и усовершенствована] с теорией (делокализованных) молекулярных орбиталей в более общую, учитывающую частичную ковалентность связи металл-лиганд в координационных соединениях .

Теория кристаллического поля позволяет предсказать или интерпретировать оптические спектры поглощения и спектры электронного парамагнитного резонанса кристаллов и комплексных соединений, а также энтальпий гидратации и устойчивости в растворах комплексов переходных металлов.

Обзор теории кристаллического поля [ | ]

Согласно ТКП, взаимодействие между переходным металлом и лигандами возникает вследствие притяжения между положительно заряженным катионом металла и отрицательным зарядом электронов на несвязывающих орбиталях лиганда. Теория рассматривает изменение энергии пяти вырожденных d -орбиталей в окружении точечных зарядов лигандов. По мере приближения лиганда к иону металла, электроны лиганда становятся ближе к некоторым d -орбиталям, чем к другим, вызывая потерю вырожденности. Электроны d -орбиталей и лигандов отталкиваются друг от друга как заряды с одинаковым знаком. Таким образом, энергия тех d -электронов, которые ближе к лигандам, становится выше, чем тех, которые дальше, что приводит к расщеплению уровней энергии d -орбиталей.

На расщепление влияют следующие факторы:

  • Природа иона металла.
  • Степень окисления металла. Чем выше степень окисления, тем выше энергия расщепления.
  • Расположение лигандов вокруг иона металла.
  • Природа лигандов, окружающих ион металла. Чем сильнее эффект от лигандов, тем больше разность между высоким и низким уровнем энергии.

Самый распространённый вид координации лигандов - октаэдрическая , при которой шесть лигандов создают кристаллическое поле октаэдрической симметрии вокруг иона металла. При октаэдрическом окружении иона металла с одним электроном на внешней оболочке d-орбитали разделяются на две группы с разностью энергетических уровней Δ окт (энергия расщепления ), при этом энергия у орбиталей d xy , d xz и d yz будет ниже, чем у d z 2 и d x 2 -y 2 , так как орбитали первой группы находятся дальше от лигандов и испытывают меньшее отталкивание. Три орбитали с низкой энергией обозначаются как t 2g , а две с высокой - как e g .

Следующими по распространённости являются тетраэдрические комплексы, в которых четыре лиганда образуют тетраэдр вокруг иона металла. В этом случае d -орбитали также разделяются на две группы с разностью энергетических уровней Δ тетр. В отличие от октаэдрической координации, низкой энергией будут обладать орбитали d z 2 и d x 2 -y 2 , а высокой - d xy , d xz и d yz . Кроме того, так как электроны лигандов не находятся непосредственно в направлении d -орбиталей, энергия расщепления будет ниже, чем при октаэдрической координации. С помощью ТКП также можно описать плоскоквадратную и другие геометрии комплексов.

Разность энергетических уровней Δ между двумя или более группами орбиталей зависит также от природы лигандов. Некоторые лиганды вызывают меньшее расщепление, чем другие, причины чего объясняет. Спектрохимический ряд - полученный опытным путём список лигандов, упорядоченных в порядке возрастания Δ:

Степень окисления металла также влияет на Δ. Металл с более высокой степенью окисления ближе притягивает лиганды за счёт большей разности зарядов. Лиганды, находящиеся ближе к иону металла, вызывают большее расщепление.

Низко- и высокоспиновые комплексы [ | ]

Лиганды, вызывающие большое расщепление d -уровней, например CN − и CO, называются лигандами сильного поля . В комплексах с такими лигандами электронам невыгодно занимать орбитали с высокой энергией. Следовательно, орбитали с низкой энергией полностью заполняются до того, как начинается заполнение орбиталей с высокой энергией. Такие комплексы называются низкоспиновыми . Например, NO 2 − - лиганд сильного поля, создающий большое расщепление. Все 5 d -электронов октаэдрического иона 3− будут располагаться на нижнем уровне t 2g .

Напротив, лиганды, вызывающие малое расщепление, например I − и Br − , называются лигандами слабого поля . В этом случае легче поместить электроны в орбитали с высокой энергией, чем расположить два электрона в одной орбитали с низкой энергией, потому что два электрона в одной орбитали отталкивают друг друга, и затраты энергии на размещение второго электрона в орбитали выше, чем Δ. Таким образом, прежде чем появятся парные электроны, в каждую из пяти d -орбиталей должно быть помещёно по одному электрону в соответствии с правилом Хунда . Такие комплексы называются высокоспиновыми . Например, Br − - лиганд слабого поля, вызывающий малое расщепление. Все 5 d -орбиталей иона 3− , у которого тоже 5 d -электронов, будут заняты одним электроном.

Энергия расщепления для тетраэдрических комплексов Δ тетр примерно равна 4/9Δ окт (для одинаковых металла и лигандов). В результате этого разность энергетических уровней d -орбиталей обычно ниже энергии спаривания электронов, и тетраэдрические комплексы обычно высокоспиновые.

Диаграммы распределения d -электронов позволяют предсказать магнитные свойства координационных соединений. Комплексы с непарными электронами являются парамагнитными и притягиваются магнитным полем, а без - диамагнитными и слабо отталкиваются.

Энергия стабилизации кристаллическим полем [ | ]

Энергия стабилизации кристаллическим полем (ЭСКП) - энергия электронной конфигурации иона переходного металла относительно средней энергии орбиталей. Стабилизация возникает вследствие того, что в поле лигандов энергетический уровень некоторых орбиталей ниже, чем в гипотетическом сферическом поле, в котором на все пять d -орбиталей действует одинаковая сила отталкивания, и все d -орбитали вырождены. Например, в октаэдрическом случае уровень t 2g ниже, чем средний уровень в сферическом поле. Следовательно, если в данных орбиталях находятся электроны, то ион металла более стабилен в поле лигандов относительно сферического поля. Наоборот, энергетический уровень орбиталей e g выше среднего, и электроны, находящиеся в них, уменьшают стабилизацию.

Энергия стабилизации октаэдрическим полем

В октаэдрическом поле три орбитали t 2g стабилизированы относительно среднего энергетического уровня на 2 / 5 Δ окт, а две орбитали e g дестабилизированы на 3 / 5 Δ окт. Выше были приведены примеры двух электронных конфигураций d 5 . В первом примере - низкоспиновый комплекс 3− с пятью электронами в t 2g . Его ЭСКП составляет 5 × 2 / 5 Δ окт = 2Δ окт. Во втором примере - высокоспиновый комплекс 3− с ЭСКП (3 × 2 / 5 Δ окт) − (2 × 3 / 5 Δ окт) = 0. В этом случае стабилизирующий эффект электронов в низкоуровневых орбиталях нейтрализуется дестабилизирующим эффектом электронов в высокоуровневых орбиталях.

Диаграммы расщепления d-уровня кристаллическим полем [ | ]

октаэдрическая пентагонально-бипирамидальная квадратно-антипризматическая

Концепция изменения электронного строения ионов переходных металлов при действии электрического поля окружающих его заряженных частиц была предложена Беккерелем и в дальнейшем развита Х.А. Бете и Дж. Ван Флеком в начале XX в. К описанию электронного строения и свойств комплексных соединений эти представления были применены только в середине XX века Х. Хартманом и модель получила название «теория кристаллического поля» (ТКП).

Основные положения ТКП для комплексов переходных d металлов Рис. 24):

1. - Комплекс существует и устойчив, благодаря электростатическому взаимодействию комплексообразователя с лигандами.

2. - Лиганды рассматриваются без учета их электронного строения в качестве точечных зарядов или диполей.

3. - Под действием электрического поля лигандов валентные пятикратно вырожденные (n -1) d орбитали расщепляются в зависимости от симметрии лигандного окружения.

4. - Распределение валетных электронов металла по расщепленным (n -1) d орбиталям зависит от соотношения энергии спин-спаривания и энергии расщепления.

Рассмотрим, например, изменение энергии пятикратно вырожденных(n -1) d орбиталей центрального иона металла М n + , находящегося в центре координат, под действием октаэдрического поля отрицательно заряженных лигандов [ ML 6 ] z , расположенных на осях координат (Рис. 25). В результате отталкивания валентных электронов металла от отрицательно заряженных лигандов при равномерном распределении отрицательного заряда вокруг металла (сферически симметричное электрическое поле) энергия всех пяти d орбиталей повысится на величину Е 0 по сравнению со свободным М n + ионом. Поскольку d орбитали имеют различную пространственную ориентацию, то при концентрации отрицательных зарядов на лигандах, располо-женных на осях координат, повышение их энергии различается. Повышение энергии d z 2 и d x 2- y 2 орбиталей, направленных к лигандам на осях координат, больше повышения энергии d xy , d xz и d yz орбиталей, направленных между осями координат.

Энергия расщепления пятикратно вырожденных (n -1) орбиталей на двухкратно вырожденные d x 2- y 2, z 2 орбитали и трехкратно вырожденные d xy , xz , yz орбитали называется (Рис. 26) параметром расщепления кристаллическим полем. Поскольку энергия расщепленных d орбиталей в октаэдрическом поле лигандов по сравнению со сферически симметричным электрическим полем не изменяется, то повышение энергии двух d x 2- y 2, z 2 орбиталей происходит на 0.6 D 0 и понижение энергии трех d xy , xz , yz орбиталей на 0.4 D 0 .

Для указания степени вырожденности и симметрии расщепленных под действием электрического поля лигандов орбиталей металла используют специальные символы. Трехкратно вырожденные и симметричные относительно центра симметрии и вращения вокруг осей координат d xy , xz , yz t 2 g », тогда как двухкратно вырожденные и также симметричные относительно центра симметрии d x 2- y 2, z 2 орбитали обозначают символом « e g ». Таким образом, под действие октаэдрического электрического поля лигандов пятикратно вырожденные (n -1) d орбитали комплексообразователя расщепляются на различные по энергии трекратно и двухкратно вырожденные t 2 g и e g орбитали.

Подобное рассмотрение изменения энергии пятикратно вырожденных (n -1) d орбиталей свободного иона металла при тетраэдрическом окружении лигандов в [ ML 4 ] z комплексах показывает (рис. 27) их расщепление также на двукратно (е) и трекратно (t ) вырожденные орбитали, однако, с обратным энергетическим положением. Нижний индекс « g » при обозначении «е» и « t » орбиталей не указавается поскольку тетраэдрический комплекс не имеет центра симметрии. Уменьшение числа лигандов тетраэдрического комплекса по сравнению с октаэдрическим приводит к закономерному уменьшению параметра расщепления кристаллическим полем: D Т = 4/9 D О .

Понижение симметрии лигандного окружения металла, например, тетрагональное искажение октаэдрических [ ML 6 ] z комплексов, связанное с удлинением металл-лиганд связей с аксиальными лигандами [ ML 4 X 2 ] z и образованием в предельном случае плоско-квадратных [ ML 4 ] z комплексов, приводит (рис. 28) к дополни-тельному расщеплению валентных (n -1) d орбиталей металла.

Заполнение валентными электронами расщепленных (n -1) d орбиталей металла происходит в соответствии с принципами Паули и минимума энергии. Для октаэдрических комплексов с d 1 , d 2 и d 3 электронной конфигурацией металла валентные электроны в соответствии с правилом Хунда заселяют t 2 g орбитали с параллльными спинами, приводя к t 2 g 1 , t 2 g 2 и t 2 g 3 электронной структуре комплексов.

Для металлов с d 4 электронной конфигурацией три электрона также заселяют t 2 g орбитали с параллельными спинами. Заселение же четвертого электрона зависит от энергетических затрат на величину энергии спин спаривания (Е сп.-сп.) при заселении t 2 g орбиталей с антипараллельным спином и нарушении правила Хунда, либо преодоления энергии расщепления кристаллическим полем D о при заселении e g орбиталей с параллельным спином в соответствии с правилом Хунда. В первом случае образуется комплекс с t 2 g 4 электронным строением и уменьшенным по сравнению со свободным металлом спиновой мультиплетностью 2 S +1 = 3 (S - сумарный спин), называемых низкоспиновыми . При выполнении правила Хунда и заселении четвертого электрона на e g орбитали образуется комплекс с t 2 g 3 e g 1 электронной структурой и подобной свободному металлу спиновой мультиплет-ностью 2 S +1 = 5. Такие комплексы называют высокоспиновыми.

Аналогично, при распределении валентных d 5 , d 6 и d 7 электронов металлов по t 2 g и e g орбиталям октаждрических комплексов в зависимости от соотношения Е сп.-сп. и D о возможно образование двух типов комплексов:

При Е сп.-сп. > D о обрауются высокоспиновые комплексы с электронной структурой металла t 2 g 3 e g 2 , t 2 g 4 e g 2 , t 2 g 5 e g 2 в соответствии с правилом Хунда и спиновой мультиплетностью, подобной свободному металлу - 2 S +1 = 6, 5, 4;

Е сп.-сп. < D о образуются низкоспиновые комплексы с электронной структурой металла t 2 g 5 e g 0 , t 2 g 6 e g 0 , t 2 g 6 e g 1 и пониженной по сравнению со свободным металлом спиновой мультиплетностью 2 S +1 = 2, 1, 2.

Комплексы металлов с d 8 , d 9 и d 10 электронной конфигурацией характеризуются одним типом распределения электронов - t 2 g 6 e g 2 , t 2 g 6 e g 3 , t 2 g 6 e g 4 со спиновой мультиплетностью, подобной свободному металлу: 2 S +1 = 3, 2 и 0.

Таким образом, параметр D , характеризующий расщепление (n -1) d орбиталей металла под действием электрического поля лигандов, является одной из основных характеристик изменения свойств комплексов по сравнению со свободным ионом металла. Именно величина параметра D определяет для ряда электронных конфигураций металла определяет возможность образования высоко- или низкоспиновых комплексов с различным распределением электронов по расщепленным орбиталям и различными свойствами.

Величина параметра расщепления кристаллическим полем D зависит от природы металла комплексообразователя, окружающих его лигандов и их пространственного положения вокруг комплексообразователя:

1. Лиганды в порядке увеличения параметра D для комплексов одного металла и подобного геометрического строения распологаются в так называемом спектро-химическом ряду: I - < Br - < Cl - < F - < OH - < C 2 O 4 2- ~ H 2 O < NCS - < NH 3 ~ En < NO 2 - < CN - < CO . В начале ряда расположены лиганды «слабого поля» - галогенид ионы, гидроксид и оксалат ионы, вода, образующие преимущественно высокоспиновые комплексы. Лиганды, в правой части ряда: окись углерода, цианид и нитрит ионы называются лигандами «сильного поля» и для них типично образование низкоспиновых комплексов. Для лигандов середины ряда - роданид иона, аммиака, этилендиамина в зависимости от природы металла образуются высоко- или низкоспиновые комплексы.

2. Увеличение эффективности действия электрического поля лигандов на d орбитали металла с увеличением их размера в ряду 3 d << 4 d < 5 d , а также увеличения степени окисления металла приводит к увеличению параметра D в ряду: Mn (II ) < Ni (II ) < Co (II ) < Fe (II ) < V (II ) < Fe (III ) < Co (III ) < Mn (IV ) < Mo (III ) < Rh (III ) < Ru (III ) < Pd (IV ) < Ir (III ) < Pt (IV ).

3. Параметр D для тетраэдрических комплексов составляет только 4/9 от параметра D октаэдрических комплексов.

Комплексы «тяжелых» 4 d и 5 d металлов практически не зависимо от природы лигандов образуют преимущественно низкоспиновые комплексы, тогда как образование низко- или выскоспиновых комплексов «легких» 3 d металлов в основном определяется силой поля лигандов.

В отличие от МВС, теория кристаллического поля для обоснования различия магнитных свойств комплексов одного и того же иона металла с различным лигандным окружением, например, диамагнитного [ Fe (CN ) 6 ] 4- и парамагнитного [ Fe (H 2 O ) 6 ] 2+ не использует гипотезу о их внутриорбитальном (d 2 sp 3 гибридизация) и требующем больших энергетических затрат внешнеорбитальном (sp 3 d 2 гибриди-зация) строении. Различие в магнитных свойствах определяется низко- и высокоспиновым характером распределения 6-ти валетных электронов Fe (II ) по расщепленным t 2 g и e g орбиталям (рис. 29). Являясь лигандами сильного и слабого поля, цианид-ионы и молекулы воды образуют с Fe (II ) низко- и высокоспиновыекомплексы с t 2 g 6 e g 0 и t 2 g 4 e g 2 распределением электронов, что и определяет диамагнетизм [ Fe (CN ) 6 ] 4- и парамагнетизм [ Fe (H 2 O ) 6 ] 2+ комплексов.

Расщепление пятикратно вырожденных (n -1) d орбиталей металла в комплексах и изменение параметра D в зависимости от природы лигандов определяет характерную окраску комплексов как в твердом состоянии, так и в растворах. При поглощении комплексом электромагнитного излучения в видимой области спектра (400-750) нм, энергия квантов которого Е равна величине D , происходит перенос электрона с t 2 g на e g орбитали. Не поглощенное электромагнитное излучение видимой области спектра и определяет окраску комплекса в соответствии с «цветовым кругом Ньютона» (Рис. 30), показывающим основной и дополнительный цвет видимого излучения.

Аквакомплекс титана(III ) [ Ti (H 2 O ) 6 ] 3+ c t 2 g 1 e g 0 электронным распределением в результате фотовозбуждения, соответствующего переходу электрона на более высокоэнергетические e g орбитали:

3+ (t 2g 1 e g 0) + h n = * 3+ (t 2g 0 e g 1)

поглощает кванты света в желтой области спектра, что приводит к его фиолетовой окраске. Изменение лигандного окружения иона металла в соответствии с положением лиганда в спектрохимическом ряду приводит к изменению параметра D и, как следствие этого, к изменению энергии и длины волны поглощаемых комплексом квантов и к характеристической окраске комплекса - например, в ряду [ CuCl 4 ] 2- , [ Cu (H 2 O ) 4 ] 2+ , [ Cu (NH 3 ) 4 ] 2+ цвет комплексов изменяется от зеленого к голубому и фиолетовому.

Наряду с энергией расщепления кристаллического поля D , важную роль в ТКП играет также энергия стабилиции кристаллическим полем (ЭСКП) - выйгрыш в энергии при распределении электронов по расщепленным в комплексе (n -1) d орбиталям металла по сравнению с энергией пятикратно вырожденных (n -1) d орбиталей металла в эквивалентном сферическом электрическом поле (Рис. 31, 32).

ЭСКП октадрических и тетраэдрических комплексов.

M n+

Октаэдрические комлексы

Тетраэдрические комплексы

Низкоспиновые

Высокоспиновые

Высокоспиновые

0.4 D o

0.6 D т

0.8 D o

1.2 D т

1.2 D o

0.8 D т

d 4

1.6 D o

0.6 D o

0.4 D т

d 5

2.0 D o

0 D o

0 D т

d 6

2.4 D o

0.4 D o

0.6 D т

d 7

1.8 D o

0.8 D o

1.2 D т

d 8

1.2 D o

0.8 D т

d 9

0.6 D o

0.4 D т

d 10

0 D o

Оценку величины ЭКСП комплекса получают на основании диаграмм расщепления (n -1) d орбиталей металла в электрическом поле лигандов, показывающих уменьшение или повышение энергии системы по сравнению со сферическим электрическим полем при заселении электронами расщепленных (n -1) d орбиталей. Для октаэдри-ческих [ ML 6 ] z комплексов (Рис. 32) заселение каждым электроном t 2 g орбиталей приводит к выйгрышу энергии системы на 0.4 D о , заселение же e g требует затрат энергии 0.6 D о . Для тетраэдрических [ ML 4 ] z комплексов с противоположным энергетическим положением e и t орбиталей металла заселение каждым электроном расщепленных e и t орбиталей сопровождается понижением и повышением энергии системы на 0.6 D т и 0.4 D т .

Являясь отражением термодинамической устойчивости комплеков, оценки их величины ЭСКП согласуются с экспериментальными данными изменения энергии кристаллической решетки для высокоспиновых гексафторидных комплексов 3 d металлов (Рис. 33).

Величины ЭСКП позволяют установить наиболее предпочтительный координационный изомер (Рис. 34), например [ Cu (NH 3 ) 6 ][ NiCl 4 ] или [ Ni (NH 3 ) 6 ][ CuCl 4 ]. Для этого рассчитывают разницу ЭСКП для комплексного катиона и аниона изомеров. Величина ЭСКП [ Cu (NH 3 ) 6 ] 2+ и [ NiCl 4 ] 2- составляет 0.6 D о и 0.8 D т соответственно. Учитывая, что D т = 4/9 D o , разница между величинами ЭСКП [ Cu (NH 3 ) 6 ] 2+ и [ NiCl 4 ] 2- будет составлять 19/45 D o . Аналогично, величины ЭСКП [ Ni (NH 3 ) 6 ] 2+ и [ CuCl 4 ] 2- составляет 1.2 D о и 0.4 D т , а разница между ними 28/45 D o . Большая разница ЭСКП комплексных катиона [ Ni (NH 3 ) 6 ] 2+ и аниона [ CuCl 4 ] 2- по сравнению с [ Cu (NH 3 ) 6 ] 2+ и [ NiCl 4 ] 2- показывает более предпочтительное образование изомера состава [ Ni (NH 3 ) 6 ][ CuCl 4 ].

Наряду с магнитными и оптическими свойствами, влияния электронного строения металла на термодинамическую устойчивость комплексов, ТКП предсказывает искажение геометрического строения комплексов при не равномерном распределении электронов по расщепленным (n -1) d орбиталям металла (Рис. 35). В отличие от правильного октаэдрического строения [ Co (CN ) 6 ] 3- с t 2 g 6 e g 0 электронным распределением, тетрагональное искажение аналогичного комплекса [ Cu (CN ) 6 ] 4- с t 2 g 6 e g 3 электронным распределением, содержащего 3 электрона на 2-х кратно вырожденных e g орбиталях, приводит к эффективной трансформации октаэдрического в плоско-квадратный комплекс:

4- = 2- + 2CN - .

Все выше сказанное показывает, что относительная простота и широкие возможности ТКП для объяснения и прогнозирования физико-химических свойств комплексов определяют большую популярность это модели описания химической связи в комплесных соединениях. В тоже время, акцентируя внимание на изменении электронной структуры металла при комплексообразовании, ТКП не учитывает электронное строение лигандов, рассматривая их в качестве точечных отрицательных зарядов или диполей. Это приводит к ряду ограничений ТКП при описании электронного строения комплексов. Например, в рамках ТКП трудно объяснить положение ряда лигандов и металлов в спектрохимических рядах, что связано с определенной степенью ковалентности и возможность образования кратных металл-лиганд связей. Эти ограничения устраняются при рассмотрении электронного строения комплексных соединений более сложным и менее наглядным методом молекулярных орбиталей.

Создаваемым окружающими его ионами, атомами или молекулами. Концепция кристаллического поля была предложена Беккерелем для описания состояния атомов в кристаллах и затем развита Хансом Бете и Джоном Ван Флеком для описания низших состояний катионов переходных металлов, окруженных лигандами - как анионами, так и нейтральными молекулами. Теория кристаллического поля была в дальнейшем объединена [и усовершенствована] с теорией (делокализованных) молекулярных орбиталей в более общую теорию поля лигандов, учитывающую частичную ковалентность связи металл-лиганд в координационных соединениях .

Теория кристаллического поля позволяет предсказать или интерпретировать оптические спектры поглощения и спектры электронного парамагнитного резонанса кристаллов и комплексных соединений, а также энтальпий гидратации и устойчивости в растворах комплексов переходных металлов.

Энциклопедичный YouTube

  • 1 / 5

    Согласно ТКП, взаимодействие между переходным металлом и лигандами возникает вследствие притяжения между положительно заряженным катионом металла и отрицательным зарядом электронов на несвязывающих орбиталях лиганда. Теория рассматривает изменение энергии пяти вырожденных d -орбиталей в окружении точечных зарядов лигандов. По мере приближения лиганда к иону металла, электроны лиганда становятся ближе к некоторым d -орбиталям, чем к другим, вызывая потерю вырожденности. Электроны d -орбиталей и лигандов отталкиваются друг от друга как заряды с одинаковым знаком. Таким образом, энергия тех d -электронов, которые ближе к лигандам, становится выше, чем тех, которые дальше, что приводит к расщеплению уровней энергии d -орбиталей.

    На расщепление влияют следующие факторы:

    • Природа иона металла.
    • Степень окисления металла. Чем выше степень окисления, тем выше энергия расщепления.
    • Расположение лигандов вокруг иона металла.
    • Природа лигандов, окружающих ион металла. Чем сильнее эффект от лигандов, тем больше разность между высоким и низким уровнем энергии.

    Самый распространённый вид координации лигандов - октаэдрическая , при которой шесть лигандов создают кристаллическое поле октаэдрической симметрии вокруг иона металла. При октаэдрическом окружении иона металла с одним электроном на внешней оболочке d-орбитали разделяются на две группы с разностью энергетических уровней Δ окт (энергия расщепления ), при этом энергия у орбиталей d xy , d xz и d yz будет ниже, чем у d z 2 и d x 2 -y 2 , так как орбитали первой группы находится дальше от лигандов и испытывают меньшее отталкивание. Три орбитали с низкой энергией обозначаются как t 2g , а две с высокой - как e g .

    Следующими по распространённости являются тетраэдрические комплексы, в которых четыре лиганда образуют тетраэдр вокруг иона металла. В этом случае d -орбитали также разделяются на две группы с разностью энергетических уровней Δ тетр. В отличие от октаэдрической координации, низкой энергией будут обладать орбитали d z 2 и d x 2 -y 2 , а высокой - d xy , d xz и d yz . Кроме того, так как электроны лигандов не находятся непосредственно в направлении d -орбиталей, энергия расщепления будет ниже, чем при октаэдрической координации. С помощью ТКП также можно описать плоскоквадратную и другие геометрии комплексов.

    Разность энергетических уровней Δ между двумя или более группами орбиталей зависит также от природы лигандов. Некоторые лиганды вызывают меньшее расщепление, чем другие, причины чего объясняет теория поля лигандов. Спектрохимический ряд - полученный опытным путём список лигандов, упорядоченных в порядке возрастания Δ:

    Степень окисления металла также влияет на Δ. Металл с более высокой степенью окисления ближе притягивает лиганды за счёт большей разности зарядов. Лиганды, находящиеся ближе к иону металла, вызывают большее расщепление.

    Низко- и высокоспиновые комплексы

    Лиганды, вызывающее большое расщепление d -уровней, например CN − и CO, называются лигандами сильного поля . В комплексах с такими лигандами электронам невыгодно занимать орбитали с высокой энергией. Следовательно, орбитали с низкой энергией полностью заполняются до того, как начинается заполнение орбиталей с высокой энергией. Такие комплексы называются низкоспиновыми . Например, NO 2 − - лиганд сильного поля, создающий большое расщепление. Все 5 d -электронов октаэдрического иона 3− будут располагаться на нижнем уровне t 2g .

    Напротив, лиганды, вызывающие малое расщепление, например I − и Br − , называются лигандами слабого поля . В этом случае легче поместить электроны в орбитали с высокой энергией, чем расположить два электрона в одной орбитали с низкой энергией, потому что два электрона в одной орбитали отталкивают друг друга, и затраты энергии на размещение второго электрона в орбитали выше, чем Δ. Таким образом, прежде чем появятся парные электроны, в каждую из пяти d -орбиталей должно быть помещёно по одному электрону в соответствии с правилом Хунда . Такие комплексы называются высокоспиновыми . Например, Br − - лиганд слабого поля, вызывающий малое расщепление. Все 5 d -орбиталей иона 3− , у которого тоже 5 d -электронов, будут заняты одним электроном.

    Энергия расщепления для тетраэдрических комплексов Δ тетр примерно равна 4/9Δ окт (для одинаковых металла и лигандов). В результате этого разность энергетических уровней d -орбиталей обычно ниже энергии спаривания электронов, и тетраэдрические комплексы обычно высокоспиновые.

    Диаграммы распределения d -электронов позволяют предсказать магнитные свойства координационных соединений. Комплексы с непарными электронами являются парамагнитными и притягиваются магнитным полем, а без - диамагнитными и слабо отталкиваются.

    Теория кристаллического поля пришла на смену теории валентных связей в 40-х годах XX столетия. В чистом виде она сейчас не применяется, так как не может объяснить образование ковалентных связей в комплексных соединениях и совершенно не учитывает истинного состояния лигандов (например, их действительных размеров) даже в случае взаимодействий, близких к чисто электростатическим.

    Уже с середины 50-х годов упрощенная теория кристаллического поля была заменена усовершенствованной теорией поля лигандов , учитывающей ковалентный характер химических связей между комплексообразователем и лигандом.

    Однако наиболее общий подход к объяснению образования комплексных соединений дает теория молекулярных орбиталей (МО), которая в настоящее время превалирует над всеми остальными. Метод молекулярных орбиталей предусматривает и чисто электростатическое взаимодействие при отсутствии перекрывания атомных орбиталей, и всю совокупность промежуточных степеней перекрывания.

    Рассмотрим основные понятия теории кристаллического поля , которая, как и теория валентных связей, все еще сохраняет свое значение для качественного описания химических связей в комплексных соединениях из-за большой простоты и наглядности.

    В теории кристаллического поля химическая связь комплексообразователь – лиганд считается электростатической . В соответствии с этой теорией лиганды располагаются вокруг комплексообразователя в вершинах правильных многогранников (полиэдров ) в виде точечных зарядов . Реальный объем лиганда теорией во внимание не принимается.

    Лиганды, как точечные заряды, создают вокруг комплексообразователя электростатическое поле (“кристаллическое поле”, если рассматривать кристалл комплексного соединения, или поле лигандов ), в котором энергетические уровни комплексообразователя и прежде всего d -подуровни расщепляются , и их энергия изменяется. Характер расщепления, энергия новых энергетических уровней зависит от симметрии расположения лигандов (октаэдрическое, тетраэдрическое или иное кристаллическое поле). Когда в качестве лигандов координируются молекулы H 2 O, NH 3 , CO и другие, их рассматривают как диполи , ориентированные отрицательным зарядом к комплексообразователю.

    Рассмотрим случай октаэдрического расположения лигандов (например, -3 или 3+). В центре октаэдра находится ион-комплексообразователь М(+ n) с электронами на d -атомных орбиталях, а в его вершинах – лиганды в виде точечных отрицательных зарядов (например, ионы F - или полярные молекулы типа NH 3). В условном ионе М(+ n), не связанном с лигандами, энергии всех пяти d -АО одинаковы (т.е. атомные орбитали вырожденные ).

    Однако в октаэдрическом поле лигандов d -АО комплексообразователя попадают в неравноценное положение. Атомные орбитали d (z 2) и d(х 2 -у 2) , вытянутые вдоль осей координат, ближе всего подходят к лигандам. Между этими орбиталями и лигандами, находящимися в вершинах октаэдра, возникают значительные силы отталкивания , приводящие к увеличению энергии орбиталей. Иначе говоря, данные атомные орбитали подвергаются максимальному воздействию поля лигандов . Физической моделью такого взаимодействия может служить сильно сжатая пружина.
    Другие три d -АО – d (xy ), d (xz ) и d (yz ), расположенные между осями координат и между лигандами, находятся на более значительном расстоянии от них. Взаимодействие таких d -АО с лигандами минимально, а следовательно – энергия d (xy ), d (xz ) и d (yz )-АО понижается по сравнению с исходной.
    Таким образом, пятикратно вырожденные d -АО комплексообразователя, попадая в октаэдрическое поле лигандов , подвергаются расщеплению на две группы новых орбиталей – трехкратно вырожденные орбитали с более низкой энергией, d (xy ), d (xz ) и d (yz ), и двукратно вырожденные орбитали с более высокой энергией, d (z 2) и d(х 2 -у 2) . Эти новые группы d -орбиталей с более низкой и более высокой энергией обозначают d ε и d γ:

    d (z 2) и d(х 2 -у 2)

    d (xy ), d (xz ),d (yz )

    Разность энергий двух новых подуровней d ε и d γ получила название параметра расщепления Δ 0:

    E 2 – E 1 = Δ 0 ≈ 0

    Расположение двух новых энергетических подуровней d ε и d γ по отношению к исходному (d -АО) на энергетической диаграмме несимметричное :

    (Е 2 – Е 0) > (Е 0 – Е 1).

    Квантово-механическая теория требует, чтобы при полном заселении новых энергетических уровней электронами общая энергия осталась без изменения , т.е. она должна остаться равной Е 0 .
    Иначе говоря, должно выполняться равенство

    4(Е 2 – Е 0) = 6(Е 0 – Е 1),

    где 4 и 6 – максимальное число электронов на d γ- и d ε-АО. Из этого равенства следует, что

    (Е 2 – Е 0) / (Е 0 – Е 1) = 3/2 и
    (Е 2 – Е 1) / (Е 0 – Е 1) = 5/2, или

    Δ 0 / (Е 0 – Е 1) = 5/2, откуда (Е 0 – Е 1) = 2/5Δ 0 .

    Размещение каждого электрона из шести максимально возможных на d ε-орбитали вызывает уменьшение (выигрыш ) энергии на 2/5 Δ 0 .

    Наоборот, размещение каждого электрона из четырех возможных на d γ-орбитали вызывает увеличение (затрату ) энергии на 3/5 Δ 0 .

    Если заселить электронами d ε- и d γ-орбитали полностью, то никакого выигрыша энергии не будет (как не будет и дополнительной затраты энергии ).

    Но если исходная d -АО заселена только частично и содержит от 1 до 6 электронов, и эти электроны размещаются только на d ε-АО, то мы получим значительный выигрыш энергии .
    Выигрыш энергии за счет преимущественного заселения электронами d ε-атомных орбиталей называют энергией стабилизации комплекса полем лигандов .

    Специфика каждого из лигандов сказывается в том, какое поле данный лиганд создает – сильное или слабое . Чем сильнее поле лигандов, чем больше значение параметра расщепления Δ 0 .

    Изучение параметра расщепления, как правило, основано на спектроскопических исследованиях. Длины волн полос поглощения комплексов в кристаллическом состоянии или в растворе, обусловленные переходом электронов с d ε- на d γ-АО, связаны с параметром расщепления Δ 0 следующим образом:

    λ = c / ν; Δ 0 = Е 2 – Е 1 = h ν = h · (c / λ),

    где постоянная Планка h равна 6,6260693 ∙ 10 -34 Дж · с;
    скорость света с = 3 · 10 10 см/с.
    Единица измерения Δ 0 – та же, что у волнового числа: см -1 , что приближенно отвечает 12 Дж/моль. Параметр расщепления , помимо типа лиганда, зависит от степени окисления и природы комплексообразователя.
    В комплексных соединениях, включающих комплексообразователи одного и того же периода и в одинаковой степени окисления, с одними и теми же лигандами, параметр расщепления примерно одинаков. С ростом степени окисления комплексообразователя значение Δ 0 увеличивается . Так, для аквакомплексов 2+ и 2+ значение параметра расщепления составляет 7800 и 10400 см -1 , а для 3+ и +3 13700 и 21000 см -1 соответственно. При увеличении заряда ядра атома-комплексообразователя Δ 0 тоже растет. Катионы гексаамминкобальта(III) 3+ , гексаамминродия(III) 3+ , гексаамминиридия(III) 3+ (Z = 27, 45 и 77) характеризуются параметрами расщепления, равными 22900, 34100 и 41000 см -1 .

    Зависимость Δ 0 от природы лигандов более разнообразна. В результате исследования многочисленных комплексных соединений было установлено, что по способности увеличивать параметр расщепления металлов-комплексообразователей, находящихся в своих обычных степенях окисления, наиболее распространенные лиганды можно расположить в следующий спектрохимический ряд , вдоль которого значение Δ 0 монотонно растет:
    I > Br > Cl > NCS - ≈ NO 3 - > F - > OH - >H 2 O > H - > NH 3 > NO 2 - > CN - > NO > CO.

    Таким образом, наиболее сильное электростатическое поле вокруг комплексообразователя и самое сильное расщепление d -АО вызывают лиганды CN - , NO и CO. Рассмотрим распределение электронов по d ε- и d γ-орбиталям в октаэдрическом поле лигандов. Заселение d ε- и d γ-орбиталей происходит в полном соответствии с правилом Гунда и принципом Паули . При этом независимо от значения параметра расщепления первые три электрона занимают квантовые ячейки d ε-подуровня:

    Если число электронов на d -подуровне комплексообразователя больше трех, для размещения их по расщепленным подуровням появляется две возможности. При низком значении параметра расщепления (слабое поле лигандов) электроны преодолевают энергетический барьер, разделяющий d ε- и d γ-орбитали; четвертый, а затем и пятый электроны заселяют квантовые ячейки d γ-подуровня.

    При сильном поле лигандов и высоком значении Δ 0 заселение четвертым и пятым электроном d γ-подуровня исключено; происходит заполнение d ε-орбиталей.

    При слабом поле лигандов заселяющие квантовые ячейки 4 или 5 электронов имеют параллельные спины , поэтому получаемый комплекс оказывается сильно парамагнитен . В сильном поле лигандов образуются одна, а затем две электронные пары на d ε-подуровне, так что парамагнетизм комплекса оказывается гораздо слабее. Шестой, седьмой и восьмой электроны в случае слабого поля оказываются снова на d γ-подуровне, дополняя конфигурации до электронных пар (одной в случае d 6 , двух – d 7 и трех – d 8):

    В случае сильного поля лигандов шестой электрон заселяет -АО, приводя к диамагнетизму комплекса, после чего седьмой и восьмой электроны поступают на d γ-подуровень:

    Очевидно, при восьмиэлектронной конфигурации различия в строении между комплексами с лигандами слабого и сильного поля исчезают . Заселение орбиталей девятым и десятым электроном также не различается для комплексов обоих типов:

    Вернемся к рассмотрению электронного строения октаэдрических комплексных ионов 3+ и -3 . В соответствии с расположением в спектрохимическом ряду , аммиак NH 3 относится к числу лигандов сильного поля , а фторид-ион F - – слабого поля . В анионе -3 лиганды F - создают слабое кристаллическое поле (Δ 0 = 13000 cм -1), и все электроны исходной 3d 6 -АО размещаются на d ε- и d γ-орбиталях без какого-либо спаривания. Комплексный ион является высокоспиновым и содержит четыре неспаренных электрона, поэтому он парамагнитен :

    В ионе 3+ лиганды NH 3 создают сильное кристаллическое поле (Δ 0 = 22900 см -1), все 3d 6 -электроны размещаются на более энергетически выгодной d ε-орбитали. Переход электронов с d ε- на d γ-орбитали невозможен из-за слишком высокого энергетического барьера . Поэтому данный комплексный катион является низкоспиновым , он не содержит неспаренных электронов и диамагнитен :

    Аналогичным образом могут быть представлены схемы распределения электронов по орбиталям в октаэдрическом поле для ионов 2+ и -4:

    Лиганды H 2 O создают слабое поле; обмен электронами между d ε- и d γ-орбиталями не вызывает затруднений и поэтому число неспаренных электронов в комплексном ионе такое же, как и в условном ионе Fe + II . Получаемый аквакомплекс – высокоспиновый, парамагнитный .
    Наоборот, лиганды CN - вызывают значительное расщепление d -АО, составляющее 33000 см -1 . Это значит, что существует сильная тенденция к размещению всех электронов на d ε-орбиталях. Выигрыш энергии , получаемый при таком заселении орбиталей, много больше энергетических затрат, обусловленных спариванием электронов.

    C позиции метода валентных связей в гибридизации валентных орбиталей, образующих связь в аквакомплексе участвуют d -АО внешнего подуровня (4sp 3 d 2), а в низкоспиновом ― d -АО внутреннего подуровня (3d 2 4sp 3).

    Таким образом, в высокоспиновых комплексах с лигандами слабого поля осуществляется гибридизация с участием d -АО внешнего подуровня, а низкоспиновых с лигандами сильного поля ― d -АО внутреннего подуровня. Количество неспаренных электронов в комплексе возможно определить методом электронного парамагнитного резонанса (ЭПР). С помощью приборов данного метода, называемых ЭПР спектрометрами, исследуются парамагнитные вещества.

    Теория кристаллического поля позволяет объяснить появление той или иной окраски у комплексных соединений. Среди комплексных соединений значительное количество в кристаллическом состоянии и водном растворе отличаются яркой окраской. Так, водный раствор, содержащий катионы 2+ , окрашен в интенсивно синий цвет, катионы 3+ придают раствору фиолетовую окраску, а катионы 2+ красную. Если через раствор или кристаллический образец вещества пропускать свет видимой части спектра , то в принципе возможны три варианта физического поведения образца: отсутствие поглощения света любой длины волны (образец вещества бесцветен , хотя может иметь полосы поглощения в ультрафиолетовой области спектра); полное поглощение света во всем интервале длин волн (образец будет казаться черным ); наконец, поглощение света только определенной длины волны (тогда образец будет иметь цвет, дополнительный к поглощенному узкому участку спектра).

    Таким образом, цвет раствора или кристаллов определяется частотой полос поглощения видимого света. Поглощение квантов света комплексами (например, имеющими октаэдрическое строение) объясняется взаимодействием света с электронами, находящимися на d ε-подуровне, сопровождаемое их переходом на вакантные орбитали d γ-подуровня. Например, при пропускании света через водный раствор, содержащий катионы гексаакватитана(III) 3+ , обнаруживается полоса поглощения света в желто-зеленой области спектра (20300 см -1 , λ=500 нм). Это связано с переходом единственного электрона комплексообразователя с d ε-АО на d γ-подуровень:

    Поэтому раствор, содержащий 3+ , приобретает фиолетовый цвет (дополнительный к поглощенному желто-зеленому). Раствор соли ванадия Cl 3 имеет зеленый цвет. Это также обусловлено соответствующими переходами электронов при поглощении ими части энергии светового луча. В основном состоянии, при электронной конфигурации ванадия(III) 3d 2 , два неспаренных электрона занимают d ε-подуровень:

    Существует всего два варианта перехода двух электронов на d γ-подуровень: либо оба электрона занимают d γ-АО, либо только один из них. Любые другие переходы электронов, связанные с уменьшением суммарного спина, запрещены.
    Указанным переходам электронов, получивших избыточную энергию, соответствует полоса поглощения около 400 нм в спектре поглощения раствора хлорида гексаакваванадия(III). Поглощение пурпурно-фиолетовой области спектра дает дополнительный цвет раствора – ярко-зеленый . Если комплексообразователь имеет электронную конфигурацию d 0 или d 10 , то переходы электронов с d ε- на d γ-подуровень или наоборот невозможны либо из-за отсутствия электронов , либо из-за отсутствия вакантных орбиталей . Поэтому растворы комплексов с такими комплексообразователями, как Sc(III) (3d 0), Cu(I) (3d 10), Zn(II) (3d 10), Cd(II) (4d 10) и т.п., не поглощают энергии в видимой части спектра и кажутся бесцветными . Избирательность поглощения света зависит не только от комплексообразователя и степени его окисления , но и от вида лигандов . При замене в комплексном соединении лигандов, находящихся в левой части спектрохимического ряда, на лиганды, создающие сильное электростатическое поле, наблюдается увеличение доли энергии, поглощаемой электронами из проходящего света и как следствие – уменьшение длины волны соответствующей полосы поглощения. Так, водный раствор, содержащий катионы тетрааквамеди(II) 2+ , окрашен в голубой цвет, а раствор сульфата тетраамминмеди(II) 2+ имеет интенсивно синюю окраску.


    Похожая информация.


    Подобно ионной модели, теория кристаллического поля (ТКП) предполагает, что комплексные соединения образуются в результате электростатического взаимо­дейс­твия между цент­ральным ионом комплексообра­зо­вателем и лигандами. Однако, в отличие от лигандов, которые рассматриваются как точечные заряды или диполи, цент­раль­ный ион рассматривается с учетом эго электронной структуры и ее изменения под действием электрического поля лигандов.

    Основным эффектом действия электрического поля лигандов на электрон­ную структуру центрального ио­на d-металла является рас­щепление его пяти­крат­но вы­­­рож­денных валентных d-орбиталей, в ре­зультате различного нап­рав­ления в пространстве d xy , d xz , d yz , d z2 , d x2-y2 орбиталей и, как след­с­т­вие этого, раз­личной эф­фек­тив­ности взаи­мо­действия d-электронов c ли­гандами. Характер рас­щепления d-орбита­лей зави­сит от простран­с­т­­вен­ного расположения (сим­мет­рии) ли­ган­дов вокруг ио­на металла Чем ни­же симметрия лигандного окру­же­ния иона металла, тем расщепление d-орбита­лей больше:

    Тетраэдр Сферическое Октаэдр Тетрагонально Плоский

    электрическое искаженный квадрат

    поле лигандов октаэдр

    Схема 1. Качественная диаграмма расщепление d-орбиталей.

    Действие электрического поля лигандов, расположенных в вер­ши­нах октаэд­ра на координатных осях x, y и z приводит для ок­та­эд­ри­ческих комплексов z к рас­щеп­лению пятикратно вырожден­ных d-ор­биталей центрального ио­на металла 2 группы - низко­энер­­ге­ти­чес­кие трехкратно вырожденные t 2g (d xy , d xz , d yz) орбитали и более вы­со­ко­энергетические двукратно вырожденные e g (d x2-y2 , d z2) орбита­ли. Для тетраэдрических комплексов z d-орбитали металла так­же рас­­щеп­ляются на 2 группы, но энергия трехкратно вырожденных t-ор­би­та­лей выше по сравнению с энергией е-орбиталей. Понижение симметрии лиганд­но­го окружения центрального иона металла при пе­реходе от октаэдрических к тетрагонально искаженным и плоско­квад­ратным комплексам: z ®транс- z ® z приво­дит к дальнейшему расщеплению d-орбиталей иона ме­талла.

    Раз­ность энергий между расщепленными орбиталями называется парамет­ром расщепления кристаллическим полем и обозначается D или 10Dq. Посколь­ку средняя энергия d-орбиталей при переходе от сферически симметричного по­ля лигандов к октаэдрическому полю ос­тается неизменной, то относительное понижение энергии трех­крат­но вырожден­ных t 2g -ор­би­талей происходит на ве­личину 0.4D, а по­вы­ше­ние энергии e g -орбиталей на 0.6D. Величина параметра D для дан­но­го комплекса определяется эффективностью действия электричес­ко­го по­ля лигандов на центральный ион комплексообразователь и зависит как от при­роды центрального иона металла, так и лигандов:

    С увеличением главного квантового числа валентных d-орбиталей иона ме­тал­ла 3d®4d®5d в результате увеличения их размера ве­ли­чи­на D в подоб­ных октаэдрических комплексах последовательно уве­личивается при­мер­но на 30-50%;

    С увеличением степени окисления металла величина D увеличива­ет­ся – для по­добных октаэдрических комплексов со сте­пенью окис­­ле­ния металла +3 ве­личина D примерно на 40-80% боль­ше, чем для металла со степенью окис­ле­ния +2;

    Наиболее распространенные лиганды могут быть расположены в ряд, назы­ва­емый спектрохимическим рядом лигандов , по воз­рас­та­нию величины D для их комплексов с ионами металлов в их обыч­ном низшем окислительном состоянии: I - < Br - < Cl - ~ SCN - < F - < OH - < C 2 O 4 2- ~ H 2 O < NCS - < NH 3 < NO 2 < H - < CN - ~ CO;

    Величина параметра D т для тетраэдрических комплексов составляет при­мер­но 40-50% от величины D о для аналогичных октаэдрических комплексов, что близко к теоретическому значению: D т = 4/9D o ; пол­ная величина расщеп­ле­ния (D 1 + D 2 + D 3) для плоскоквадратных комплексов примерно на 30% боль­ше параметра расщепления для аналогичных октаэдрических комплексов.

    Пример 1. Расположить следующие комплексы в порядке увели­че­ния пара­мет­ра D: а) 3- , 3- , 3+ ; б) 3- , - , 3- ; в) 2- (тетраэдр), 4- .

    Решение. а) величина D в ряду октаэдрических комплексов Co(III) оп­реде­ля­ет­ся положением лигандов в спектрохимическом ряду: 3- < 3+ < 3- ;

    б) в ряду фторидных октаэдрических комплексов 3- увеличива­ет­ся зна­че­ние главного квантового числа валентных d-ор­би­та­лей иона металла Co 3+ (3d 6), Rh 3+ (4d 6), Ir 3+ (5d 6), что и приводит к увеличению параметра D в ряду: 3- < 3- < 3- ;

    в) с уменьшением координационного числа при переходе от окта­эд­ри­чес­ких к од­нотипным тетраэдрическим комплексам пара­метр D умень­шается: 4- > 2- (тетраэдр).

    Заполнение электронами расщепленных d-орбиталей металла в ком­плексах про­ис­ходит в соответствии с принципом минимума энер­гии, принци­пом Паули и правилом Хунда. Для октаэдрических комп­лек­сов с d 1 , d 2 , d 3 , d 8 , d 9 и d 10 электронной конфигурацией цент­рального иона металла независимо от пара­мет­­ра D минимальной энер­­гии комплекса соответствует только один порядок рас­пределения электронов по t 2g и e g орбиталям с неизменным по сравнению со сво­бод­ным ионом металла значением спиновой мультиплетности (2S+1):

    М z+ (2S+1) x (2S+1)
    d 1 (t 2g) 1
    d 2 (t 2g) 2
    d 3 (t 2g) 3
    d 8 (t 2g) 6 (e g) 2
    d 9 (t 2g) 6 (e g) 3
    d 10 (t 2g) 6 (e g) 4

    В тоже время, для ионов металлов с d 4 , d 5 , d 6 , d 7 электронной кон­фи­гурацией в за­висимости от соотношения параметра D и энергии меж­элек­тронного оттал­ки­ва­ния (E м.о.) минимальной энергии ком­п­лекса могут соответствовать два типа рас­пределения электронов по t 2g и e g ор­биталям металла: 1) если D < E м.о. , то за­пол­нение элект­ро­на­ми t 2g и e g орбиталей происходит в соответствии с правилом Хунда и спи­но­вая мультиплетность таких высокоспиновых комплексов совпа­да­ет с мультиплетностью свобод­но­го иона металла; 2) если же D > E м.о. , то пер­­во­на­чально происходит полное заполнение электронами t 2g ор­би­та­лей и только по­­том e g орбиталей; спиновая мультиплетность таких низко­спи­новых комплек­сов уменьшается по сравнению со свободным и­о­ном металла:

    M z+ (2S+1) x
    Высокоспиновый (2S+1) Низкоспиновый (2S+1)
    d 4 (t 2g) 3 (e g) 1 (t 2g) 4 (e g) 0
    d 5 (t 2g) 3 (e g) 2 (t 2g) 5 (e g) 0
    d 6 (t 2g) 4 (e g) 2 (t 2g) 6 (e g) 0
    d 7 (t 2g) 5 (e g) 2 (t 2g) 6 (e g) 1

    Пример 2. Опишите электронное строение, определите спиновую мультип­лет­ность и охарактеризуйте магнитные свойства следую­щих октаэдри­чес­ких комп­лексов: а) 3- и 3- ; б) 3- и 3- ; в) 3- и 3- .

    Решение. а) электронное строение иона Cr 3+ (3d 3) определяет незави­си­мо от при­роды лигандов единственный порядок заполнения элект­ро­нами его расщеп­лен­ных в октаэдрическом поле лигандов орби­та­лей, отвечающих минимальной энергии комплексов: (t 2g) 3 (e g) 0 . Спи­но­вая мультиплетность комплексов 3- и 3- совпа­да­ет с мультиплетностью свободного иона Cr 3+ и составляет (2S+1) = 4. На­ли­чие трех неспаренных электронов определяет парамагнитные свойс­т­ва обоих комплексов;

    б) электронное строение иона Co 3+ (3d 6) определяет в зависимости от силы поля ли­гандов возможность образования как высокоспиновых, так и низ­ко­спиновых октаэдрических комплексов. Поскольку из по­ло­жения в спектрохимическом ря­ду лигандов следует, что F - яв­ля­ет­ся ли­гандом слабого поля, а CN - - лигандом сильного поля, то элек­т­рон­ное строение 3- соот­вет­ствует высокоспи­ново­му комплексу с (t 2g) 3 (e g) 1 электронной конфигурацией Co(III) и спиновой муль­тип­лет­ностью (2S+1) = 5, характеризующей парамагнитные свойства комп­лек­са, тогда как 3- является низкоспиновым ком­плексом с (t 2g) 6 (e g) 0 элект­рон­ной конфигурацией Co(III) и спино­вой мультиплет­ностью (2S+1)= 1 – комп­лекс характеризуется диамагнитными свойс­т­вами;

    в) поскольку, увеличение параметра D в ряду 3d < 4d < 5d переходных металлов оп­ределяет для комплексов тяжелых 4d и 5d переходных ме­таллов практически независимо от силы поля лигандов обра­зо­ва­ние низкоспиновых комплексов, то комплексы 3- и 3- ха­рак­теризуются подобной электронной конфи­гу­рацией иридия(III) (t 2g) 6 (e g) 0 и спиновой мультиплетностью (2S+1) = 1, опре­де­ляющей ди­амагнитные свойства комплексов.

    Для тетраэдрических и плоскоквадратных комплексов с коор­дина­ци­онным чис­лом 4 принципиально также возможно образование двух типов комплексов – вы­сокоспиновых и низкоспиновых. Однако, пос­коль­ку величина D для тетра­эд­­рических, октаэдрических и плос­ко­квад­ратных ком­п­лек­­сов увеличивается при­мерно на 45% и 30%, то, для ионов 3d-пе­ре­­ходных металлов образование тет­раэдрических ком­­п­лексов характерно с лигандами слабого поля и такие ком­п­лексы являются высоспиновыми, тогда как для лигандов сильного поля об­ра­зу­ются плоскоквадратные низкоспиновые комплексы; увеличение параметра D при переходе от ионов 3d к 4d и 5d переходным ме­тал­лам приводит к об­ра­зо­ва­нию ими только низкоспиновых плоско­квад­рат­ных комплексов.

    Пример 3. Опишите электронное строение, определите спиновую муль­тип­лет­ность и охарактеризуйте магнитные свойства комплексов 2- и 2- .

    Решение. Положение в спектрохимическом ряду определяет Cl - и CN - в ка­чест­ве лигандов слабого и сильного поля. Поэтому ио­н Ni 2+ (3d 8) с хлоридным ли­гандом образует высокоспи­но­вый тетраэд­ри­­чес­кий комплекс 2- с элект­ронной конфигу­ра­ци­ей e 4 t 4 и спи­новой мульти­плет­ностью (2S+1) = 2, оп­ре­деляющей его пара­маг­нит­ные свойства, тогда как с цианидным лигандом об­ра­зуется низ­ко­спи­новый плоскоквадратный комплекс 2- с электронной кон­фи­гурацией (d xz,yz) 4 (d z2) 2 (d xy) 2 , спино­вой мультиплетностью (2S+1) = 1 и ди­а­магнитными свойствами.

    Наряду с магнитными свойствами, ТКП позволяет объяснить и пред­­­сказы­вать оптические свойства комплексов, которые опреде­ля­ют­ся фотоинду­циро­ван­ным переходом электрона с более низко­энер­ге­тических d-орбиталей на сво­бод­ные более высокоэнергетические ор­би­тали. Так, оптические свойства и ок­рас­ка октаэдрических комп­лексов z с (t 2g) 1 (e g) 0 электронной конфигу­ра­цией иона металла оп­ре­де­ляются переходом электрона между t 2g и e g орбита­ля­ми при поглощении квантов света, энергия которых соответствует энерге­ти­чес­ко­му раз­ли­чию между t 2g и e g орбиталями: Е = hc/l = D. Поскольку величина па­ра­метра D зависит от природы лигандов и центрального иона металла, то комп­лексы с различными лигандами и ионами ме­таллов поглощают кванты света раз­личной энергии, что и определяет различие в их оптических спектрах пог­ло­щения. Если длина волны поглощаемых комплексами квантов света соответ­ст­вует видимой о­б­ласти света l = 400 – 750 нм, то комплексы имеют харак­тер­ную ок­рас­ку, соответствующую не поглощенным квантам видимого света. Нап­ри­мер, полоса поглощения с максимумом при 493 нм в спектре 3+ со­от­ветствует желто-зеленой области видимого света. Пос­кольку более корот­ко­вол­новые “синие” и более длинноволновые “красные” кванты видимого света не поглощаются, то их супер­по­зи­ция определяет фиолетовую окраску комп­лек­са 3+ .

    Пример 4. Определить максимум полосы поглощения комплекса 3- , ес­ли параметр D для данного комплекса составляет 1.58 Эв. Какой области спект­ра видимого света соответствуют поглощаемые комплексом кванты?

    Решение. Условием фотоиндуцированного перехода (t 2g) 1 (e g) 0 ® (t 2g) 0 (e g) 1 в ком­­­­плексах Ti 3+ является равенство энергии кван­тов света параметру D и мак­си­мум полосы поглощения определяется соотно­ше­нием: l max = hc/D:

    D = 1.58 эВ = (1.58×96495)/6.023×10 23) = 2.53×10 -19 Дж,

    l max = (6.626×10 -34 ×3×10 8)/2.53×10 -19 = 7.86×10 -7 м = 786 нм,

    Длина волны соответствует красной границе видимого света.

    Важной характеристикой комплексов, отражающей влияние лиган­дов на из­менение электронного строения центрального иона комплек­со­образователя, яв­ля­ется энергия стабилизации кристал­ли­чес­ким по­лем (ЭСКП) – выигрыш в энер­гии при заполнении элек­т­ронами рас­щеп­ленных d-орбиталей металла в ком­плексе данной сим­мет­рии по сравнению с заполнением электронами пяти­кратно вырож­ден­ных d-ор­биталей металла в эквивалентном сферически сим­мет­­рич­ном элек­т­рическом поле. Например, для октаэдрических комплексов за­се­ле­ние каждым электроном t 2g орбиталей приводит к понижению энер­гии на ве­­личину 0.4D, а заселение e g ор­би­талей - к повышению энергии на 0.6D:

    М z+ x ЭСКП М z+ x ЭСКП
    d 1 (t 2g) 1 (e g) 0 0.4D d 10 (t 2g) 6 (e g) 4
    d 2 (t 2g) 2 (e g) 0 0.8D d 9 (t 2g) 6 (e g) 3 0.6D
    d 3 (t 2g) 3 (e g) 0 1.2D d 8 (t 2g) 6 (e g) 2 1.2D
    d 4 (t 2g) 3 (e g) 1 (t 2g) 4 (e g) 0 0.6D 1.6D d 7 (t 2g) 5 (e g) 2 (t 2g) 6 (e g) 1 0.8D 1.8D
    d 5 2.0D d 6 (t 2g) 4 (e g) 2 (t 2g) 4 (e g) 0 0.4D 2.4D

    Величина ЭСКП является важным параметром ТКП для объяснения и пред­ска­зания различий в энергии между разными комплексами и, как следствие это­го, в их свойствах.

    Пример 5. Как и почему изменяются окислительно-восстанови­тель­ные свойст­ва аквакомплексов: 2+ , 3+ , 4+ ?

    Решение. Поскольку вода является лигандом слабого поля, то аква­ком­п­лексы хрома являются высокоспиновыми и характеризуются сле­ду­ю­щими элект­рон­ны­ми конфигурациями иона металла и зна­че­ни­ями ЭСКП: 2+ (t 2g) 3 (e g) 1 , ЭСКП = 0.6D; 3+ (t 2g) 3 (e g) 0 , ЭСКП = 1.2D; 4+ (t 2g) 2 (e g) 0 , ЭСКП = 0.8D. Чем боль­ше величина ЭСКП, тем более устойчиво окис­лительное состо­я­ние хрома. Таким образом, наиболее устойчивым среди аква­комп­лексов хрома является комплекс хрома(III), для которого не харак­тер­ны ни заметные окислительные ни восстановительные свойства. Нао­б­орот, для менее устойчивых аквакомплексов Cr(II) ха­рак­терны вос­ста­новительные свойс­т­ва, а для аквакомплексов Cr(IV) – окисли­тель­ные свойства, обеспечивающие их пере­ход в более устой­чи­вый комп­лекс хрома(III):

    4+ + e ® 3+ + e 2+ .

    Пример 6. Почему в ряду двухзарядных катионов ранних d-элемен­тов с окта­эд­рическим окружением молекулами воды изменение ра­ди­уса с ростом заряда яд­ра происходит не монотонно: Sc 2+ (~90 пм) > Ti 2+ (86 пм) > V 2+ (79 пм) < Cr 2+ (80 пм) < Mn 2+ (83 пм)?

    Решение. Если бы все катионы М 2+ имели сферическую симметрию распре­де­ле­ния электронной плотности вокруг ядра, то увеличение за­ря­да ядра приво­ди­ло бы к монотонному уменьшению ионного ради­у­са. Однако, для катионов d-эле­­ментов расщепление d-орби­та­лей под действием электрического поля ли­ган­дов и различный характер засе­ле­ния их электронами приводит к несиммет­рич­ному распреде­ле­нию электронной плотности по отно­шению к ядру, что и оп­ре­де­ляет вли­я­ние электронной конфигурации катиона на величину его эффек­тив­но­го радиуса.

    Октаэдрические аквакомплексы комплексы М 2+ катионов ранних 3d-эле­мен­тов являются высокоспиновыми и характеризуются следу­ю­щими электронны­ми конфигурациями и значениями ЭСКП: Sc 2+ (t 2g) 1 (e g) 0 , ЭСКП = 0.4D; Ti 2+ (t 2g) 2 (e g) 0 , ЭСКП = 0.8D; V 2+ (t 2g) 3 (e g) 0 , ЭСКП = 1.2D; Cr 2+ (t 2g) 3 (e g) 1 , ЭСКП = 0.6D; Mn 2+ (t 2g) 3 (e g) 2 , ЭСКП = 0D. Таким образом, в ряду Sc 2+ ®Ti 2+ ®V 2+ в результате заселения электро­на­ми t 2g орбиталей происходит последо­ва­тель­ное увеличение ве­личины ЭСКП, что приводит к усилению дополнительного умень­шения зна­чения их эффек­тивных радиусов по сравнению с ожи­да­е­мым для сферически сим­метричных ионов. Последовательное умень­ше­ние величины ЭСКП для ио­нов Cr 2+ и Mn 2+ определяет умень­ше­ние влияния несим­мет­рич­нос­ти электрон­но­го строения катиона на его радиус, что и приводит к последовательному уве­ли­чению их ра­диусов.

    Наряду с магнитными, оптическими и термодинамическими свойс­т­вами, ТКП позволяет объяснить специфику стереохимического стро­е­ния ком­п­лексов, характеризующихся как “правильными”, так и ис­ка­женными структурами. На­при­мер, для координационного числа 6, возможно образование комплексов как с “правильным” октаэдричес­ким стро­е­ни­ем (все шесть лигандов расположены на одинаковых рас­сто­яниях от иона металла), так и тетрагонально искаженных, характе­ри­зующихся разным расстоянием 2 аксиальных (по оси z) и 4 эква­то­ри­альных (в плоскости xy) лигандов от иона металла. Предельным случаем тет­ра­го­нального искажения октаэдрического ком­п­лекса, в котором аксиальные ли­ган­ды удалены от центрального иона металла на бесконечно большое рас­сто­я­ние, яв­ля­ет­ся образование плоско­квад­ратной структуры.

    Причиной тетрагонального искажения октаэдрических комплексов является неравномерное распределение электронов по t 2g и e g орби­та­лям иона металла. Комплексы с равномерным распределением элек­т­ро­нов по t 2g и e g орбиталям – (t 2g) 3 (e g) 0 , (t 2g) 3 (e g) 2 , (t 2g) 6 (e g) 2 , (t 2g) 6 (e g) 0 , (t 2g) 6 (e g) 4 – характеризуются сферически симметричным характером рас­пределения электронной плотности и образуют правильные окта­эд­рические структуры. Если на орбиталях e g типа, нап­рав­лен­ных не­пос­­ред­ственно в сторону лигандов, находится 1 или 3 электрона - (t 2g) 3 (e g) 1 , (t 2g) 6 (e g) 1 , (t 2g) 6 (e g) 3 - то ак­си­аль­ные и экваториальные лиган­ды ис­пы­ты­вают разное от­тал­кивание и, как следствие этого, будут иметь разную длину связи металл-ли­ганд. Неравномерное распреде­ле­ние электронов по t 2g орби­та­лям - (t 2g) 1 (e g) 0 , (t 2g) 2 (e g) 0 , (t 2g) 4 (e g) 0 , (t 2g) 4 (e g) 2 , (t 2g) 5 (e g) 0 , (t 2g) 5 (e g) 2 - так­же будет приводить к искажению комплекса. Однако, поскольку t 2g ор­битали направлены между лиган­да­ми, то эффект искажения окта­эд­ри­ческой структуры комплекса в этом случае значительно слабее.

    Тетрагональное искажение октаэдрических комплексов являются от­ра­же­ни­ем общего эффекта Яна-Теллера – вырожденное электрон­ное состояние не­ли­ней­ной молекулы неустойчиво; для стабилизации та­кая система должна под­верг­нуться искажению, снимающему вы­рож­дение. В согласии с эффектом Яна-Теллера, терагональное иска­же­ние приводит к расщеплению дважды вырож­ден­ных e g и трижды вы­рожденных t 2g орбиталей (схема 1.)

    Пример 7. Какие из следующих комплексов имеют правильное ок­та­эд­ри­чес­кое строение, слабое и сильное тетрагональное искажение: а) 2+ , 2+ , 2+ , 2+ ; б) 4- , 4- , 4- , 4- ?

    Решение. а) аквакомплексы двухзарядных катионов ранних d-эле­мен­тов яв­ля­ют­ся высокоспиновыми комплексами и характеризуются следующими элект­рон­ными конфигурациями ионов металлов: 2+ (t 2g) 3 (e g) 2 , 2+ (t 2g) 3 (e g) 1 , 2+ (t 2g) 3 (e g) 0 , 2+ (t 2g) 2 (e g) 0 . Сферически симметричное распределение элек­т­ронов в результате равномерного распределения электро­нов по t 2g и e g орбиталям определяет правильное октаэдрическое строение ком­п­­лексов 2+ и 2+ ; неравномерный ха­рак­тер распре­де­­ле­ния электронов по t 2g орбиталям приводит к сла­бо­му искажению 2+ , а не­рав­номерное распределение элект­ро­нов по e g орби­та­лям – к сильному тетра­го­наль­ному искажению 2+ ;

    б) цианидные комплексы двухзарядных катионов ранних d-эле­мен­тов являются низкоспиновыми комплексами и характеризуются следую­щи­ми электронными конфигурациями ионов металлов: 4- (t 2g) 5 (e g) 0 , 4- (t 2g) 4 (e g) 0 , 4- (t 2g) 3 (e g) 0 , 4- (t 2g) 2 (e g) 0 . Равномерное распределение электро­нов по t 2g орбиталям оп­ределяет правильное октаэдрическое строение комплек­сов 4- ; все остальные комплексы характеризуются слабым иска­же­нием в результате неравномерного заселения электронами t 2g орби­та­лей.

    Упражнения:

    75. Расположите и обоснуйте расположение следую­щих комп­лек­сов в порядке увели­че­ния параметра D: а) 3- , 3- , 3+ , 3- , 3- ; б) 4- , 4- , 4- ; в) VCl 4 , [СoCl 4 ] 2- ; г) 2- , 2- , 2- .

    76. Опишите электронное строение, определите спиновую мульти­п­летность и охарактеризуйте магнитные свойства для следую­щих комплексов: 4- , 4- , 3- , 3- , 4- , 4- , 2- , 2+ , 3- , 2- , 2- , 2+ .

    77. Определите в каждой из пар следующих комплексов – какие ком­п­лексы имеют характерную окраску, а какие бесцветны: а) 2- и 2- ; б) 3- и 3+ ; в) - и - .

    78. Определить максимум полосы поглощения комплекса 3- , если пара­метр D для данного комплекса составляет 2.108 Эв. Ка­кой области спект­ра видимого света соответствуют погло­ща­е­мые комплексом кванты?

    79. Как и почему изменяются окислительно-восстанови­тель­ные свойс­т­ва ком­п­лексов кобальта: а) 2+ и 3+ ; б) 4- и 3- ?

    80. Почему, несмотря на устойчивость октаэдрических комплексов Pt(IV) и плоскоквадратных комплексов Pt(II) с галогенидными лигандами, комп­лек­сы Pt(III) как октадрического, так и плоско­квад­ратного строения край­не неустойчивы?

    81. Почему в ряду двухзарядных катионов поздних d-элемен­тов с ок­та­эд­ри­чес­ким окружением молекулами воды изменение ра­ди­уса с ростом за­ря­да ядра происходит не монотонно: Mn 2+ (83 пм) > Fe 2+ (78 пм) > Co 2+ (75 пм) > Ni 2+ (69 пм) < Cu 2+ (73 пм) < Zn 2+ (74 пм)?

    82. Какие из следующих комплексов имеют правильное ок­та­эд­ри­чес­кое стро­ение, слабое и сильное тетрагональное искажение: 2+ , 2+ , 4- , 4- , 3+ , 3- , 4- , 4- , 2- ?

    83. Почему хлоридный комплекс Ni(II) имеет тетраэдрическое стро­­е­ние, а хло­ридные комплексы Pd(II) и Pt(II) – плоскоквад­рат­ное? С какими ли­ган­дами комплексы Ni(II) будут иметь плос­­­ко­квад­ратное строение?