Ультразвуковая скорость. Измерение скорости распространения ультразвука и ультразвуковая аппаратура

1. Излучатели и приемники ультразвука.

2. Поглощение ультразвука в веществе. Акустические течения и кавитация.

3. Отражение ультразвука. Звуковидение.

4. Биофизическое действие УЗ.

5. Использование УЗ в медицине: терапии, хирургии, диагностике.

6. Инфразвук и его источники.

7. Воздействие инфразвука на человека. Использование инфразвука в медицине.

8. Основные понятия и формулы. Таблицы.

9. Задачи.

Ультразвук - упругие колебания и волны с частотами приблизительно от 20x10 3 Гц (20 кГц) и до 10 9 Гц (1 ГГц). Область частот ультразвука от 1 до 1000 ГГц принято называть гиперзвуком. Ультразвуковые частоты делят на три диапазона:

УНЧ - ультразвук низких частот (20-100 кГц);

УСЧ - ультразвук средних частот (0,1-10 МГц);

УЗВЧ - ультразвук высоких частот (10-1000 МГц).

Каждый диапазон имеет свои особенности медицинского применения.

5.1. Излучатели и приемники ультразвука

Электромеханические излучатели и приемники УЗ используют явление пьезоэлектрического эффекта, сущность которого поясняет рис. 5.1.

Ярко выраженными пьезоэлектрическими свойствами обладают такие кристаллические диэлектрики, как кварц, сегнетова соль и др.

Излучатели ультразвука

Электромеханический УЗ-излучатель использует явление обратного пьезоэлектрического эффекта и состоит из следующих элементов (рис. 5.2):

Рис. 5.1. а - прямой пьезоэлектрический эффект: сжатие и растяжение пьезоэлектрической пластины приводит к возникновению разности потенциалов соответствующего знака;

б - обратный пьезоэлектрический эффект: в зависимости от знака разности потенциалов, приложенной к пьезоэлектрической пластинке, она сжимается или растягивается

Рис. 5.2. Ультразвуковой излучатель

1 - пластины из вещества с пьезоэлектрическими свойствами;

2 - электродов, нанесенных на ее поверхности в виде проводящих слоев;

3 - генератора, подающего на электроды переменное напряжение требуемой частоты.

При подаче на электроды (2) переменного напряжения от генератора (3) пластина (1) испытывает периодические растяжения и сжатия. Возникают вынужденные колебания, частота которых равна частоте изменения напряжения. Эти колебания передаются частицам окружающей среды, создавая механическую волну с соответствующей частотой. Амплитуда колебаний частиц среды вблизи излучателя равна амплитуде колебаний пластины.

К особенностям ультразвука относится возможность получения волн большой интенсивности даже при сравнительно небольших амплитудах колебаний, так как при данной амплитуде плотность

Рис. 5.3. Фокусировка ультразвукового пучка в воде плосковогнутой линзой из плексигласа (частота ультразвука 8 МГц)

потока энергии пропорциональна квадрату частоты (см. формулу 2.6). Предельная интенсивность излучения ультразвука определяется свойствами материала излучателей, а также особенностями условий их использования. Диапазон интенсивности при генерации УЗ в области УСЧ чрезвычайно широк: от 10 -14 Вт/см 2 до 0,1 Вт/см 2 .

Для многих целей необходимы значительно большие интенсивности, чем те, которые могут быть получены с поверхности излучателя. В этих случаях можно воспользоваться фокусировкой. На рисунке 5.3 показана фокусировка ультразвука линзой из плексигласа. Для получения очень больших интенсивностей УЗ используют более сложные методы фокусировки. Так, в фокусе параболоида, внутренние стенки которого выполнены из мозаики кварцевых пластинок или из пьезокерамики титанита бария, на частоте 0,5 МГц удается получать в воде интенсивности ультразвука до 10 5 Вт/см 2 .

Приемники ультразвука

Электромеханические УЗ-приемники (рис. 5.4) используют явление прямого пьезоэлектрического эффекта. В этом случае под действием УЗ-волны возникают колебания кристаллической пластины (1),

Рис. 5.4. Ультразвуковой приемник

в результате которых на электродах (2) возникает переменное напряжение, которое фиксируется регистрирующей системой (3).

В большинстве медицинских приборов генератор ультразвуковых волн одновременно используется и как их приемник.

5.2. Поглощение ультразвука в веществе. Акустические течения и кавитация

По физической сущности УЗ не отличается от звука и представляет собой механическую волну. При ее распространении образуются чередующиеся участки сгущения и разряжения частиц среды. Скорость распространения УЗ и звука в средах одинаковы (в воздухе ~ 340 м/с, в воде и мягких тканях ~ 1500 м/с). Однако высокая интенсивность и малая длина УЗ-волн порождают ряд специфических особенностей.

При распространении УЗ в веществе происходит необратимый переход энергии звуковой волны в другие виды энергии, в основном в теплоту. Это явление называется поглощением звука. Уменьшение амплитуды колебания частиц и интенсивности УЗ вследствие поглощения носит экспоненциальный характер:

где А, А 0 - амплитуды колебаний частиц среды у поверхности вещества и на глубине h; I, I 0 - соответствующие интенсивности УЗ-волны; α - коэффициент поглощения, зависящий от частоты УЗ-волны, температуры и свойств среды.

Коэффициент поглощения - обратная величина того расстояния, на котором амплитуда звуковой волны спадает в «е» раз.

Чем больше коэффициент поглощения, тем сильнее среда поглощает ультразвук.

Коэффициент поглощения (α) растет при увеличении частоты УЗ. Поэтому затухание УЗ в среде во много раз выше, чем затухание слышимого звука.

Наряду с коэффициентом поглощения, в качестве характеристики поглощения УЗ используют и глубину полупоглощения (Н), которая связана с ним обратной зависимостью (Н = 0,347/α).

Глубина полупоглощения (Н) - это глубина, на которой интенсивность УЗ-волны уменьшается вдвое.

Значения коэффициента поглощения и глубины полупоглощения в различных тканях представлены в табл. 5.1.

В газах и, в частности, в воздухе ультразвук распространяется с большим затуханием. Жидкости и твердые тела (в особенности монокристаллы) являются, как правило, хорошими проводниками ультразвука, и затухание в них значительно меньше. Так, например, в воде затухание УЗ при прочих равных условиях приблизительно в 1000 раз меньше, чем в воздухе. Поэтому области использования УСЧ и УЗВЧ относятся почти исключительно к жидкостям и твердым телам, а в воздухе и газах применяют только УНЧ.

Выделение теплоты и химические реакции

Поглощение ультразвука веществом сопровождается переходом механической энергии во внутреннюю энергию вещества, что ведет к его нагреванию. Наиболее интенсивное нагревание происходит в областях, примыкающих к границам раздела сред, когда коэффициент отражения близок к единице (100 %). Это связано с тем, что в результате отражения интенсивность волны вблизи границы увеличивается и соответственно возрастает количество поглощенной энергии. В этом можно убедиться экспериментально. Надо приложить к влажной руке излучатель УЗ. Вскоре на противоположной стороне ладони возникает ощущение (похожее на боль от ожога), вызванное УЗ, отраженным от границы «кожа-воздух».

Ткани со сложной структурой (легкие) более чувствительны к нагреванию ультразвуком, чем однородные ткани (печень). Сравнительно много тепла выделяется на границе мягких тканей и кости.

Локальный нагрев тканей на доли градусов способствует жизнедеятельности биологических объектов, повышает интенсивность процессов обмена. Однако длительное воздействие может привести к перегреву.

В некоторых случаях используют сфокусированный ультразвук для локального воздействия на отдельные структуры организма. Такое воздействие позволяет добиться контролируемой гипертермии, т.е. нагрева до 41-44 °С без перегрева соседних тканей.

Повышение температуры и большие перепады давления, которыми сопровождается прохождение ультразвука, могут приводить к образованию ионов и радикалов, способных вступать во взаимодействие с молекулами. При этом могут протекать такие химические реакции, которые в обычных условиях неосуществимы. Химическое действие УЗ проявляется, в частности, в расщеплении молекулы воды на радикалы Н + и ОН - с последующим образованием перекиси водорода Н 2 О 2 .

Акустические течения и кавитация

Ультразвуковые волны большой интенсивности сопровождаются рядом специфических эффектов. Так, распространению ультразвуковых волн в газах и в жидкостях сопутствует движение среды, которое называют акустическим течением (рис. 5.5, а). На частотах диапазона УСЧ в ультразвуковом поле с интенсивностью в несколько Вт/см 2 может возникнуть фонтанирование жидкости (рис. 5.5, б) и распыление ее с образованием весьма мелкодисперсного тумана. Эта особенность распространения УЗ используется в ультразвуковых ингаляторах.

К числу важных явлений, возникающих при распространении интенсивного ультразвука в жидкостях, относится акустическая кавитация - рост в ультразвуковом поле пузырьков из имеющихся

Рис. 5.5. а) акустическое течение, возникающее при распространении ультразвука частоты 5 Мгц в бензоле; б) фонтан жидкости, образующийся при падении ультразвукового пучка изнутри жидкости на её поверхность (частота ультразвука 1,5 МГц, интенсивность 15 Вт/см 2)

субмикроскопических зародышей газа или пара в жидкостях до размеров в доли мм, которые начинают пульсировать с частотой УЗ и захлопываются в положительной фазе давления. При схлопывании пузырьков газа возникают большие локальные давления порядка тысяч атмосфер, образуются сферические ударные волны. Такое интенсивное механическое воздействие на частицы, содержащиеся в жидкости, может приводить к разнообразным эффектам, в том числе и разрушающим, даже без влияния теплового действия ультразвука. Механические эффекты особенно значительны при действии фокусированного ультразвука.

Еще одним следствием схлопывания кавитационных пузырьков является сильный разогрев их содержимого (до температуры порядка 10 000 °С), сопровождающийся ионизацией и диссоциацией молекул.

Явление кавитации сопровождается эрозией рабочих поверхностей излучателей, повреждением клеток и т.п. Однако это явление приводит и к ряду полезных эффектов. Так, например, в области кавитации происходит усиленное перемешивание вещества, что используется для приготовления эмульсий.

5.3. Отражение ультразвука. Звуковидение

Как и всем видам волн, ультразвуку присущи явления отражения и преломления. Однако эти явления заметны лишь в том случае, когда размеры неоднородностей сравнимы с длиной волны. Длина УЗ-волны существенно меньше длины звуковой волны (λ = v/ν). Так, длины звуковой и ультразвуковой волн в мягких тканях на частотах 1 кГц и 1 МГц соответственно равны: λ = 1500/1000 = 1,5 м;

1500/1 000 000 = 1,5х10 -3 м = 1,5 мм. В соответствии со сказанным, тело размером 10 см практически не отражает звук с длиной волны с λ = 1,5 м, но является отражателем для УЗ-волны с λ = 1,5 мм.

Эффективность отражения определяется не только геометрическими соотношениями, но и коэффициентом отражения r, который зависит от отношения волновых сопротивлений сред х (см. формулы 3.8, 3.9):

Для значений х, близких к 0, отражение является практически полным. Это является препятствием для перехода УЗ из воздуха в мягкие ткани (х = 3х10 -4 , r = 99,88%). Если УЗ-излучатель приложить непосредственно к коже человека, то ультразвук не проникнет внутрь, а будет отражаться от тонкого слоя воздуха между излучателем и кожей. В данном случае малые значения х играют отрицательную роль. Чтобы исключить воздушный слой, поверхность кожи покрывают слоем соответствующей смазки (водным желе), которая играет роль переходной среды, уменьшающей отражение. Напротив, для обнаружения неоднородностей в среде малые значения х являются положительным фактором.

Значения коэффициента отражения на границах различных тканей приведены в табл. 5.2.

Интенсивность принимаемого отраженного сигнала зависит не только от величины коэффициента отражения, но и от степени поглощения ультразвука средой, в которой он распространяется. Поглощение УЗволны приводит к тому, что эхосигнал, отраженный от структуры, расположенной в глубине, значительно слабее того, который образовался при отражении от подобной структуры, расположенной недалеко от поверхности.

На отражении УЗ-волн от неоднородностей основано звуковидение, используемое в медицинских ультразвуковых исследованиях (УЗИ). В этом случае ультразвук, отраженный от неоднородностей (отдельные органы, опухоли), преобразуется в электрические колебания, а последние - в световые, что позволяет видеть на экране те или иные предметы в непрозрачной для света среде. На рисунке 5.6 дано изображение

Рис. 5.6. Изображение человеческого плода возраста 17 недель, полученное с помощью ультразвука частотой 5 МГц

человеческого плода возраста 17 недель, полученное с помощью ультразвука.

На частотах УЗВЧ-диапазона создан ультразвуковой микроскоп - прибор, аналогичный обычному микроскопу, преимущество которого перед оптическим состоит в том, что при биологических исследованиях не требуется предварительного окрашивания объекта. На рисунке 5.7 показаны фотографии красных кровяных телец, полученные оптическим и ультразвуковым микроскопами.

Рис. 5.7. Фотографии красных кровяных телец, полученные оптическим (а) и УЗ (б) микроскопами

При увеличении частоты УЗ-волн увеличивается разрешающая способность (можно обнаруживать более мелкие неоднородности), но уменьшается их проникающая способность, т.е. уменьшается глубина, на которой можно исследовать интересующие структуры. Поэтому частоту УЗ выбирают так, чтобы сочетать достаточное разрешение с необходимой глубиной исследования. Так, для УЗ-исследования щитовидной железы, расположенной непосредственно под кожей, используются волны частоты 7,5 МГц, а для исследования органов брюшной полости используют частоту 3,5-5,5 МГц. Кроме того, учитывают и толщину жирового слоя: для худых детей используется частота 5,5 МГц, а для полных детей и взрослых - частота 3,5 МГц.

5.4. Биофизическое действие УЗ

При действии ультразвука на биологические объекты в облучаемых органах и тканях на расстояниях, равных половине длины волны, могут возникать разности давлений от единиц до десятков атмосфер. Столь интенсивные воздействия приводят к разнообразным биологическим эффектам, физическая природа которых определяется совместным действием механических, тепловых и физикохимических явлений, сопутствующих распространению ультразвука в среде.

Общее воздействие ультразвука на ткани и организм в целом

Биологическое действие ультразвука, т.е. изменения, вызываемые в жизнедеятельности и структурах биологических объектов при воздействии на них ультразвука, определяется, главным образом, его интенсивностью и длительностью облучения и может оказывать как положительное, так и отрицательное влияние на жизнедеятельность организмов. Так, возникающие при сравнительно небольших интенсивностях УЗ (до 1,5 Вт/см 2) механические колебания частиц производят своеобразный микромассаж тканей, способствующий лучшему обмену веществ и лучшему снабжению тканей кровью и лимфой. Локальный нагрев тканей на доли и единицы градусов, как правило, способствует жизнедеятельности биологических объектов, повышая интенсивность процессов обмена веществ. Ультразвуковые волны малой и средней интенсивности вызывают в живых тканях положительные биологические эффекты, стимулирующие протекание нормальных физиологических процессов.

Успешное применение УЗ указанных интенсивностей находит применение в неврологии при реабилитации таких заболеваний, как хронический радикулит, полиартрит, неврит, невралгия. Ультразвук используется при лечении болезней позвоночника, суставов (разрушение солевых наслоений в суставах и полостях); при лечении различных осложнений после повреждения суставов, связок, сухожилий и т.д.

УЗ большой интенсивности (3-10 Вт/см 2) оказывает вредное воздействие на отдельные органы и человеческий организм в целом. Высокая интенсивность ультразвука может привести к возникновению

в биологических средах акустической кавитации, сопровождающейся механическим разрушением клеток и тканей. Длительные интенсивные воздействия ультразвуком могут привести к перегреву биологических структур и к их разрушению (денатурация белков и др.). Воздействие интенсивного ультразвука может иметь и отдаленные последствия. Например, при длительных воздействиях УЗ частотой 20-30 кГц, возникающих в некоторых производственных условиях, у человека появляются расстройства нервной системы, повышается утомляемость, существенно поднимается температура, возникают нарушения органа слуха.

Очень интенсивный УЗ для человека смертелен. Так, в Испании 80 добровольцев были подвергнуты действию УЗ турбулентных двигателей. Результаты этого варварского эксперимента оказались плачевными: 28 человек погибли, остальные оказались полностью или частично парализованы.

Тепловой эффект, производимый УЗ большой интенсивности, может быть весьма значительным: при ультразвуковом облучении мощностью 4 Вт/см 2 в течение 20 с температура тканей организма на глубине 2-5 см повышается на 5-6 °С.

В целях предотвращения профессиональных заболеваний у лиц, работающих на ультразвуковых установках, когда возможен контакт с источниками ультразвуковых колебаний, для защиты рук обязательно необходимо применение 2 пар перчаток: наружных резиновых и внутренних - хлопчатобумажных.

Действие ультразвука на клеточном уровне

В основе биологического действия УЗ могут лежать также вторичные физико-химические эффекты. Так, при образовании акустических потоков может происходить перемешивание внутриклеточных структур. Кавитация приводит к разрыву молекулярных связей в биополимерах и других жизненно важных соединениях и к развитию окислительно-восстановительных реакций. Ультразвук повышает проницаемость биологических мембран, вследствие чего происходит ускорение процессов обмена веществ из-за диффузии. Изменение потока различных веществ через цитоплазматическую мембрану приводит к изменению состава внутриклеточной среды и микроокружения клетки. Это влияет на скорость биохимических реакций с участием ферментов, чувствительных к содержанию в среде тех или

иных ионов. В некоторых случаях изменение состава среды внутри клетки может привести к ускорению ферментативных реакций, что наблюдается при воздействии на клетки ультразвуком низких интенсивностей.

Многие внутриклеточные ферменты активируются ионами калия. Поэтому при повышении интенсивности ультразвука более вероятным становится эффект подавления ферментативных реакций в клетке, так как в результате деполяризации клеточных мембран концентрация ионов калия во внутриклеточной среде уменьшается.

Действие ультразвука на клетки может сопровождается следующими явлениями:

Нарушением микроокружения клеточных мембран в виде изменения градиентов концентрации различных веществ около мембран, изменением вязкости среды внутри и вне клетки;

Изменением проницаемости клеточных мембран в виде ускорения обычной и облегченной диффузии, изменением эффективности активного транспорта, нарушением структуры мембран;

Нарушением состава внутриклеточной среды в виде изменения концентрации различных веществ в клетке, изменением вязкости;

Изменением скоростей ферментативных реакций в клетке вследствие изменения оптимальных концентраций веществ, необходимых для функционирования ферментов.

Изменение проницаемости клеточных мембран является универсальной реакцией на УЗ-воздействие, независимо от того, какой из факторов УЗ, действующих на клетку, доминирует в том или ином случае.

При достаточно большой интенсивности УЗ происходит разрушение мембран. Однако разные клетки обладают различной резистентностью: одни клетки разрушаются при интенсивности 0,1 Вт/см 2 , другие - при 25 Вт/см 2 .

В определенном интервале интенсивностей наблюдаемые биологические эффекты ультразвука обратимы. Верхняя граница этого интервала 0,1 Вт/см 2 при частоте 0,8-2 МГц принята в качестве порога. Превышение этой границы приводит к выраженным деструктивным изменениям в клетках.

Разрушение микроорганизмов

Облучение ультразвуком с интенсивностью, превышающей порог кавитации, используют для разрушения имеющихся в жидкости бактерий и вирусов.

5.5. Использование УЗ в медицине: терапии, хирургии, диагностике

Деформации под воздействием УЗ используются при измельчении или диспергировании сред.

Явление кавитации используется для получения эмульсий несмешивающихся жидкостей, для очистки металлов от окалины и жировых пленок.

УЗ-терапия

Терапевтическое действие УЗ обусловлено механическим, тепловым, химическим факторами. Их совместное действие улучшает проницаемость мембран, расширяет кровеносные сосуды, улучшает обмен веществ, что способствует восстановлению равновесного состояния организма. Дозированным пучком УЗ можно провести мягкий массаж сердца, легких и других органов и тканей.

В отоларингологии УЗ воздействует на барабанную перепонку, слизистую оболочку носа. Таким способом осуществляют реабилитацию хронического насморка, болезней гайморовых полостей.

ФОНОФОРЕЗ - введение с помощью УЗ в ткани через поры кожи лекарственных веществ. Этот метод аналогичен электрофорезу, однако, в отличие от электрического поля, УЗ-поле перемещает не только ионы, но и незаряженные частицы. Под действием УЗ увеличивается проницаемость клеточных мембран, что способствует проникновению лекарственных веществ в клетку, тогда как при электрофорезе лекарственные вещества концентрируются в основном между клетками.

АУТОГЕМОТЕРАПИЯ - внутримышечное введение человеку собственной крови, взятой из вены. Эта процедура оказывается более эффективной, если взятую кровь перед вливанием облучить УЗ.

УЗ-облучение повышает чувствительность клетки к воздействию химических веществ. Это позволяет создавать менее вредные

вакцины, так как при их изготовлении можно использовать химические реактивы меньшей концентрации.

Предварительное воздействие УЗ усиливает действие γ- и СВЧоблучения на опухоли.

В фармацевтической промышленности ультразвук применяется для получения эмульсий и аэрозолей некоторых лекарственных веществ.

В физиотерапии УЗ используется для локального воздействия, осуществляемого с помощью соответствующего излучателя, контактно наложенного через мазевую основу на определенную область тела.

УЗ-хирургия

УЗ-хирургия подразделяется на две разновидности, одна из которых связана с воздействием на ткани собственно звуковых колебаний, вторая - с наложением УЗ-колебаний на хирургический инструмент.

Разрушение опухолей. Несколько излучателей, укрепленных на теле пациента, испускают пучки УЗ, фокусирующиеся на опухоли. Интенсивность каждого пучка недостаточна для повреждения здоровой ткани, но в том месте, где пучки сходятся, интенсивность возрастает и опухоль разрушается под действием кавитации и тепла.

В урологии с помощью механического действия УЗ дробят камни в мочевых путях и этим спасают больных от операций.

Сваривание мягких тканей. Если сложить два разрезанных кровеносных сосуда и прижать их друг к другу, то после облучения образуется сварной шов.

Сваривание костей (ультразвуковой остеосинтез). Область перелома заполняют измельченной костной тканью, смешанной с жидким полимером (циакрин), который под действием УЗ быстро полимеризуется. После облучения образуется прочный сварной шов, который постепенно рассасывается и заменяется костной тканью.

Наложение УЗ-колебаний на хирургические инструменты (скальпели, пилки, иглы) существенно снижает усилия резания, уменьшает болевые ощущения, оказывает кровоостанавливающее и стерилизующее действия. Амплитуда колебаний режущего инструмента при частоте 20-50 кГц составляет 10-50 мкм. УЗ-скальпели позволяют проводить операции в дыхательных органах без вскрытия грудной клетки,

операции в пищеводе и на кровеносных сосудах. Вводя длинный и тонкий УЗ-скальпель в вену, можно разрушить холестериновые утолщения в сосуде.

Стерилизация. Губительное действие УЗ на микроорганизмы используется для стерилизации хирургических инструментов.

В ряде случаев ультразвук используют в сочетании с другими физическими воздействиями, например с криогенным, при хирургическом лечении гемангиом и рубцов.

УЗ-диагностика

Ультразвуковая диагностика - совокупность методов исследования здорового и больного организма человека, основанных на использовании ультразвука. Физической основой УЗ-диагностики является зависимость параметров распространения звука в биологических тканях (скорость звука, коэффициент затухания, волновое сопротивление) от вида ткани и ее состояния. УЗ-методы позволяют осуществить визуализацию внутренних структур организма, а также исследовать движение биологических объектов внутри организма. Основная особенность УЗ-диагностики - возможность получить информацию о мягких тканях, незначительно различающихся по плотности или упругости. УЗ-метод исследования обладает высокой чувствительностью, может использоваться для обнаружения образований, не выявляемых с помощью рентгена, не требует применения контрастных веществ, безболезнен и не имеет противопоказаний.

Для диагностических целей используется УЗ частотой от 0,8 до 15 МГц. Низкие частоты применяются при исследовании глубоко расположенных объектов или при исследовании, проводимом через костную ткань, высокие - для визуализации объектов, близко расположенных к поверхности тела, для диагностики в офтальмологии, при исследовании поверхностно расположенных сосудов.

Наибольшее распространение в УЗ-диагностике получили эхолокационные методы, основанные на отражении или рассеянии импульсных УЗ-сигналов. В зависимости от способа получения и характера представления информации приборы для УЗ-диагностики разделяют на 3 группы: одномерные приборы с индикацией типа А; одномерные приборы с индикацией типа M; двумерные приборы с индикацией типа В.

При УЗ-диагностике с помощью прибора типа А излучатель, испускающий короткие (длительностью порядка 10 -6 с) УЗ-импульсы, прикладывается к исследуемому участку тела через контактное вещество. В паузах между импульсами прибор принимает импульсы, отраженные от различных неоднородностей в тканях. После усиления эти импульсы наблюдаются на экране электроннолучевой трубки в виде отклонений луча от горизонтальной линии. Полная картина отраженных импульсов называется одномерной эхограммой типа А. На рисунке 5.8 показана эхограмма, полученная при эхоскопии глаза.

Рис. 5.8. Эхоскопия глаза по А-методу:

1 - эхосигнал от передней поверхности роговицы; 2, 3 - эхосигналы от передней и задней поверхностей хрусталика; 4 - эхосигнал от сетчатки и структур заднего полюса глазного яблока

Эхограммы тканей различного типа отличаются друг от друга количеством импульсов и их амплитудой. Анализ эхограммы типа А во многих случаях позволяет получить дополнительные сведения о состоянии, глубине залегания и протяженности патологического участка.

Одномерные приборы с индикацией типа А применяются в неврологии, нейрохирургии, онкологии, акушерстве, офтальмологии и др. областях медицины.

В приборах с индикацией типа M отраженные импульсы после усиления подаются на модулирующий электрод электронно-лучевой трубки и представляются в виде черточек, яркость которых связана с амплитудой импульса, а ширина - с его длительностью. Развертка этих черточек во времени дает картину отдельных отражающих структур. Этот тип индикации широко используется в кардиографии. УЗ-кардиограмма может быть зафиксирована при помощи электронно-лучевой трубки с памятью или на бумажной ленте самописца. Этим методом осуществляется запись движений элементов сердца, что позволяет определять стеноз митрального клапана, врожденные пороки сердца и др.

При использовании методов регистрации типов А и M преобразователь находится в фиксированном положении на теле пациента.

В случае индикации типа В преобразователь перемещается (осуществляет сканирование) вдоль поверхности тела, и на экране электронно-лучевой трубки фиксируется двумерная эхограмма, воспроизводящая поперечное сечение исследуемой области тела.

Разновидностью метода В является мультисканирование, при котором механическое перемещение датчика заменяется последовательным электрическим переключением ряда элементов, расположенных на одной линии. Мультисканирование позволяет наблюдать исследуемые сечения практически в реальном масштабе времени. Другой разновидностью метода В является секторное сканирование, при котором отсутствует движение эхозонда, а изменяется угол введения УЗ-луча.

УЗ-приборы с индикацией типа В используются в онкологии, акушерстве и гинекологии, урологии, отоларингологии, офтальмологии и др. Модификации приборов типа В с мультисканированием и секторным сканированием используют в кардиологии.

Все эхолокационные методы УЗ-диагностики позволяют так или иначе регистрировать внутри организма границы областей с различными волновыми сопротивлениями.

Новый метод УЗ-диагностики - реконструктивная (или вычислительная) томография - дает пространственное распределение параметров распространения звука: коэффициента затухания (аттенюационная модификация метода) или скорости звука (рефракционная модификация). В этом методе исследуемое сечение объекта прозвучивается многократно в различных направлениях. Информация о координатах прозвучивания и об ответных сигналах обрабатывается на ЭВМ, в результате чего на дисплее отображается реконструированная томограмма.

В последнее время начал внедряться метод эластометрии для исследования тканей печени как в норме, так и при различных стадиях микроза. Суть метода такова. Датчик устанавливается перпендикулярно поверхности тела. При помощи вибратора, встроенного в датчик, создается низкочастотная звуковая механическая волна (ν = 50 Гц, А = 1 мм), скорость распространения которой по подлежащим тканям печени оценивается при помощи ультразвука с частотой ν = 3,5 МГц (по сути, осуществляется эхолокация). С использованием

модуль Е (эластичность) ткани. Для пациента проводится серия измерений (не менее 10) в межреберных промежутках в проекции положения печени. Анализ всех данных происходит автоматически, аппарат выдает количественную оценку эластичности (плотности), которая представляется как в числовом, так и в цветовом виде.

Для получения информации о движущихся структурах организма используются методы и приборы, работа которых основана на эффекте Доплера. Такие приборы содержат, как правило, два пьезоэлемента: излучатель УЗ, работающий в непрерывном режиме, и приемник отраженных сигналов. Измеряя доплеровский сдвиг частоты УЗ-волны, отраженной от подвижного объекта (например, от стенки сосуда), определяют скорость движения отражающего объекта (см. формулу 2.9). В наиболее совершенных приборах этого типа применяется импульсно-доплеровский (когерентный) способ локации, позволяющий выделить сигнал из определенной точки пространства.

Приборы с использованием эффекта Доплера применяются для диагностики заболеваний сердечно-сосудистой системы (определение

движения участков сердца и стенок сосудов), в акушерстве (исследование сердцебиения плода), для исследования кровотока и др.

Осуществляется исследование органов через пищевод, с которым они граничат.

Сопоставление ультразвукового и рентгеновского «просвечиваний»

В некоторых случаях ультразвуковое просвечивание имеет преимущество перед рентгеновским. Это связано с тем, что рентгеновские лучи дают четкое изображение «твердых» тканей на фоне «мягких». Так, например, на фоне мягких тканей хорошо видны кости. Для получения рентгеновского изображения мягких тканей на фоне других мягких тканей (например, кровеносный сосуд на фоне мышц) сосуд нужно заполнить веществом, хорошо поглощающим рентгеновское излучение (контрастное вещество). Ультразвуковое просвечивание, благодаря уже указанным особенностям, дает в этом случае изображение без применения контрастных веществ.

При рентгеновском обследовании дифференцируется разность плотностей до 10 %, при ультразвуковом - до 1 %.

5.6. Инфразвук и его источники

Инфразвук - упругие колебания и волны с частотами, лежащими ниже области слышимых человеком частот. Обычно за верхнюю границу инфразвукового диапазона принимают 16-20 Гц. Такое определение условно, поскольку при достаточной интенсивности слуховое восприятие возникает и на частотах в единицы Гц, хотя при этом исчезает тональный характер ощущения и делаются различимыми лишь отдельные циклы колебаний. Нижняя частотная граница инфразвука неопределенна; в настоящее время область его изучения простирается вниз примерно до 0,001 Гц.

Инфразвуковые волны распространяются в воздушной и водной средах, а также в земной коре (сейсмические волны). Основная особенность инфразвука, обусловленная его низкой частотой, - малое поглощение. При распространении в глубоком море и в атмосфере на уровне земли инфразвуковые волны частоты 10-20 Гц затухают на расстоянии 1000 км не более чем на несколько децибел. Известно, что звуки

извержений вулканов и атомных взрывов могут многократно обходить вокруг земного шара. Из-за большой длины волны мало и рассеяние инфразвука. В естественных средах заметное рассеяние создают лишь очень крупные объекты - холмы, горы, высокие здания.

Естественными источниками инфразвука являются метеорологические, сейсмические и вулканические явления. Инфразвук генерируется атмосферными и океаническими турбулентными флуктуациями давления, ветром, морскими волнами (в том числе и приливными), водопадами, землетрясениями, обвалами.

Источниками инфразвука, связанными с человеческой деятельностью, являются взрывы, орудийные выстрелы, ударные волны от сверхзвуковых самолетов, удары копров, работа реактивных двигателей и др. Инфразвук содержится в шуме двигателей и технологического оборудования. Вибрации зданий, создаваемые производственными и бытовыми возбудителями, как правило, содержат инфразвуковые компоненты. Существенный вклад в инфразвуковое загрязнение среды дают транспортные шумы. Например, легковые автомобили на скорости 100 км/ч создают инфразвук с уровнем интенсивности до 100 дБ. В моторном отделении крупных судов зарегистрированы инфразвуковые колебания, создаваемые работающими двигателями, с частотой 7-13 Гц и уровнем интенсивности 115 дБ. На верхних этажах высотных зданий, особенно при сильном ветре, уровень интенсивности инфразвука достигает

Инфразвук почти невозможно изолировать - на низких частотах все звукопоглощающие материалы практически полностью теряют свою эффективность.

5.7. Воздействие инфразвука на человека. Использование инфразвука в медицине

На человека инфразвук оказывает, как правило, отрицательное действие: вызывает угнетенное настроение, усталость, головную боль, раздражение. У человека, подвергнутого воздействию инфразвука низкой интенсивности, появляются симптомы «морской болезни», тошнота, головокружение. Появляется головная боль, повышается утомляемость, слабеет слух. При частоте 2-5 Гц

и уровне интенсивности 100-125 дБ субъективная реакция сводится к ощущению давления в ухе, затруднению при глотании, вынужденной модуляции голоса и затруднению речи. Воздействие инфразвука негативно сказывается на зрении: ухудшаются зрительные функции, снижается острота зрения, сужается поле зрения, ослабляется аккомодационная способность, нарушается устойчивость фиксации глазом наблюдаемого объекта.

Шум на частоте 2-15 Гц при уровне интенсивности 100 дБ приводит к возрастанию ошибки слежения за стрелочными индикаторами. Проявляется судорожное подергивание глазного яблока, нарушение функции органов равновесия.

Летчики и космонавты, подвергнутые на тренировках воздействию инфразвука, медленнее решали даже простые арифметические задачи.

Существует предположение, что различные аномалии в состоянии людей при плохой погоде, объясняемые климатическими условиями, являются на самом деле следствием воздействия инфразвуковых волн.

При средней интенсивности (140-155 дБ) могут наступать обмороки, временная потеря зрения. При больших интенсивностях (порядка 180 дБ) может наступить паралич со смертельным исходом.

Предполагают, что негативное влияние инфразвука связано с тем, что в инфразвуковой области лежат частоты собственных колебаний некоторых органов и частей тела человека. Это вызывает нежелательные резонансные явления. Укажем некоторые частоты собственных колебаний для человека:

Тело человека в положении лежа - (3-4) Гц;

Грудная клетка - (5-8) Гц;

Брюшная полость - (3-4) Гц;

Глаза - (12-27) Гц.

Особенно вредно воздействие инфразвука на сердце. При достаточной мощности возникают вынужденные колебания сердечной мышцы. При резонансе (6-7 Гц) их амплитуда возрастает, что может привести к кровоизлиянию.

Использование инфразвука в медицине

В последние годы инфразвук стали широко применять в медицинской практике. Так, в офтальмологии инфразвуковые волны

с частотами до 12 Гц используются при лечении близорукости. При лечении заболеваний век используется инфразвук для фонофореза (рис. 5.9), а также для очищения раневых поверхностей, для улучшения гемодинамики и регенерации в веках, массажа (рис. 5.10) и т.д.

На рисунке 5.9 показано применение инфразвука для лечения аномалии развития слезоотводящих путей у новорожденных.

На одном из этапов лечения осуществляется массаж слезного мешка. При этом генератор инфразвука создает избыточное давление в слезном мешке, которое способствует разрыву эмбриональной ткани в слезоносовом канале.

Рис. 5.9. Схема инфразвукового фонофореза

Рис. 5.10. Массаж слезного мешка

5.8. Основные понятия и формулы. Таблицы

Таблица 5.1. Коэффициент поглощения и глубина полупоглощения на частоте 1 МГц

Таблица 5.2. Коэффициент отражения на границах различных тканей

5.9. Задачи

1. Отражение волн от мелких неоднородностей становится заметным, когда их размеры превосходят длину волны. Оценить минимальный размер d почечного камня, который может быть обнаружен методом УЗ-диагностики при частоте ν = 5 МГц. Скорость УЗ-волн v = 1500 м/с.

Решение

Найдем длину волны: λ = v/ν = 1500/(5*10 6) = 0,0003 м = 0,3 мм. d > λ.

Ответ: d > 0,3 мм.

2. В некоторых физиотерапевтических процедурах используется ультразвук частоты ν = 800 кГц и интенсивности I = 1 Вт/см 2 . Найти амплитуду колебания молекул мягких тканей.

Решение

Интенсивность механических волн определяется формулой (2.6)

Плотность мягких тканей ρ « 1000 кг/м 3 .

круговая частота ω = 2πν ≈ 2х3,14х800х10 3 ≈ 5х10 6 с -1 ;

скорость ультразвука в мягких тканях ν ≈ 1500 м/с.

Необходим перевод интенсивности в СИ: I = 1 Вт/см 2 = 10 4 Вт/м 2 .

Подставив численные значения в последнюю формулу, найдем:

Столь малое смещение молекул при прохождении ультразвука указывает на то, что его действие проявляется на клеточном уровне. Ответ: А = 0,023 мкм.

3. Стальные детали проверяют на качество ультразвуковым дефектоскопом. На какой глубине h в детали обнаружена трещина и какова толщина d детали, если после излучения ультразвукового сигнала были получены два отраженных сигнала через 0,1 мс и 0,2 мс? Скорость распространения ультразвуковой волны в стали равна v = 5200 м/с.

Решение

2h = tv →h = tv/2. Ответ: h = 26 см; d = 52 см.

1. Скорость распространения ультразвука зависит от температуры и давления в трубопроводе. Скорость ультразвука при различных значениях температуры воды и атмосферном давлении приведена в табл.Д.1.

Таблица Д.1

Александров А.А., Трахтенгерц М.С. Теплофизические свойства воды при атмосферном давлении. М. Издательство стандартов, 1977, 100с. (Государственная служба стандартных справочных данных. Сер. Монографии).

2. При использовании расходомера для измерения расхода и объема воды в системах водо и теплоснабжения скорость ультразвука определяется по данным табл. Д.2 методом линейной интерполяции по температуре и давлению в соответствии с формулой:

где c(t,P) – скорость ультразвука в жидкости, протекающей по трубопроводу, м/с;

c(t1) – табличное значение скорости ультразвука при температуре меньшей, чем измеренное, м/с;

c(t2) – табличное значение скорости ультразвука при температуре большей, чем измеренное, м/с;

c(P1) – табличное значение скорости ультразвука при давлении меньшем, чем измеренное, м/с;

c(P2) – табличное значение скорости ультразвука при давлении большем, чем измеренное, м/с;

t – температура воды в трубопроводе, ºС;

P – давление воды в трубопроводе, МПа;

t1, t2 – табличные значения температур, ºС;

P1, P2 – табличные значения давлений, МПа;

ПРИМЕЧАНИЕ.

1. Значения c(t1) и c(t2) определяются по данным табл. Д.1. Значения c(P1) и c(P2) определяется по данным табл. Д.2. при температуре, наиболее близкой к температуре воды в трубопроводе.

2. Измерения температуры и давления воды в трубопроводе должны выполняться с погрешностью не более ±0,5 ºС и ±0,5 МПа соответственно.

Таблица Д.2

Продолжение таблицы Д.2

Александров А.А., Ларкин Д.К. Экспериментальное определение скорости ультразвука в широком диапазоне температур и давлений. Журнал "Теплоэнергетика", №2, 1976, стр.75.

3. При отсутствии таблиц зависимости скорости ультразвука от температуры жидкости скорость ультразвука может определяться с помощью приспособления, изображенного на рис.Д.1. Непосредственно перед измерением скорости ультразвука корпус приспособления (скоба стальная) погружается в исследуемую жидкость, а толщиномер настраивается для измерения скорости ультразвука. Затем ультразвуковым толщиномером производиться непосредственное измерение скорости ультразвука.

Для измерения скорости ультразвука в жидкости возможно также применение прибора УС-12 ИМ (ЩО 2.048.045 ТО) или толщиномеров других типов.

Рис.Д.1. Приспособление для измерения скорости ультразвука в жидкости.

Раздел физики ультразвука довольно полно освещен в ряде современных монографий по эхографии. Мы остановимся лишь на некоторых свойствах ультразвука, без знания которых невозможно понять процесс получения ультразвуковой визуализации.

Скорость ультразвука и удельное волновое сопротивление тканей человека (по В.Н. Демидову)

Ультразвуковая волна, достигнув границы двух сред, может отразиться или пойти дальше. Коэффициент отражения ультразвука зависит от разности ультразвукового сопротивления на границе раздела сред: чем больше эта разность, тем сильнее степень отражения. Степень отражения зависит от угла падения луча на поверхность раздела сред: чем больше угол приближается к прямому, тем сильнее степень отражения.

Таким образом, зная это, можно найти оптимальную ультразвуковую частоту, которая дает максимальную разрешающую способность при достаточной проникающей способности.

Основные принципы, на которых основано действие ультразвуковой диагностической аппаратуры , — это распространение и отражение ультразвука .

Принцип работы диагностических ультразвуковых приборов заключается в отражении ультразвуковых колебаний от границ раздела тканей, обладающих определенной величиной акустического сопротивления. Считается, что отражение ультразвуковых волн на границе раздела происходит при разности акустических плотностей сред не менее 1%. Величина отражения звуковых волн зависит от разности акустической плотности на границе раздела сред, а степень отражения – от угла падения ультразвукового луча.

Получение ультразвуковых колебаний

В основе получения ультразвуковых колебаний лежит прямой и обратный пьезоэлектрический эффект, сущность которого заключается в том, что при создании электрических зарядов на поверхности граней кристалла последний начинает сжиматься и растягиваться. Преимуществом пьезоэлектрических преобразователей является способность источника ультразвука служить одновременно и его приемником.

Схема строения ультразвукового датчика

Датчик содержит пьезокристалл, на гранях которого закреплены электроды. Сзади кристалла находится прослойка вещества, поглощающая ультразвук, который распространяется в направлении, противоположном требуемому. Это повышает качество получаемого ультразвукового луча. Обычно ультразвуковой луч, генерируемый датчиком, имеет максимальную мощность по центру, а по краям она снижается, в результате чего разрешающая способность ультразвука различна по центру и по периферии. По центру луча всегда можно получить устойчивые отражения как от более, так и от менее плотных объектов, тогда как по периферии луча менее плотные объекты могут давать отражение, а более плотные отражаться как менее плотные.

Современные пьезоэлектрические материалы позволяют датчикам посылать и принимать ультразвук в широком диапазоне частот. Возможно проведение контроля над формой спектра акустического сигнала, создавая и сохраняя гауссову форму сигнала, которая в большей мере устойчива к искажениям полосы частот и смещению центральной частоты.

В последних конструкциях ультразвуковых приборов высокая разрешающая способность и четкость изображения обеспечиваются использованием системы динамического фокуса и широкополосного эхофильтра фокусировки входящих и выходящих ультразвуковых лучей посредством микрокомпьютера. Таким образом обеспечиваются идеальное профилирование и улучшение ультразвукового луча и характеристик боковой разрешающей способности изображения глубоких структур, получаемых при секторном сканировании. Параметры фокусировки устанавливаются в соответствии с частотой и типом датчика. Широкополосный эхофильтр обеспечивает оптимальную разрешающую способность за счет идеального сочетания частот с учетом поглощения эхосигналов, проходящих через мягкие ткани. Использование многоэлементных датчиков высокой плотности способствует устранению ложных эхосигналов, появляющихся вследствие боковой и задней дифракции.

Сегодня в мире происходит жесточайшая конкуренция фирм по созданию качественных визуальных систем, отвечающих самым высоким требованиям.

В частности, корпорация «Acuson» установила особый стандарт качества изображения и клинической разновидности, разработала Платформу 128 ХР TM — базовый модуль для постоянных усовершенствований, которая позволяет врачам расширять сферу клинических исследований в зависимости от потребностей.

В Платформе используются 128 электронно-независимых каналов, которые можно задействовать одновременно как на передаче, так и на приеме, обеспечивая исключительное пространственное разрешение, контрастирование тканей и однородность изображения во всем поле обзора.

Ультразвуковые диагностические приборы делятся на три класса: одномерные, двухмерные и трехмерные.

В одномерных сканерах информация об объекте представляется в одном измерении по глубине объекта, а изображение регистрируется в виде вертикальных пиков. По амплитуде и форме пиков судят о структурных свойствах ткани и глубине участков отражения эхосигналов. Этот тип приборов используется в эхо-энцефалографии для определения смещения срединных структур мозга и объемных (жидкостных и плотных) образований, в офтальмологии — для определения размера глаза, наличия опухолей и инородных тел, в эхопульсографии – для исследования пульсации сонных и позвоночных артерий на шее и их интракраниальных ветвей и т.д. Для этих целей используется частота 0.88-1.76 МГц.

Двухмерные сканеры

Двухмерные сканеры делятся на приборы ручного сканирования и работающие в реальном режиме времени.

В настоящее время для исследования поверхностных структур и внутренних органов используются лишь приборы, работающие в реальном масштабе времени, в которых информация непрерывно отражается на экране, что дает возможность вести динамическое наблюдение за состоянием органа, особенно при исследовании движущихся структур. Рабочая частота данных приборов от 0.5 до 10.0 МГц.

На практике чаще применяются датчики с частотой от 2.5 до 8 МГц.

Трехмерные сканеры

Для их применения требуются определенные условия:

— наличие образования, имеющего округлую или хорошо контурированную форму;

— наличие структурных образований, находящихся в жидкостных пространствах (плод в матке, глазное яблоко, камни в желчном пузыре, инородное тело, полип в заполненном жидкостью желудке или кишечнике, червеобразный отросток на фоне воспалительной жидкости, а также все органы брюшной полости на фоне асцитической жидкости);

— малоподвижные структурные образования (глазное яблоко, простата и др.).

Таким образом, с учетом этих требований трехмерные сканеры с успехом могут быть применены для исследования в акушерстве, при объемной патологии брюшной полости для более точной дифференциации от других структур, в урологии для исследования простаты с целью дифференциации структурной пенетрации капсулы, в офтальмологии, кардиологии, неврологии и ангиологии.

Из-за сложности использования, дороговизны аппаратуры, наличия многих условий и ограничений в настоящее время они применяются редко. Однако трехмерное сканирование это эхография будущего .

Доплерэхография

Принцип доплерэхографии заключается в том, что частота ультразвукового сигнала при отражении от движущегося объекта изменяется пропорционально его скорости и зависит от частоты ультразвука и угла между направлением распространения ультразвука и направлением потока. Этот метод с успехом применяется в кардиологии.

Метод представляет интерес и для внутренней медицины в связи с его возможностями давать достоверную информацию о состоянии кровеносных сосудов внутренних органов без введения контрастных веществ в организм.

Чаще используется в комплексном обследовании больных с подозрением на портальную гипертензию на ранних ее стадиях, при определении степени выраженности нарушений портального кровообращения, выяснении уровня и причины блокады в системе воротной вены, а также для изучения изменения портального кровотока у больных с циррозом печени при администрировании медикаментозных препаратов (бетаблокаторов, ингибиторов АПФ и др.).

Все приборы оснащены ультразвуковыми датчиками двух типов: электромеханическими и электронными. Оба типа датчиков, но чаще электронные, имеют модификации для использования в различных областях медицины при обследовании взрослых и детей.


В классическом варианте реального масштаба времени применяются 4 метода электронного сканирования: секторное, линейное, конвексное и трапециедальное, каждый из которых характеризуется специфическими особенностями в отношении поля наблюдения. Исследователь может выбрать метод сканирования в зависимости от стоящей перед ним задачи и места локации.

Секторное сканирование

Преимущества:

— большое поле зрения при исследовании глубоких участков.

Область применения:

— краниологические исследования новорожденных через большой родничок;

— кардиологические исследования;

— общие абдоминальные исследования органов малого таза (особенно в гинекологии и при исследовании простаты), органов ретроперитонеальной системы.

Линейное сканирование

Преимущества:

— большое поле зрения при исследовании неглубоких участков тела;

— высокая разрешающая способность при исследовании глубоких участков тела благодаря использованию многоэлементного датчика;

Область применения:

— поверхностные структуры;

— кардиология;

— исследование органов малого таза и паранефральной области;

— в акушерстве.

Конвексное сканирование

Преимущества:

— небольшая площадь контакта с поверхностью тела пациента;

— большое поле наблюдения при исследовании глубоких участков.

Область применения:

— общие абдоминальные исследования.

Трапециедальное сканирование

Преимущества:

— большое поле наблюдения при исследовании близко к поверхности тела и глубоко расположенных органов;

— легкая идентификация томографических срезов.

Область применения:

— общие абдоминальные исследования;

— акушерские и гинекологические.

Кроме общепринятых классических методов сканирования в конструкциях последних приборов применяются технологии, позволяющие качественно дополнить их.

Векторный формат сканирования

Преимущества:

— при ограниченном доступе и сканировании из межреберья обеспечивает акустические характеристики п р и минимальной апертуре датчика. Векторный формат визуализации дает более широкий обзор в ближнем и дальнем поле.

Область применения такая же, как при секторном сканировании.

Сканирование в режиме выбора зоны увеличения

Это особое сканирование выбранной оператором зоны интереса для повышения акустического информационного содержания изображения в двухмерном и цветном доплеровском режиме. Выбранная зона интереса отображается с полным использованием акустических и растровых линий. Повышение качества изображения выражается в оптимальной плотности линий и пикселей, повышенном разрешении, повышении частоты кадров и увеличении изображения.

При обычном участке остается прежняя акустическая информация, а при обычном формате выбора зоны увеличения RES достигается увеличение изображения с повышенным разрешением и большой диагностической информацией.

Визуализация Мульти-Герц

Широкополосные пьезоэлектрические материалы обеспечивают современным датчикам возможность работать в широком диапазоне частот; представляют возможность выбора конкретной частоты из широкой полосы частот, имеющихся в датчиках, сохраняя при этом однородность изображения. Эта технология позволяет менять частоту датчика одним лишь нажатием кнопки, не тратя время на замену датчика. А это означает, что один датчик эквивалентен двум или трем частным характеристикам, что повышает ценность и клиническую разносторонность датчиков («Acuson», «Simens»).

Нужная ультразвуковая информация в последних инструкциях приборов может быть заморожена в разных режимах: B-mode, 2B-mode, 3D, В+В mode, 4B-mode, M-mode и регистрироваться при помощи принтера на специальной бумаге, на компьютерной кассете или видеоленте с компьютерной обработкой информации.

Ультразвуковая визуализация органов и систем человеческого организма непрерывно совершенствуется, постоянно открываются новые горизонты и возможности, однако правильная интерпретация полученной информации всегда будет зависеть от уровня клинической подготовки врача-исследователя.

В связи с этим я часто вспоминаю разговор с представителем фирмы «Aloca», приежавшим к нам сдать в эксплуатацию первый прибор в реальном масштабе времени «Aloca» SSD 202 D (1982 г.). На мое восхищение тем, что в Японии разработана технология ультразвукового прибора с компьютерной обработкой изображения он ответил так: «Компьютер — это хорошо, но если другой компьютер (показывая на голову) плохо работает, то тот компьютер ничего не стоит».

Скорость распространения ультразвука в бетоне колеблется от 2800 до 4800 м/с в зависимости от его структуры и прочности (табл. 2.2.2).

Таблица 2.2.2

Материал ρ, г/смЗ v п p , м/с
Сталь 7.8
Дуралюминий 2.7
Медь 8.9
Оргстекло 1.18
Стекло 3.2
Воздух 1.29x10 -3
Вода 1.00
Масло трансф. 0.895
Парафин 0.9
Резина 0.9
Гранит 2.7
Мрамор 2.6
Бетон (более 30 суток) 2.3-2.45 2800-4800
Кирпич:
силикатный 1.6-2.5 1480-3000
глиняный 1.2-2.4 1320-2800
Раствор:
цементный 1.8-2.2 1930-3000
известковый 1.5-2.1 1870-2300

Измерение такой скорости на относительно малых участках (в среднем 0.1-1 м) является сравнительно сложной технической задачей, которая может быть решена только при высоком уровне развития радиоэлектроники. Из всех существующих методов измерения скорости распространения ультразвука, с точки зрения возможности их применения для испытания строительных материалов, можно выделить следующие:

Метод акустического интерферометра;

Резонансный метод;

Метод бегущей волны;

Импульсный метод.

Для измерения скорости ультразвука в бетоне наибольшее распространение получил импульсный метод. Он основан на многократной посылке в бетон коротких ультразвуковых импульсов с частотой следования 30-60 Гц и измерении времени распространения этих импульсов на определенном расстоянии, называемой базой прозвучивания, т.е.

Следовательно, чтобы определить скорость ультразвука необходимо измерить расстояние, пройденное импульсом (база прозвучивания), и время, за которое ультразвук распространяется от места излучения до приема. Базу прозвучивания можно измерить любым прибором с точностью до 0.1мм. Время распространения ультразвука в большинстве современных приборов измеряется путем заполнения высокочастотными (до 10 МГц) счетными импульсами электронных ворот, начало которых соответствует моменту излучения импульса, а конец - моменту прихода его в приемник. Упрощенная функциональная схема такого прибора приведена на рис. 2.2.49.

Схема работает следующим образом. Задающий генератор 1 вырабатывает электрические импульсы с частотой от 30 до 50 Гц в зависимости от конструкции прибора и запускает высоковольтный генератор 2, который вырабатывает короткие электрические импульсы с амплитудой 100 В. Эти импульсы поступают в излучатель, в котором, используя пьезоэффект, преобразуются в пачку (от 5 до 15 шт.) механических колебаний с частотой 60-100 кГц и вводятся через акустическую смазку в контролируемое изделие. В это же время открываются электронные ворота, которые заполняются счетными импульсами, и срабатывает блок развертки, начинается движение электронного луча по экрану электронно­лучевой трубки (ЭЛТ).

Рис. 2.2.49. Упрощенная функциональная схема ультразвукового прибора:

1 - задающий генератор; 2 - генератор высоковольтных электрических импульсов; 3 - излучатель ультразвуковых импульсов; 4 - контролируемое изделие; 5 - приемник; 6 - усилитель; 7 - генератор формирования ворот; 8 - генератор счетных импульсов; 9 - блок развертки; 10 - индикатор; 11 - процессор; 12 - блок ввода коффициентов; 13 - цифровой индикатор значений t,V,R

Головная волна пачки ультразвуковых механических колебаний, пройдя через контролируемое изделие длиной L, при этом затратив время t, попадает в приемник 5, в котором преобразуется в пачку электрических импульсов.

Пришедшая пачка импульсов усиливается в усилителе 6 и попадает в блок вертикальной развертки для визуального контроля на экране ЭЛТ, а первым импульсом этой пачки закрываются ворота, прекратив доступ счетных импульсов. Таким образом, электронные ворота были открыты для счетных импульсов с момента излучения ультразвуковых колебаний до момента прихода их в приемник, т.е. время t. Далее счетчик считает количество счетных импульсов, которые заполнили ворота, и результат выдается на индикатор 13.

В некоторых современных приборах, таких как «Пульсар-1.1», имеются процессор и блок ввода коэффициентов, с помощью которых решается аналитическое уравнение зависимости "скорость-прочность", а на табло цифровой индикации выдаются время t, скорость V и прочность бетона R.

Для измерения скорости распространения ультразвука в бетоне и других строительных материалах в 80-е годы серийно выпускались ультразвуковые приборы УКБ-1М, УК-10П, УК-10ПМ, УК-10ПМС, УК-12П, УФ-90ПЦ, Бетон-5, которые себя хорошо зарекомендовали.

На рис. 2.2.50 приведен общий вид прибора УК-10ПМС.

Рис. 2.2.50. Ультразвуковой прибор УК-10ПМС

Факторы, влияющие на скорость распространения ультразвука в бетоне

Все материалы в природе можно разделить на две большие группы», относительно однородные и с большой степенью неоднородности или гетерогенные. К относительно однородным можно отнести такие материалы, как стекло, дистиллированная вода и другие материалы с постоянной для нормальных условий плотностью и отсутствием воздушных включений. Для них скорость распространения ультразвука в нормальных условиях практически постоянна. В неоднородных материалах, к которым относится большая часть строительных материалов, в том числе и бетон, внутреннее строение, взаимодействие микрочастиц и крупных составляющих элементов непостоянно как по объему, так и по времени. В их структуру входят микро - и макропоры, трещины, которые могут быть сухими или наполнеными водой.

Непостоянным является и взаимное расположение крупных и мелких частиц. Все это приводит к тому, что плотность и скорость распространения в них ультразвука непостоянны и колеблются в больших пределах. В табл. 2.2.2 приведены значения плотности ρ и скорости распространения ультразвука V для некоторых материалов.

Далее рассмотрим, каким образом влияют изменения таких параметров бетона, как прочность, состав и вид крупного заполнителя, количество цемента, влажность, температура и наличие арматуры на скорость распространения ультразвука в бетоне. Эти знания необходимы для объективной оценки возможности контроля прочности бетона ультразвуковым методом, а также для исключения ряда погрешностей при контроле, связанных с изменением указанных факторов

Влияние прочности бетона

Экспериментальные исследования показывают, что с повышением прочности бетона скорость ультразвука увеличивается.

Это объясняется тем, что значение скорости, так же как и значение прочности, зависит от условия внутриструктурных связей.

Как видно из графика (рис. 2.2.51), зависимость "скорость-прочность" для бетонов различного состава непостоянная, из чего следует, что на данную зависимость, кроме прочности, влияют и другие факторы.

Рис. 2.2.51. Зависимость между скоростью ультразвука V и прочностью R c для бетонов различных составов

К сожалению, некоторые факторы влияют на скорость ультразвука в большей степени, чем прочность, что является одним из серьезных недостатков ультразвукового метода.

Если принять бетон постоянного состава, а прочность изменять путем принятия различного В/Ц, то влияние других факторов окажется постоянным, и скорость ультразвука будет изменяется только от прочности бетона. В данном случае зависимость "скорость-прочность" станет более определенной (рис. 2.2.52).

Рис. 2.2.52. Зависимость "скорость-прочность" для постоянного состава бетона, полученная на заводе ЖБИ №1 г.Самары

Влияние вида и марки цемента

Сравнивая результаты испытаний бетонов на обыкновенном портландцементе и на других цементах, можно сделать вывод, что минералогический состав мало влияет на зависимость "скорость-прочность". Основное влияние оказывает содержание трехкальциевого силиката и тонкость помола цемента. Более важным фактором, влияющим на зависимость "скорость-прочность", является расход цемента на 1 м 3 бетона, т.е. его дозировка. С увеличением количества цемента в бетоне скорость ультразвука возрастает медленнее, чем механическая прочность бетона.

Это объясняется тем, что ультразвук при прохождении через бетон распространяется как по крупному заполнителю, так и по растворной части, соединяющей гранулы заполнителя, и его скорость в большей степени зависит от скорости распространения в крупном заполнителе. Однако прочность бетона в основном зависит от прочности растворной составляющей. Влияние количества цемента на прочность бетона и скорость ультразвука приведено на рис. 2.2.53.

Рис. 2.2.53. Влияние дозировки цемента на зависимость

"скорость-прочность"

1- 400 кг/м 3 ; 2 - 350 кг/м 3 ; 3 - 300 кг/м 3 ; 4 - 250 кг/м 3 ; 5 - 200 кг/м 3

Влияние водоцементного отношения

С уменьшением В/Ц увеличиваются плотность и прочность бетона соответственно повышается скорость ультразвука. При увеличении В/Ц наблюдается обратная зависимость. Следовательно, изменение В/Ц не вносит существенных отклонений в установленную зависимость "скорость-прочность. Поэтому при построении градуировочных графиков для изменения прочности бетона рекомендуется применять различное В/Ц.

Влияние вида и количества крупного заполнителя

Вид и количество крупного заполнителя оказывают существенное влияние на изменение зависимости "скорость-прочность". Скорость ультразвука в заполнителе, особенно в таких как кварц, базальт, твердый известняк, гранит, значительно больше скорости распространения его в бетоне.

Вид и количество крупного заполнителя влияют и на прочность бетона. Обычно принято считать, что чем прочнее заполнитель, тем выше прочность бетона. Но иногда приходится сталкиваться с таким явлением, когда применение менее прочного щебня, но с шероховатой поверхностью позволяет получить бетон с более высоким значением Re, чем при использовании прочного гравия, но с гладкой поверхностью

При незначительном изменении расхода щебня прочность бетона изменяется незначительно. Вместе с тем такое изменение количества крупного заполнителя оказывает большое влияние на скорость ультразвука.

По мере насыщения бетона щебнем значение скорости ультразвука увеличивается. Вид и количество крупного заполнителя влияют на связь "скорость - прочность" больше, чем остальные факторы (рис. 2.2.54 – 2.2.56)

Рис. 2.2.54. Влияние наличия крупного заполнителя на зависимость "скорость-прочность":

1 - цементный камень; 2 - бетон с заполнителем крупностью до 30 мм

Рис. 2.2.55. Зависимость "скорость-прочность" для бетонов с различной крупностью заполнителей: 1-1 мм; 2-3 мм; 3-7 мм; 4-30 мм

Рис. 2.2.56. Зависимость "скорость- прочность" для бетонов с заполнителем из:

1-песчаника; 2-известняка; 3-гранита; 4-базальта

Из графиков видно, что увеличение количества щебня на единицу объема бетона или повышение скорости ультразвука в нем приводит к увеличению скорости ультразвука в бетоне более интенсивно, чем прочность.

Влияние влажности и температуры

Влажность бетона неоднозначно влияет на его прочность и скорость ультразвука. С повышением влажности бетона, предел прочности при сжатии уменьшается за счет изменения межкристаллических связей, но скорость ультразвука возрастает, поскольку воздушные поры и микротрещины заполняются водой, а скорость в воде больше, чем в воздухе.

Температура бетона в диапазоне 5-40° С практически не влияет на прочность и скорость, но повышение температуры затвердевшего бетона за пределы указанного диапазона приводит к уменьшению его прочности и скорости вследствие увеличения внутренних микротрещин.

При отрицательной температуре скорость ультразвука повышается за счет превращения несвязанной воды в лед. Поэтому определять прочность бетона ультразвуковым методом при отрицательной температуре не рекомендуется.

Распространение ультразвука в бетоне

Бетон по своей структуре является гетерогенным материалом, в состав которого входят растворная часть и крупный заполнитель. Растворная часть, в свою очередь, представляет собой затвердевший цементный камень с включением частиц кварцевого песка.

В зависимости от назначения бетона и его прочностных характеристик соотношение между цементом, песком, щебнем и водой бывает различным. Кроме обеспечения прочности, состав бетона зависит от технологии изготовления железобетонных изделий. Например, при кассетной технологии производства необходима большая пластичность бетонной смеси, что достигается повышенным расходом цемента и воды. В этом случае увеличивается растворная часть бетона.

В случае стендовой технологии, особенно при немедленной распалубке, используются жесткие смеси с пониженным расходом цемента.

Относительный объем крупного заполнителя в этом случае увеличивается. Следовательно, при одних и тех же прочностных характеристиках бетона его состав может изменяться в больших пределах. На структурообразование бетона влияет технология изготовления изделий: качество перемешивания бетонной смеси, ее транспортировка, уплотнение, термовлажностная обработка во время твердения. Из этого следует, что на свойство затвердевшего бетона оказывает влияние большое количество факторов, причем влияние неоднозначное и носит случайный характер. Этим объясняется высокая степень неоднородности бетона как по составу, так и по его свойствам. Неоднородность и различные свойства бетона отражаются и на его акустических характеристиках.

В настоящее время, несмотря на многочисленные попытки, еще не разработана единая схема и теория распространения ультразвука через бетон, что объясняется) в первую очередь, наличием указанных выше многочисленных факторов, которые по-разному влияют на прочностные и акустические свойства бетона. Такое положение усугубляется и тем, что еще не разработана общая теория распространения ультразвуковых колебаний через материал с высокой степенью неоднородности. Только поэтому скорость ультразвука в бетоне определяется как для однородного материала по формуле

где L - путь, пройденный ультразвуком, м (база);

t - время, затраченное на прохождение данного пути, мкс.

Рассмотрим более подробно схему распространения импульсного ультразвука через бетон как через неоднородный материал. Но вначале ограничим область, в которой будут справедливы наши рассуждения, тем, что рассмотрим наиболее распространенный на заводах ЖБИ и стройках состав бетонной смеси, состоящей из цемента, речного песка, крупного заполнителя и воды. При этом будем считать, что прочность крупного заполнителя выше, чем прочность бетона. Это справедливо при использовании в качестве крупного заполнителя известняка, мрамора, гранита, доломита и других пород с прочностью порядка 40 МПа. Условно примем, что затвердевший бетон состоит из двух компонентов: относительно однородной растворной части с плотностью ρ и скоростью V и крупного заполнителя с ρ и V .

С учетом отмеченных допущений и ограничений затвердевший бетон можно рассматривать как твердую среду с акустическим импедансом:

Рассмотрим схему распространения головной ультразвуковой волны от излучателя 1 к приемнику 2 через затвердевший бетон толщиной L (рис. 2.2.57).

Рис. 2.2.57. Схема распространения головной ультразвуковой волны

в бетоне:

1 - излучатель; 2 - приемник; 3 - контактный слой; 4 - распространение волны в гранулах; 5 - распространение волны в растворной части

Головная ультразвуковая волна от излучателя 1 в первую очередь попадает в контактный слой 3, расположенный между излучающей поверхностью и бетоном. Для прохождения через контактный слой ультразвуковой волны он должен быть заполнен проводящей жидкостью или смазкой, в качестве которой чаще всего используется технический вазелин. Пройдя через контактный слой (за время t 0), ультразвуковая волна частично отражается в обратном направлении, а остальная часть войдет в бетон. Чем тоньше контактный слой по сравнению с длиной волны, тем меньшая часть волны отразится.

Войдя в толщу бетона, головная волна начнет распространяться в растворной части бетона на площади, соответствующей диаметру излучателя. Пройдя определенное расстояние Δl 1 , через время Δt 1 головная волна на определенной площади встретит одну или несколько гранул крупного заполнителя, частично от них отразится, а большая часть войдет в гранулы и начнет в них распространяться. Между гранулами волна будет продолжать распространяться по растворной части.

Учитывая принятое условие, что скорость ультразвука в материале крупного заполнителя больше, чем в растворной части, расстояние d, равное усредненному значению диаметра щебня, первой пройдет волна, которая распространялась через гранулы со скоростью V 2 , а волна, прошедшая через растворную часть, будет запаздывать.

Пройдя через первые гранулы крупного заполнителя, волна подойдет к границе раздела с растворной частью, частично отразится, а частично войдет в нее. При этом гранулы, через которые прошла головная волна, в дальнейшем можно рассматривать как элементарные сферические источники излучения ультразвуковой волны в растворную часть бетона, к которой можно применить принцип Гюйгенса.

Пройдя по раствору минимальное расстояние между соседними гранулами, головная волна войдет в них и начнет по ним распространяться, превращая их в очередные элементарные источники. Таким образом, через время t, пройдя всю толщу бетона L и второй контактный слой 3, головная волна попадет в приемник 2, где преобразуется в электрический сигнал.

Из рассмотренной схемы следует, что головная волна от излучателя 1 к приемнику 2 распространяется по пути, проходящему через гранулы крупного заполнителя и растворную часть, соединяющую эти гранулы, причем этот путь определяется из условия минимума затраченного времени t.

Отсюда время t равно

где - время, затраченное на прохождение растворной части, соединяющей гранулы;

Время, затраченное на прохождение через гранулы. Пройденный ультразвуком путь L равен

где: - общий путь, пройденный головной волной через растворную часть;

Общий путь, пройденный головной волной через гранулы.

Полное расстояние L, которое пройдет головная волна, может быть больше геометрического расстояния между излучателем и приемником, поскольку волна распространяется по пути максимальной скорости, а не по минимальному геометрическому расстоянию.

Время, затраченное ультразвуком на прохождение через контактные слои, необходимо вычитать из общего измеренного времени.

Волны, которые следуют за головной, также распространяются по пути максимальной скорости, но при своем движении будут встречать отраженные волны от границ раздела гранул крупного заполнителя и растворной части. Если диаметр гранул окажется равным длине волны или ее половине, то может возникнуть внутри гранулы акустический резонанс. Эффект интерференции и резонанса можно наблюдать при спектральном анализе пачки ультразвуковых волн, прошедших через бетон с различной крупностью заполнителя.

Рассмотренная выше схема распространения головной волны импульсного ультразвука справедлива только для бетонов с указанными в начале раздела свойствами, т.е. механическая прочность и скорость распространения ультразвука в материале, из которого получены гранулы крупного заполнителя, превышают прочность и скорость в растворной части бетона. Такими свойствами обладает большинство бетонов, применяемых на заводах ЖБИ и строительных площадках, в которых используется щебень из известняка, мрамора, гранита. Для керамзитобетона, пенобетона, бетона с туфовым заполнителем схема распространения ультразвука может быть другой.

Справедливость рассмотренной схемы подтверждается экспериментами. Так, из рис. 2.2.54 видно, что при добавлении к цементной части определенного количества щебня скорость ультразвука повышается при незначительном увеличении (а иногда и уменьшении) прочности бетона.

На рис. 2.2.56 заметно, что с повышением скорости ультразвука в материале крупного заполнителя скорость его в бетоне возраcтает.

Увеличение скорости в бетоне с более крупным заполнителем (рис. 2.2.55) также объясняется данной схемой, поскольку с увеличением диаметра удлиняется путь прохождения ультразвука через материал заполнителя.

Предложенная схема распространения ультразвука позволит объективно оценить возможности ультразвукового метода при дефектоскопии и контроле прочности бетона.