Влияние давления на порядок реакции. Влияние концентраций веществ на скорость химической реакции

Давление сильно влияет на скорость реакций с участием газов, потому что оно непосредственно определяет их концентрации.

В уравнении Менделеева-Клапейрона:

перенесем V в правую часть, а RT - в левую и учтем, что n/V = c :

Давление и молярная концентрация газа связаны прямо пропорционально. Поэтому в закон действующих масс мы можем подставлять вместо концентрации p/RT.

Влияние давления на скорость химической реакции

Цепные реакции включают в свой механизм множество последовательно повторяющихся однотипных элементарных актов (цепь).

Рассмотрим реакцию:

Она состоит из следующих стадий, общих для всех цепных реакций:

1) Инициирование , или зарождение цепи

Распад молекулы хлора на атомы (радикалы) происходит при УФ-облучении или при нагревании. Сущность стадии инициирования - образование активных, реакционноспособных частиц.

2) Развитие цепи

Cl· + H2 = HCl + H·

H· + Cl2 = HCl + Cl·

В результате каждого элементарного акта развития цепи образуется новый радикал хлора, и эта стадия повторяется вновь и вновь, теоретически - до полного расходования реагентов.

  • 3) Рекомбинация , или обрыв цепи
  • 2Cl· = Cl2
  • 2H· = H2

H· + Cl· = HCl

Радикалы, оказавшиеся рядом, могут рекомбинировать, образуя устойчивую частицу (молекулу). Избыток энергии они отдают "третьей частице" - например, стенкам сосуда или молекулам примесей.

Рассматриваемая цепная реакция является неразветвленной , поскольку в элементарном акте развития цепи количество радикалов не возрастает. Цепная реакция взаимодействия водорода с кислородом является разветвленной , т.к. число радикалов в элементарном акте развития цепи увеличивается:

H· + O2 = OH· + O·

O· + H2 = OH· + H·

OH· + H2 = H2O + H·

К разветвленным цепным реакциям относятся многие реакции горения. Неконтролируемый рост числа свободных радикалов (как в результате разветвления цепи, так и для неразветвленных реакций в случае слишком быстрого инициирования) может привести к сильному ускорению реакции и взрыву. Казалось бы, чем больше давление, тем выше концентрация радикалов и вероятнее взрыв. Но на самом деле для реакции водорода с кислородом взрыв возможен лишь в определенных областях давления: от 1 до 100 мм рт.ст. и выше 1000 мм рт.ст. Это следует из механизма реакции. При малом давлении большая часть образующихся радикалов рекомбинирует на стенках сосуда, и реакция идет медленно. При повышении давления до 1 мм рт.ст. радикалы реже достигают стенок, т.к. чаще вступают в реакции с молекулами. В этих реакциях радикалы размножаются, и происходит взрыв. Однако при давлении выше 100 мм рт.ст. концентрации веществ настолько возрастают, что начинается рекомбинация радикалов в результате тройных соударений (например, с молекулой воды), и реакция протекает спокойно, без взрыва (стационарное течение). Выше 1000 мм рт.ст. концентрации становятся очень велики, и даже тройных соударений оказывается недостаточно, чтобы предотвратить размножение радикалов.

Вам известна цепная разветвленная реакция деления урана-235, в каждом элементарном акте которой захватывается 1 нейтрон (играющий роль радикала) и испускается до 3 нейтронов. В зависимости от условий (например, от концентрации поглотителей нейтронов) для нее также возможно стационарное течение или взрыв. Это еще один пример корреляции кинетики химических и ядерных процессов.

В жизни мы сталкиваемся с разными химическими реакциями. Одни из них, как ржавление железа, могут идти несколько лет. Другие, например, сбраживание сахара в спирт, - несколько недель. Дрова в печи сгорают за пару часов, а бензин в моторе - за долю секунды.

Чтобы уменьшить затраты на оборудование, на химических заводах повышают скорость реакций. А некоторые процессы, например, порчу пищевых продуктов, коррозию металлов, - нужно замедлить.

Скорость химической реакции можно выразить как изменение количества вещества (n, по модулю) в единицу времени (t) - сравните скорость движущегося тела в физике как изменение координат в единицу времени: υ = Δx/Δt . Чтобы скорость не зависела от объема сосуда, в котором протекает реакция, делим выражение на объем реагирующих веществ (v), т. е. получаем изменение количества вещества в единицу времени в единице объема, или изменение концентрации одного из веществ в единицу времени :


n 2 − n 1 Δn
υ = –––––––––– = –––––––– = Δс/Δt (1)
(t 2 − t 1) v Δt v

где c = n / v - концентрация вещества,

Δ (читается «дельта») - общепринятое обозначение изменения величины.

Если в уравнении у веществ разные коэффициенты, скорость реакции для каждого из них, рассчитанная по этой формуле будет различной. Например, 2 моль серни́стого газа прореагировали полностью с 1 моль кислорода за 10 секунд в 1 литре:

2SO 2 + O 2 = 2SO 3

Скорость по кислороду будет: υ = 1: (10 1) = 0,1 моль/л·с

Скорость по серни́стому газу: υ = 2: (10 1) = 0,2 моль/л·с - это не нужно запоминать и говорить на экзамене, пример приведен для того, чтобы не путаться, если возникнет этот вопрос.

Скорость гетерогенных реакций (с участием твердых веществ) часто выражают на единицу площади соприкасающихся поверхностей:


Δn
υ = –––––– (2)
Δt S

Гетерогенными называются реакции, когда реагирующие вещества находятся в разных фазах:

  • твердое вещество с другим твердым, жидкостью или газом,
  • две несмешивающиеся жидкости,
  • жидкость с газом.

Гомогенные реакции протекают между веществами в одной фазе:

  • между хорошо смешивающимися жидкостями,
  • газами,
  • веществами в растворах.

Условия, влияющие на скорость химических реакций

1) Скорость реакции зависит от природы реагирующих веществ . Проще говоря, разные вещества реагируют с разной скоростью. Например, цинк бурно реагирует с соляной кислотой, а железо довольно медленно.

2) Скорость реакции тем больше, чем выше концентрация веществ. С сильно разбавленной кислотой цинк будет реагировать значительно дольше.

3) Скорость реакции значительно повышается с повышением температуры . Например, для горения топлива необходимо его поджечь, т. е. повысить температуру. Для многих реакций повышение температуры на 10° C сопровождается увеличением скорости в 2–4 раза.

4) Скорость гетерогенных реакций увеличивается с увеличением поверхности реагирующих веществ . Твердые вещества для этого обычно измельчают. Например, чтобы порошки железа и серы при нагревании вступили в реакцию, железо должно быть в виде мелких опилок.

Обратите внимание, что в данном случае подразумевается формула (1) ! Формула (2) выражает скорость на единице площади, следовательно не может зависеть от площади.

5) Скорость реакции зависит от наличия катализаторов или ингибиторов.

Катализаторы - вещества, ускоряющие химические реакции, но сами при этом не расходующиеся. Пример - бурное разложение перекиси водорода при добавлении катализатора - оксида марганца (IV):

2H 2 O 2 = 2H 2 O + O 2

Оксид марганца (IV) остается на дне, его можно использовать повторно.

Ингибиторы - вещества, замедляющие реакцию. Например, для продления срока службы труб и батарей в систему водяного отопления добавляют ингибиторы коррозии. В автомобилях ингибиторы коррозии добавляются в тормозную, охлаждающую жидкость.

Еще несколько примеров.

Влияние концентрации на скорость химической реакции

Зависимость скорости реакции от концентрации реагирующих веществ сформулирована в законе действующих масс : При постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных их стехиометрическим коэффициентам”

Например: для реакции mA + nB → pAB

математическое выражение закона действующих масс:

υ = k [A] m ∙ [B] n (иначе– кинетическое уравнение реакции),

где [A] и [B] концентрации реагирующих веществ А и В; m и n – стехиометрические коэффициенты; k – коэффициент пропорциональности, названный константой скорости.

Физический смысл константы скорости заключается в том, что при концентрациях реагирующих веществ равных 1,0 моль/л([A]=[B] = 1моль/л), скорость химической реакции равна константе скорости (υ=k). Константа скорости зависит только от природы реагирующих веществ и от температуры, но не зависит от концентрации веществ.

Математическая запись закона действующих масс для гомогенных и гетерогенных систем имеет некоторые отличия. Для гетерогенных реакций в кинетическое уравнение входят концентрации только тех веществ, которые находятся в системе в растворе или в газовой фазе. Концентрация же веществ, находящихся в твердом состоянии на поверхности в течение реакции остается постоянной, поэтому ее величина учитывается в константе скорости реакции.

Например: для гомогенной реакции 2H 2(г) + O 2(г) = 2H 2 O (г)

выражение закона: υ = k ∙ 2 ∙ ;

для гетерогенной реакции С (тв) +O 2(г) =СО 2(г)

выражение закона υ = k эф ∙ ,

где: k эф – эффективная константа скорости, равная k ∙ [С тв ]

Задача

Как изменится скорость реакции 2H 2(г) + O 2(г) = 2H 2 O (г) при увеличении концентрации исходных веществ в два раза?

Решение

Зависимость скорости реакции от концентрации (кинетическое уравнение) запишется: υ = k ∙ 2 ∙

Если концентрации исходных веществ увеличить в 2 раза, то кинетическое уравнение имеет вид: υ" = k ∙ 2 ∙ , тогда υ"/υ = 8 – скорость данной реакции возросла в 8 раз.

Зависимость скорости реакции от давления описывается выражением аналогичным закону действующих масс, где вместо концентраций веществ используют парциальные давления реагирующих газов.

Например: для реакции 2H 2(г) + O 2(г) = 2H 2 O (г) зависимость скорости реакции от давления запишется: υ = k ∙ Р H 2 2 ∙ Р O 2

Задача

Как изменится скорость реакции, если общее давление в системе CH 4(г) + 2O 2(г) = CO 2(г) + 2H 2 O (г), если общее давление в системе уменьшить в 5 раз?



Решение

Зависимость скорости реакции от давления запишется:

υ = k ∙ Р CH 4 ∙Р 2 O 2 . При уменьшении общего давления в системе уменьшится парциальное давления каждого газа, то есть υ" = k ∙ Р CH 4 /5 ∙(Р O 2 /5) 2 . Тогда υ"/υ = 1/5∙5 2 =1/125 - скорость реакции уменьшилась в 125 раз

Скорость химических реакций - это число элементарных актов химических превращений, приводящих к образованию продуктов реакции в единицу времени в единице объема или на единице поверхности.

Поскольку число элементарных актов не пересчитать, то скорость измеряют, определяя изменение концентраций реагирующих веществ или продуктов реакции в единицу времени:

,

В любой реакции реагенты расходуются, она замедляется. См. рис.3.9.1.

Рис. 3.9.1. Изменение скорости реакции во времени.
V– скорость реакции, C– концентрация А, В.

Поэтому можно говорить только о скорости в данный момент времени. Скорость зависит от концентрации реагирующих веществ.

От чего еще она зависит? От природы реагирующих веществ, температуры, степени измельчения реагентов для гетерогенных реакций (площади поверхности), катализатора и формы сосуда и т.д.

Рассмотрим зависимость vот концентрации. Предположим, имеем реакцию A+ B+ 2D= F+ L. Надо найти зависимость скорости от концентрации реагентов v= f(C A , C B , C D) = ?

Измерим скорость при каких либо концентрациях, а потом увеличим С А вдвое и еще раз измерим скорость. Пусть она возросла вдвое. Это значит, что vпропорциональна С А в первой степени. Увеличим С В вдвое. Предположим, что это не повлияло на скорость - вполне реальная ситуация. Если растворять NO 2 в воде для получения азотной кислоты, то очевидно, что скорость реакции не будет зависеть от количества воды. В таком случае можно сказать, что vзависит от С В в нулевой степени. Пусть теперь мы обнаружили, что от С D скорость зависит как С D 2 . Тогда общее уравнение скорости реакции запишется как v= kC A C B 0 C D 2 .

Это выражение называется кинетическим уравнением реакции; k– константа скорости реакции (численно равна скорости при концентрациях реагентов, равных единице). Показатели степеней при концентрациях в кинетическом уравнении называются порядками реакции по данному веществу, а их сумма – общим порядком реакции.

Порядки реакций устанавливаются экспериментально, а не по стехиометрическим коэффициентам. Существует совсем немного реакций, где порядок совпадает с суммой стехиометрических коэффициентов.

N 2 O 5 = 2NO 2 + 1/2O 2 v = kC(N 2 O 5) р-ия1 порядка

(H 2)+(J 2)=2(HJ) v=kC(H 2)C(J 2) р-ия2 порядка

но (Н 2) + (Br 2) = 2(HBr) v=kC(H 2)C(Br 2) 1/2

(Cl 2) + 2(NO) = 2(NOCl) v=kC(Cl 2)C(NO) 2 р-ия3 порядка.

Иными словами, порядок может быть и дробным. Почему, рассмотрим ниже.

Реакции обычно идут по стадиям, поскольку невозможно представить себе одновременное столкновение большого числа молекул.

Предположим, что некая реакция

идет в две стадии

A+ B= ABи AB+ B= C+ D,

тогда, если первая реакция идет медленно, а вторая быстро, то скорость определяется первой стадией (пока она не пройдет, не может идти вторая), т.е. накоплением частиц АВ. Тогда и v=kC A C B .

Скорость реакции определяется самой медленной стадией. Отсюда различия между порядком реакции и стехиометрическими коэффициентами. Например, реакция разложения перекиси водорода

2H 2 O 2 = H 2 O+ O 2

является реакцией первого порядка, т.к. она лимитируется первой стадией H 2 O 2 = H 2 O+ O, а вторая стадия О + О = О 2 идет очень быстро.

Может быть самой медленной не первая, а вторая или другая стадия и тогда мы получаем иногда дробный порядок, выражая концентрации интермедиатов через концентрации начальных веществ.

С ростом температуры увеличивается скорость движения частиц, а следовательно, частота их соударений. Поэтому скорость реакций увеличивается с температурой. Существует эмпирическая закономерность, выведенная Вант-Гоффом, что при увеличении температуры на 10 о скорость возрастает в 2-4 раза.

Реакции идут по стадиям. Маловероятно, что в реакции образования аммиака N 2 + 3H 2 = 2NH 3 одновременно столкнутся в одной точке пространства 4 молекулы, да еще нужного сорта.

Количество частиц, принимающих участие в элементарном акте химического превращения называется молекулярностью реакции.

Реакции могут быть моно- , би- и тримолекулярными.

Мономолекулярные – реакции разложения и внутримолекулярные перегруппировки.

Бимолекулярные – 2NO 2 = N 2 O 4

Тримолекулярные (редкие) - 2NO+ O 2 = 2NO 2 .

В этих примерах порядок и молекулярность совпадают, но часто они различны.

Имеются два критерия возможности самопроизвольного протекания химического процесса – изменение энтальпии DН, которое отражает определенное упорядочение системы и изменение энтропии DS, которое отражает противоположную тенденцию к беспорядочному расположению частиц. Если DS=0, то движущей силой процесса будет стремление системы к минимуму внутренней энергии, то есть, критерий процесса – уменьшение энтальпии (DН<0).

Если DН=0, то критерий самопроизвольного протекания процесса DS>0.

Как влияют величины энтальпийного и энтропийного фактора на протекание процесса.

1) Экзотермическая реакция , DН<0.

a) DS>0, тогда для любого Т DGбудет меньше нуля и процесс идет всегда, причем до конца.

б) DS<0, в этом случае все будет зависеть от соотношения абсолютных значений энтальпийного и энтропийного фактора,

DG<0 - реакция идет

DG>0 - реакция не идет

Экзотермические реакции, сопровождающиеся уменьшением энтропии, идут при низких температурах, увеличение Т способствует протеканию обратной реакции (Принцип Ле Шателье).

2) Эндотермическая реакция , DН>0.

а) DS>0, реакция возможна только если |TDS|>|DH|, тогда DG<0, т.е при высоких температурах, если же

б) DS<0, то DG>0 при любых температурах и процесс самопроизвольно идти не может.

Пример - реакция окисления глюкозы до CO 2 и H 2 O

6(O 2) ®6(CO 2) + 6H 2 O DН= - 2810 кДж

Энтропия при этом, очевидно, возрастает. Следовательно, обратный процесс принципиально не может идти самопроизвольно. Для его протекания требуется энергия извне (фотосинтез).

Следует отметить, что в вопросе о возможности протекания процесса термодинамический критерий – истина в последней инстанции. Если DG>0, никакие катализаторы не помогут провести процесс. При DG<0 процесс может быть заморожен.

  • Геохимия природных и техногенных ландшафтов
    • ДИДАКТИЧЕСКИЙ ПЛАН
    • ЛИТЕРАТУРА
    • Оценка загрязненности воды
    • Биохимическое и химическое потребление кислорода
    • Аналитическое определение БПК и ХПК
    • Неорганические вещества в воде. Ионы, поступающие из удобрений и солей, используемых для снеготаяния и борьбы со льдом. Кислотные выбросы. Ионы тяжелых металлов. Основные химические реакции в гидросфере
    • Методы очистки воды: физические, химические и биологические. Основные принципы и аппаратное оформление. Очистка питьевой воды: процессы водоподготовки и химические реакции, лежащие в их основе. Стандарты на воду
    • Загрязнение почвы. Химические последствия кислотных загрязнений
    • Роль металлов в живой природе
    • Необходимость и токсичность ионов металлов
    • Взаимосвязь между необходимостью и токсичностью металлов в экосистемах
    • Потенциально опасные следы металлов в атмосфере, гидросфере и литосфере
    • Глобальный перенос следовых количеств потенциально опасных металлов
    • Микроэлементы. Поступление и усвоение металлов в организме
    • Молекулярные основы токсичности металлов. Ряды токсичности
    • Факторы окружающей среды, влияющие на токсичность
    • Толерантность организмов к металлам. Канцерогенность ионов металлов. Пути воздействия металлов на организм
    • Ионы тяжелых металлов в природных водах. Формы существования металлов в водных экосистемах, зависимость токсичности от формы. Вторичная токсичность вод
    • Строение атмосферы
    • Распределение температуры, давления и других параметров по высоте
    • Причины образования характерных слоев в атмосфере (барометрическая формула, конвекция, космическое излучение). Значение слоев для человека
    • Ионосфера
    • Изменение химического состава по высоте (несоответствие барометрической формуле)
    • Рассмотрение атмосферы как системы (открытая, замкнутая, изолированная). Термодинамический подход (N2O). Грозы
    • Кинетический подход
    • Основные химические реакции в атмосфере и тропосфере
    • Элементы химической кинетики (порядок реакции, молекулярность, зависимость скорости от давления)
    • Озоновый слой
    • Разрушающее действие галогенов, фреонов и т.д.
    • Характерный химический состав выбросов в атмосферу
    • Химические превращения загрязнений
    • Возможность самоочищения атмосферы
    • Границы биосферы, состав и масса живого вещества
    • Кларки и геохимические функции живого вещества, биогеохимические процессы как геологический фактор
    • Органическое вещество, процессы синтеза и разложения
    • Автотрофные и гетеротрофные организмы
    • Сульфатредукция и метанообразование
    • Возраст жизни и возраст фотосинтеза

Механизмы протекания химических превращений и их скорости изучает химическая кинетика. Химические процессы протекают во времени с различными скоростями. Какие-то происходят быстро, почти мгновенно, для протекания других требуется весьма продолжительное время.

Вконтакте

Скорость реакции - скорость с которой расходуются реагенты (их концентрация уменьшается) или образуются продукты реакции в единице объёма.

Факторы, способные влиять на скорость химической реакции

На то, насколько быстро будет происходить химическое взаимодействие, могут повлиять следующие факторы:

  • концентрация веществ;
  • природа реагентов;
  • температура;
  • присутствие катализатора;
  • давление (для реакций в газовой среде).

Таким образом, изменяя определённые условия протекания химического процесса, можно повлиять на то, насколько быстро будет протекать процесс.

В процессе химического взаимодействия частицы реагирующих веществ сталкиваются друг с другом. Количество таких совпадений пропорционально числу частиц веществ в объёме реагирующей смеси, а значит и пропорционально молярным концентрациям реагентов.

Закон действующих масс описывает зависимость скорости реакции от молярных концентраций веществ, вступающих во взаимодействие.

Для элементарной реакции (А + В → …) данный закон выражается формулой:

υ = k ∙С A ∙С B,

где k - константа скорости; С A и С B - молярные концентрации реагентов, А и В.

Если одно из реагирующих веществ находится в твёрдом состоянии, то взаимодействие происходит на поверхности раздела фаз, в связи с этим концентрация твёрдого вещества не включается в уравнение кинетического закона действующих масс. Для понимания физического смысла константы скорости, необходимо принять С, А и С В равными 1. Тогда становится понятно, что константа скорости равна скорости реакции при концентрациях реагентов, равных единице.

Природа реагентов

Так как в процессе взаимодействия разрушаются химические связи реагирующих веществ и образуются новые связи продуктов реакции, то большую роль будет играть характер связей, участвующих в реакции соединений и строение молекул реагирующих веществ.

Площадь поверхности соприкосновения реагентов

Такая характеристика, как площадь поверхности соприкосновения твёрдых реагентов, на протекание реакции влияет, порой, довольно значительно. Измельчение твёрдого вещества позволяет увеличить площадь поверхности соприкосновения реагентов, а значит и ускорить протекание процесса. Площадь соприкосновения растворимых веществ легко увеличивается растворением вещества.

Температура реакции

При увеличении температуры энергия сталкивающихся частиц возрастёт, очевидно, что с ростом температуры и сам химический процесс будет ускоряться. Наглядным примером того, как увеличение температуры влияет на процесс взаимодействия веществ, можно считать приведённые в таблице данные.

Таблица 1. Влияние изменения температуры на скорость образования воды (О 2 +2Н 2 →2Н 2 О)

Для количественного описания того, как температура может влиять на скорость взаимодействия веществ используют правило Вант-Гоффа. Правило Вант-Гоффа состоит в том, что при повышении температуры на 10 градусов, происходит ускорение в 2−4 раза.

Математическая формула, описывающая правило Вант-Гоффа, выглядит следующим образом:

Где γ — температурный коэффициент скорости химической реакции (γ = 2−4).

Но гораздо более точно описывает температурную зависимость константы скорости уравнение Аррениуса:

Где R - универсальная газовая постоянная, А - множитель, определяемый видом реакции, Е, А - энергия активации.

Энергией активации называют такую энергию, которую должна приобрести молекула, чтобы произошло химическое превращение. То есть она является неким энергетическим барьером, который необходимо будет преодолеть сталкивающимся в реакционном объёме молекулам для перераспределения связей.

Энергия активации не зависит от внешних факторов, а зависит от природы вещества. Значение энергии активации до 40 - 50 кДж/моль позволяет веществам реагировать друг с другом довольно активно. Если же энергия активации превышает 120 кДж/моль , то вещества (при обычных температурах) будут реагировать очень медленно. Изменение температуры приводит к изменению количества активных молекул, то есть молекул, достигших энергии большей, чем энергия активации, а значит способных к химическим превращениям.

Действие катализатора

Катализатором называют вещество, способное ускорять процесс, но не входящее в состав его продуктов. Катализ (ускорение протекания химического превращения) разделяют на · гомогенный, · гетерогенный. Если реагенты и катализатор находятся в одинаковых агрегатных состояниях, то катализ называют гомогенным, если в различных, то гетерогенным. Механизмы действия катализаторов разнообразны и достаточно сложны. Кроме того, стоит отметить, что для катализаторов характерна избирательность действия. То есть один и тот же катализатор, ускоряя одну реакцию, может никак не изменять скорость другой.

Давление

Если в превращении участвуют газообразные вещества, то на скорость протекания процесса будет влиять изменение давления в системе. Это происходит потому , что для газообразных реагентов изменение давления приводит к изменению концентрации.

Экспериментальное определение скорости химической реакции

Определить быстроту протекания химического превращения экспериментально можно, получив данные о том, как в единицу времени меняется концентрация веществ, вступающих в реакцию, или продуктов. Методы получения таких данных делят на

  • химические,
  • физико-химические.

Химические методы достаточно просты, доступны и точны. С их помощью скорость определяют, непосредственно замеряя концентрацию или количество вещества реагентов или продуктов. В случае медленной реакции, для контроля за тем, как расходуется реагент отбирают пробы. После чего определяют содержание в пробе реагента. Осуществляя отбор проб через равные промежутки времени, можно получить данные об изменении количества вещества в процессе взаимодействия. Чаще всего используют такие виды анализа, как титриметрия и гравиметрия.

Если реакция протекает быстро, то чтобы отобрать пробу, её приходится останавливать. Это можно сделать с помощью охлаждения, резкого удаления катализатора , также можно произвести разбавление либо перевести один из реагентов в не реакционноспособное состояние.

Методы физико-химического анализа в современной экспериментальной кинетике используются чаще, чем химические. С их помощью можно наблюдать изменение концентраций веществ в реальном времени. При этом реакцию нет необходимости останавливать и отбирать пробы.

Физико-химические методы основываются на измерении физического свойства, зависящего от количественного содержания в системе определённого соединения и изменяющегося со временем. Например, если в реакции участвуют газы, то таким свойством может быть давление. Также измеряют электропроводность, показатель преломления, спектры поглощения веществ.