Что такое космическая пыль определение. Разгадана тайна звездной пыли

Ученые Гавайского университета сделали сенсационное открытиекосмическая пыль содержит органические вещества , включая и воду, что подтверждает возможность переноса различных форм жизни из одной галактики в другую. Кометы и астероиды, курсирующие в космосе, регулярно приносят в атмосферу планет массы звездной пыли. Таким образом, межзвездная пыль выступает в роли своеобразного «транспорта», который может доставлять воду с органикой на Землю и к прочим планетам Солнечной системы. Возможно, когда-то, поток космической пыли привел к зарождению жизни на Земле. Не исключено, что жизнь на Марсе, существование которой вызывает много споров в ученых кругах, могла возникнуть таким же образом.

Механизм образования воды в структуре космической пыли

В процессе передвижения в космосе поверхность частиц межзвездной пыли облучается , что приводит к образованию соединений воды. Более подробно этот механизм можно описать так: ионы водорода, присутствующие в солнечных вихревых потоках, бомбардируют оболочку космических пылинок, выбивая отдельные атомы из кристаллической структуры силикатного минерала — основного строительного материала межгалактических объектов. В результате данного процесса высвобождается кислород, который входит в реакцию с водородом. Таким образом, формируются молекулы воды, содержащие включения органических веществ.

Сталкиваясь с поверхностью планеты, астероиды, метеориты и кометы приносят на ее поверхность смесь воды и органики

То, что космическая пыль — спутница астероидов, метеоритов и комет, несет в себе молекулы органических соединений углерода, было известно и раньше. Но то, что звездная пыль транспортирует еще и воду, доказано не было. Только сейчас американские ученые впервые обнаружили, что органические вещества переносятся частицами межзвездной пыли совместно с молекулами воды.

Как вода попала на Луну?

Открытие ученых из США может помочь приподнять завесу таинственности над механизмом формирования странных ледовых образований . Несмотря на то, что поверхность Луны полностью обезвожена, на ее теневой стороне при помощи зондирования было обнаружено соединение ОН. Данная находка свидетельствует в пользу возможного присутствия воды в недрах Луны.

Обратная сторона Луны сплошь покрыта льдами. Возможно, именно с космической пылью попали на ее поверхность молекулы воды много биллионов лет тому назад

Со времен эры луноходов Apollo в исследовании Луны, когда на Землю были доставлены пробы лунного грунта, ученые пришли к выводу, что солнечный ветер вызывает изменения в химическом составе звездной пыли, покрывающей поверхности планет. О возможности образования молекул воды в толще космической пылина Луне еще тогда шли дебаты, однако доступные на тот момент аналитические методы исследований были не в состоянии либо доказать, либо опровергнуть данную гипотезу.

Космическая пыль — носитель жизненных форм

За счет того, что вода образовывается в совсем небольшом объеме и локализуется в тонкой оболочке на поверхности космической пыли , только сейчас стало возможным увидеть ее при помощи электронного микроскопа высокого разрешения. Ученые считают, что подобный механизм перемещения воды с молекулами органических соединений возможен и в других галактиках, где вращается вокруг «родительской» звезды. В своих дальнейших исследованиях ученые предполагают более подробно идентифицировать, какие неорганические и органические вещества на основе углерода присутствуют в структуре звездной пыли.

Интересно знать! Экзопланета — это такая планета, которая находится вне Солнечной системы и вращается вокруг звезды. На данный момент в нашей галактике визуально обнаружено порядка 1000 экзопланет, образующих около 800 планетных систем. Однако непрямые методы детектирования свидетельствуют о существовании 100 млрд. экзопланет, из которых 5-10 млрд. обладают параметрами, схожими с Землей, то есть являются . Значительный вклад в миссию поиска планетарных групп, подобных Солнечной системе, сделал астрономический спутник-телескоп Кеплер, запущенный в космос в 2009 году, совместно с программой «Охотники за планетами» (Planet hunters).

Как могла возникнуть жизнь на Земле?

Весьма вероятно, что кометы, путешествующие в пространстве с высокой скоростью, способны при столкновении с планетой создать достаточно энергии, чтобы из компонентов льда начался синтез более сложных органических соединений, в том числе молекул аминокислот. Аналогичный эффект возникает при столкновении метеорита с ледяной поверхностью планеты. Ударная волна создает тепло, которое запускает процесс формирования аминокислот из отдельных молекул космической пыли, обработанной солнечным ветром.

Интересно знать! Кометы состоят из больших глыб льда, сформированных путем конденсации водяного пара на начальном этапе создания Солнечной системы, приблизительно около 4.5 биллионов лет тому назад. В своей структуре кометы содержат углекислый газ, воду, аммиак, метанол. Эти вещества при столкновении комет с Землей, на ранней стадии ее развития, могли продуцировать достаточное количество энергии для производства аминокислот — строительных белков, необходимых для развития жизни.

Компьютерное моделирование продемонстрировало, что ледяные кометы, разбившиеся о поверхность Земли миллиарды лет тому назад, возможно, содержали пребиотические смеси и простейшие аминокислоты типа глицина, из которых, впоследствии, и зародилась жизнь на Земле.

Количество энергии, высвобождающейся при столкновении небесного тела и планеты, достаточно для запуска процесса формирования аминокислот

Ученые обнаружили, что ледяные тела с идентичными органическими соединениями, присущими кометам, можно найти внутри Солнечной системы. Например, Энцелад — один из спутников Сатурна, или Европа — спутник Юпитера, содержат в своей оболочке органические вещества , смешанные со льдом. Гипотетически, любая бомбардировка спутников метеоритами, астероидами или кометами может привести к возникновению жизни на данных планетах.

Вконтакте

Наука

Ученые заметили большое облако космической пыли, созданное вспышкой сверхновой.

Космическая пыль может дать ответы на вопросы о том, как на Земле появилась жизнь - зародилась ли она здесь или была занесена с кометами, упавшими на Землю, была ли здесь вода с самого ее начала или она была также занесена из космоса.

Недавний снимок облака космической пыли, которая произошла после вспышки сверхновой доказывает, что сверхновые звезды способны производить достаточно космической пыли для создания таких планет, как наша Земля.

Более того, ученые считают, что этой пыли хватит, чтобы создать тысячи таких планет как Земля .



Данные телескопа показывают теплую пыль (белый цвет), которая выжила внутри остатка сверхновой. Облако остатка сверхновой Стрелец А Восток показано синим цветом. Радиоизлучение (красный цвет) указывает на столкновение расширяющейся ударной волны с окружающими межзвездными облаками (зеленый цвет).

Стоит отметить, что космическая пыль участвовала в создании как нашей планеты, так и многих других космических тел. Она состоит из маленьких частиц размером до 1 микрометра.

Сегодня уже известно, что кометы содержат первичную пыль, которой миллиарды лет, и которая играла главную роль в образовании Солнечной системы. Исследовав эту пыль можно многое узнать о том, как начинала создаваться Вселенная и наша Солнечная система в частности, а также узнать больше о составе первой органической материи и воды.

По словам Райана Лау (Ryan Lau) из Корнелльского университета в Итаке, Нью-Йорк, вспышка, недавно заснятая телескопом, произошла 10 000 лет назад , и в результате образовалось облако пыли достаточного размера, чтобы из него получилось 7 000 планет, похожих на Землю .

Наблюдения сверхновой звезды (Supernova)

С помощью Стратосферной обсерватории ИК-астрономии (Stratospheric Observatory for Infrared Astronomy, SOFIA) , ученые изучили интенсивность излучений, и смогли посчитать общую массу космической пыли в облаке.


Стоит отметить, что SOFIA является совместным проектом НАСА и Германского центра авиации и космонавтики . Целью проекта является создание и использование телескопа системы Кассегрена на борту самолета Боинг-474 .

Во время полета на высоте 12-14 километров , телескоп с диаметром окружности 2,5 метра способен создавать фотографии космоса, приближенные по качеству к фотографиям, которые делают космические обсерватории.


Под руководством Лау, команда использовала телескоп SOFIA со специальной камерой FORCASTна борту, чтобы сделать инфракрасные снимки облака из космической пыли, также известной, как остаток сверхновой Стрелец А Восток. FORCAST является инфракрасной камерой обнаружения слабоконтрастных объектов.

Откуда же берется космическая пыль? Наша планета окружена плотной воздушной оболочкой – атмосферой. В состав атмосферы, кроме известных всем газов, входят ещё и твёрдые частички – пыль.

В основном она состоит из частиц почвы, поднимающихся вверх под действием ветра. При извержении вулканов часто наблюдаются мощные пылевые облака. Над большими городами висят целые «пылевые шапки», достигающие высоты в 2-3 км. Число пылинок в одном куб. см воздуха в городах достигает 100 тысяч штук, в то время как в чистом горном воздухе их содержится всего несколько сотен. Однако пыль земного происхождения поднимается на сравнительно небольшие высоты – до 10 км. Вулканическая пыль может достигать высоты 40-50 км.

Происхождение космической пыли

Установлено присутствие пылевых облаков на высоте, значительно превышающей 100 км. Это так называемые «серебристые облака», состоящие из космической пыли.

Происхождение космической пыли чрезвычайно разнообразно: в неё входят и остатки распавшихся комет, и частицы вещества, выброшенного Солнцем и принесённого к нам силой светового давления.

Естественно, что под действием земного притяжения значительная часть этих космических пылинок медленно оседает на землю. Присутствие такой космической пыли было обнаружено на высоких снеговых вершинах.

Метеориты

Кроме такой, медленно оседающей космической пыли, в пределы нашей атмосферы ежедневно врываются сотни миллионов метеоров – то, что мы называем «падающими звёздами». Летя с космической скоростью в сотни километров в секунду, они сгорают от трения о частицы воздуха, не успев долететь до поверхности земли. Продукты их сгорания тоже оседают на землю.

Впрочем, среди метеоров есть и исключительно большие экземпляры, долетающие до поверхности земли. Так, известно падение большого Тунгусского метеорита в 5 часов утра 30 июня 1908 года, сопровождавшееся рядом сейсмических явлений, отмеченных даже в Вашингтоне (в 9 тысячах км от места падения) и свидетельствующих о мощности взрыва при падении метеорита. Профессор Кулик, с исключительной смелостью обследовавший место падения метеорита, нашёл чащу бурелома, окружающую место падения в радиусе сотен километров. Метеорита к сожалению, ему найти не удалось. Сотрудник Британского музея Кирпатрик в 1932 году совершил специальную поездку в СССР, но к месту падения метеорита даже не добрался. Впрочем, он подтвердил предположение профессора Кулика, оценившего массу упавшего метеорита в 100-120 тонн.

Облако космической пыли

Интересна гипотеза академика В. И. Вернадского, считавшего возможным падение не метеорита, а огромного облака космической пыли, шедшего с колоссальной скоростью.

Свою гипотезу академик Вернадский подтверждал появлением в эти дни большого количества светящихся облаков, двигавшихся на большой высоте со скоростью 300-350 км в час. Этой гипотезой можно было бы объяснить и то, что деревья, окружающие метеоритный кратер, остались стоять, в то время как расположенные далее были повалены взрывной волной.

Помимо Тунгусского метеорита известен ещё целый ряд кратеров метеоритного происхождения. Первым из таких обследованных кратеров можно назвать Аризонский кратер в «Каньоне Дьявола». Интересно, что близ него были найдены не только осколки железного метеорита, но и маленькие алмазы, образовавшиеся из углерода от большой температуры и давления при падении и взрыве метеорита.
Кроме указанных кратеров, свидетельствующих о падении огромных метеоритов весом в десятки тонн, существуют ещё и более мелкие кратеры: в Австралии, на острове Эзель и ряд других.

Помимо больших метеоритов, ежегодно выпадает довольно много более мелких – весом от 10-12 грамм до 2-3 килограмм.

Если бы Земля не была защищена плотной атмосферой, мы ежесекундно подвергались бы бомбардировке мельчайших космических частиц, несущихся со скоростью, превосходящей скорость пули.

Что космический вакуум не так пуст, как об этом считает обыватель, мы все же не можем не отметить, что и «наполненным» его назвать можно с трудом. Водород, кальций, железо — все это есть в космической среде, однако в таких количествах, что без точного оборудования бесполезно и пытаться искать.

Чего тут удивляться тому факту, что аж до 1930 года большинство ученых было убеждено в том, что в пространстве между звездами нет никакой среды, которая бы вызывала заметное поглощение звездного света. Поэтому при определении расстояния до какой-либо звезды пользовались известным законом ослабления блеска источника света пропорционально квадрату расстояния до него. Однако, поступая таким образом, ученые совершали ужасную ошибку.

Дело в том, что это положение, справедливое в случае совершенно прозрачного пространства, оказывается неправильным в случае наличия поглощающей среды. А на то, что пространство между звездами не вполне прозрачно, указывал еще сто лет назад выдающийся русский ученый В. Я. Струве, однако его идеи современниками оценены не были.

К счастью, в начале 1930-х г.г., правота ученого была доказана. Космос теперь уже никто не называл совершенно прозрачной пустотой, а виной искажений не принимаемых в расчет учеными прошлого стало ни что иное, как космическая пыль .

С этих пор астрономы начали самым тщательным образом изучать распределение поглощающего вещества в пространстве, исследовать, как оно изменяет видимые цвет и блеск звезд. Без учета этого явления все дальнейшие рассуждения о строении звездного мира не могут быть правильными.

Космическая пыль не только вносит искажения при определении расстояний в космосе, но также искажает и наши представления о звездах. Явление покраснения звезд, благодаря которому звезды кажутся нам сравнительно холоднее, чем они есть в действительности — целиком «заслуга» космической пыли.

Межзвездная пыль не представляет собой среду равномерной плотности и состоит из отдельных облаков, средние размеры которых таковы, что свет от одного их края до другого идет в течение десяти лет, то есть размеры этих облаков значительно больше среднего расстояния между звездами.

Уже давно было известно, что в мировом пространстве между звездами существуют огромные облака разреженной материи, из которых одни являются газовыми, а другие пылевыми. Облака космической пыли светят отраженным светом тех звезд, которые расположены поблизости от них.

Однако в вопросе о том, есть ли что-нибудь общее между этими светлыми пылевыми туманностями и поглощающей межзвездной средой, которая, тоже состоит из облаков, не было полной ясности.

Некоторые особенности больших облаков темной пыли, так называемых темных туманностей , обнаруживаются благодаря тому, что они поглощают свет находящихся за ними звезд и на сияющем фоне образуют как бы провалы полной черноты.

В итоге, было доказано, что все различия между «темными» и «светлыми» пылевыми туманностями состоят лишь в том, что вторые находятся по соседству с очень яркими звездами, которые освещают их достаточно сильно, для того чтобы они были видимы, а первые такой «подсветки» лишены.

Таким образом, никакого существенного различия между светлыми и темными облаками космической пыли не оказалось, и вопрос о том, какими они нам представляются, зависит исключительно от случайного расположения их по отношению к ярким звездам.

Космическая пыль

частицы вещества в межзвёздном и межпланетном пространстве. Поглощающие свет сгущения К. п. видны как тёмные пятна на фотографиях Млечного Пути. Ослабление света вследствие влияния К. п. - т. н. межзвёздное поглощение, или экстинкция, - неодинаково для электромагнитных волн разной длины λ , вследствие чего наблюдается покраснение звёзд. В видимой области экстинкция приблизительно пропорциональна λ -1 , в близкой же ультрафиолетовой области почти не зависит от длины волны, но около 1400 Å имеется дополнительный максимум поглощения. Большая часть экстинкции объясняется рассеянием света, а не его поглощением. Это следует из наблюдений содержащих К. п. отражательных туманностей, видимых вокруг звёзд спектрального класса B и некоторых др. звёзд, достаточно ярких, чтобы осветить пыль. Сопоставление яркости туманностей и освещающих их звёзд показывает, что Альбедо пыли велико. Наблюдаемые экстинкция и альбедо приводят к заключению, что К. п. состоит из диэлектрических частиц с примесью металлов при размере немного меньше 1 мкм. Ультрафиолетовый максимум экстинкции может быть объяснён тем, что внутри пылинок имеются графитовые чешуйки размером около 0,05 × 0,05 × 0,01 мкм. Из-за дифракции света на частице, размеры которой сравнимы с длиной волны, свет рассеивается преимущественно вперёд. Межзвёздное поглощение часто приводит к поляризации света, которая объясняется анизотропией свойств пылинок (вытянутой формой у диэлектрических частиц или анизотропией проводимости графита) и их упорядоченной ориентацией в пространстве. Последняя объясняется действием слабого межзвёздного поля, которое ориентирует пылинки их длинной осью перпендикулярно силовой линии. Т. о., наблюдая поляризованный свет далёких небесных светил, можно судить об ориентации поля в межзвёздном пространстве.

Относительное количество пыли определяется из величины среднего поглощения света в плоскости Галактики - от 0,5 до нескольких звёздных величин на 1 килоПарсек в визуальной области спектра. Масса пыли составляет около 1% массы межзвёздного вещества. Пыль, как и газ, распределена неоднородно, образуя облака и более плотные образования - Глобулы . В глобулах пыль является охлаждающим фактором, экранируя свет звёзд и излучая в инфракрасном диапазоне энергию, получаемую пылинкой от неупругих столкновений с атомами газа. На поверхности пыли происходит соединение атомов в молекулы: пыль является катализатором.

С. Б. Пикельнер.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Космическая пыль" в других словарях:

    Частицы конденсированного вещества в межзвездном и межпланетном пространстве. По современным представлениям, космическая пыль состоит из частиц размером ок. 1 мкм с сердцевиной из графита или силиката. В Галактике космическая пыль образует… … Большой Энциклопедический словарь

    КОСМИЧЕСКАЯ ПЫЛЬ, очень мелкие частицы твердого вещества, находящиеся в любой части Вселенной, в том числе, метеоритная пыль и межзвездное вещество, способное поглощать звездный свет и образующее темные ТУМАННОСТИ в галактиках. Сферические… … Научно-технический энциклопедический словарь

    КОСМИЧЕСКАЯ ПЫЛЬ - метеорная пыль, а также мельчайшие частицы вещества, образующие пылевые и др. туманности в межзвёздном пространстве … Большая политехническая энциклопедия

    космическая пыль - Очень маленькие частицы твердого вещества, присутствующие в мировом пространстве и выпадающие на Землю … Словарь по географии

    Частицы конденсированного вещества в межзвёздном и межпланетном пространстве. По современной представлениям, космическая пыль состоит из частиц размером около 1 мкм с сердцевиной из графита или силиката. В Галактике космическая пыль образует… … Энциклопедический словарь

    Образуется в космосе частицами размером от нескольких молекул до 0,1 мм. 40 килотонн космической пыли каждый год оседает на планете Земля. Космическую пыль можно также различать по её астрономическому положению, например: межгалактическая пыль,… … Википедия

    космическая пыль - kosminės dulkės statusas T sritis fizika atitikmenys: angl. cosmic dust; interstellar dust; space dust vok. interstellarer Staub, m; kosmische Staubteilchen, m rus. космическая пыль, f; межзвёздная пыль, f pranc. poussière cosmique, f; poussière… … Fizikos terminų žodynas

    космическая пыль - kosminės dulkės statusas T sritis ekologija ir aplinkotyra apibrėžtis Atmosferoje susidarančios meteorinės dulkės. atitikmenys: angl. cosmic dust vok. kosmischer Staub, m rus. космическая пыль, f … Ekologijos terminų aiškinamasis žodynas

    Частицы конденсированного в ва в межзвёздном и межпланетном пространстве. По совр. представлениям, К. п. состоит из частиц размером ок. 1 мкм с сердцевиной из графита или силиката. В Галактике К. п. образует сгущения облака и глобулы. Вызывает… … Естествознание. Энциклопедический словарь

    Частицы конденсированного вещества в межзвёздном и межпланетном пространстве. Состоит из частиц размером около 1 мкм с сердцевиной из графита или силиката, в Галактике образует облака, которые вызывают ослабление света, испускаемого звёздами и… … Астрономический словарь

Книги

  • 99 секретов астрономии , Сердцева Н.. В этой книге спрятано 99 секретов астрономии. Откройте ее и узнайте о том, как устроена Вселенная, из чего состоит космическая пыль и откуда берутся черные дыры. . Забавные и простые тексты…