Нод взаимно простые числа. Взаимно простые числа: определение, примеры и свойства

Запомните!

Если натуральное число делится только на 1 и на само себя, то оно называется простым.

Любое натуральное число всегда делится на 1 и на само себя.

Число 2 — наименьшее простое число. Это единственное чётное простое число, остальные простые числа — нечётные.

Простых чисел много, и первое среди них — число 2 . Однако нет последнего простого числа. В разделе «Для учёбы» вы можете скачать таблицу простых чисел до 997 .

Но многие натуральные числа делятся нацело ещё и на другие натуральные числа.

Например:

  • число 12 делится на 1 , на 2 , на 3 , на 4 , на 6 , на 12 ;
  • число 36 делится на 1 , на 2 , на 3 , на 4 , на 6 , на 12 , на 18 , на 36 .

Числа, на которые число делится нацело (для 12 это 1, 2, 3, 4, 6 и 12 ) называются делителями числа.

Запомните!

Делитель натурального числа a — это такое натуральное число, которое делит данное число «a » без остатка.

Натуральное число, которое имеет более двух делителей называется составным.

Обратите внимание, что числа 12 и 36 имеют общие делители. Это числа: 1, 2, 3, 4, 6, 12 . Наибольший из делителей этих чисел — 12 .

Общий делитель двух данных чисел «a » и «b » — это число, на которое делятся без остатка оба данных числа «a » и «b ».

Запомните!

Наибольший общий делитель (НОД) двух данных чисел «a » и «b » — это наибольшее число, на которое оба числа «a » и «b » делятся без остатка.

Кратко наибольший общий делитель чисел «a » и «b » записывают так :

НОД (a; b) .

Пример: НОД (12; 36) = 12 .

Делители чисел в записи решения обозначают большой буквой «Д».

Д (7) = {1, 7}

Д (9) = {1, 9}

НОД (7; 9) = 1

Числа 7 и 9 имеют только один общий делитель — число 1 . Такие числа называют взаимно простыми числами .

Запомните!

Взаимно простые числа — это натуральные числа, которые имеют только один общий делитель — число 1 . Их НОД равен 1 .

Как найти наибольший общий делитель

Чтобы найти НОД двух или более натуральных чисел нужно:

  1. разложить делители чисел на простые множители;

Вычисления удобно записывать с помощью вертикальной черты. Слева от черты сначала записываем делимое, справа — делитель. Далее в левом столбце записываем значения частных.

Поясним сразу на примере. Разложим на простые множители числа 28 и 64 .


  1. Подчёркиваем одинаковые простые множители в обоих числах.
    28 = 2 · 2 · 7

    64 = 2 · 2 · 2 · 2 · 2 · 2

  2. Находим произведение одинаковых простых множителей и записать ответ;
    НОД (28; 64) = 2 · 2 = 4

    Ответ: НОД (28; 64) = 4

Оформить нахождение НОД можно двумя способами: в столбик (как делали выше) или «в строчку».

Простые и составные числа

Определение 1 . Общим делителем нескольких натуральных чисел называют число, которое является делителем каждого из этих чисел.

Определение 2 . Самый большой из общих делителей называют наибольшим общим делителем (НОД) .

Пример 1 . Общими делителями чисел 30 , 45 и 60 будут числа 3 , 5 , 15 . Наибольшим общим делителем этих чисел будет

НОД (30 , 45 , 10) = 15 .

Определение 3 . Если наибольший общий делитель нескольких чисел равен 1 , то эти числа называют взаимно простыми .

Пример 2 . Числа 40 и 3 будут взаимно простыми числами, а числа 56 и 21 не являются взаимно простыми, поскольку у чисел 56 и 21 есть общий делитель 7 , который больше, чем 1.

Замечание . Если числитель дроби и знаменатель дроби являются взаимно простыми числами, то такая дробь несократима .

Алгоритм нахождения наибольшего общего делителя

Рассмотрим алгоритм нахождения наибольшего общего делителя нескольких чисел на следующем примере.

Пример 3 . Найти наибольший общий делитель чисел 100, 750 и 800 .

Решение . Разложим эти числа на простые множители :

Простой множитель 2 в первое разложение на множители входит в степени 2 , во второе разложение – в степени 1 , в третье разложение – в степени 5 . Обозначим наименьшую из этих степеней буквой a . Очевидно, что a = 1 .

Простой множитель 3 в первое разложение на множители входит в степени 0 (другими словами, множитель 3 в первое разложение на множители вообще не входит), во второе разложение входит в степени 1 , в третье разложение – в степени 0 . Обозначим наименьшую из этих степеней буквой b . Очевидно, что b = 0 .

Простой множитель 5 в первое разложение на множители входит в степени 2 , во второе разложение – в степени 3 , в третье разложение – в степени 2 . Обозначим наименьшую из этих степеней буквой c . Очевидно, что c = 2 .

09.07.2015 6119 0

Цели: формировать навык нахождения наибольшего общего делителя; ввести понятие взаимно простых чисел; отрабатывать умение решать задачи на использование НОД чисел; учить анализировать, делать выводы.

II. Устный счет

1. Может ли разложение на простые множители числа 24 753 содержать множитель 5? Почему? (Нет, так как запись данного числа не оканчивается цифрой 0 или 5.)

2. Назовите число, которое делится на все числа без остатка. (Нуль.)

3. Сумма двух целых чисел нечетна. Четно или нечетно их произведение? (Если сумма двух чисел нечетна, то одно число четно, второе нечетно. Так как один из множителей четное число, следовательно, он делится на 2, значит и произведение делится на 2. Тогда и все произведение четно.)

4. В одной семье у каждого из трех братьев есть сестра. Сколько детей в семье? (4 детей: трое мальчиков и одна их сестра.)

III . Индивидуальная работа

Разложите число 210 всеми возможными способами:

а) на 2 множителя; (210 = 21 · 10 = 14 · 15 = 7 · 30 = 70 · 3 = 6 · 35 = 42 · 5 = 105 · 2.)

б) на 3 множителя; (210 = 3 · 7 · 10 = 5 · 3 · 14 = 7 · 5 · 6 = 35 · 2 · 3 = 21 · 2 · 5 = 7 · 2 · 15.)

в) на 4 множителя. (210 = 3 · 7 · 2 · 5.)

IV. Сообщение темы урока

«Числа правят миром». Эти слова принадлежат древнегреческому математику Пифагору, жившему в V в. до н.э.

Сегодня мы познакомимся еще с одной группой чисел, которые называются взаимно простыми.

V. Изучение нового материала

1. Подготовительная работа.

№ 146 стр. 25 (на доске и в тетрадях). (Самостоятельно, в это время один ученик работает на обратной стороне доски.)

Найдите все делители каждого числа.

Подчеркните их общие делители.

Запишите наибольший общий делитель.

Ответ:

Какие числа имеют только один общий делитель? (35 и 88.)

2. Работа над новой темой.

(Самостоятельно, в это время один ученик работает на обратной стороне доски.)

Найдите наибольший общий делитель чисел: 7 и 21; 25 и 9; 8 и 12; 5 и 3; 15 и 40; 7 и 8.

Ответ:

НОД (7; 21) = 7; НОД (25; 9) = 1; НОД (8; 12) = 4;

НОД (5; 3)= 1; НОД (15; 40) = 5; НОД (7; 8) = 1.

У каких пар чисел одинаковый общий делитель? (25 и 9; 5 и 3; 7 и 8 - общий делитель 1.)

Такие числа называются взаимно простыми.

Дайте определение взаимно простых чисел.

Приведите примеры взаимно простых чисел. (35 и 88, 3 и 7; 12 и 35; 16 и 9.)

VI. Историческая минутка

Древние греки придумали замечательный способ, позволяющий искать наибольший общий делитель двух натуральных чисел без разложения на множители. Он носил название «Алгоритма Евклида».

О жизни греческого математика Евклида достоверные данные неизвестны. Ему принадлежит выдающееся научное произведение, называемое «Начала». Оно состоит из 13 книг и излагает основы всей древнегреческой математики.

Именно здесь описывается алгоритм Евклида, который заключается в том, что наибольшим общим делителем двух натуральных чисел является последний, отличный он нуля, остаток при последовательном делении этих чисел. Под последовательным делением подразумевается деление большего числа на меньшее, меньшего числа на первый остаток, первого остатка на второй остаток и т.д., пока деление не закончится без остатка. Положим, требуется найти НОД (455; 312), тогда

455: 312 = 1 (ост. 143), получаем 455 = 312 · 1 + 143.

312: 143 = 2 (ост. 26), 312 = 143 · 2 + 26,

143: 26 = 5 (ост. 13), 143 = 26 · 5 + 13,

26: 13 = 2 (ост. 0), 26 = 13 · 2.

Последний делитель или последний, отличный от нуля остаток 13 и будет искомым НОД (455; 312) = 13.

VII. Физкультминутка

VIII. Работа над задачей

1. № 152 стр. 26 (с подробным комментированием у доски и в тетрадях).

Прочитайте задачу.

О ком говорится в задаче?

О чем говорится в задаче?

Назовите 1-й вопрос задачи.

Как узнать, сколько ребят было на елке? (Найти НОД чисел 123 и 82.)

Прочитайте задание к этой задаче из тетрадей. (Количество апельсинов и яблок должно делиться на одно и то же наибольшее число.)

Как узнать, сколько апельсинов было в каждом подарке? (Все количество апельсинов разделить на количество присутствующих на елке детей.)

Как узнать, сколько яблок было в каждом подарке? (Все количество яблок разделить на количество присутствующих на елке детей.)

Запишите решение задачи в тетрадях на печатной основе.

Решение:

НОД (123; 82) = 41, значит, 41 человек.

123: 41 = 3 (ап.)

82: 41 = 2 (ябл.)

(Ответ: ребят 41, апельсинов 3, яблок 2.)

2. № 164 (2) стр. 27 (после краткого разбора, один ученик - на обратной стороне доски, остальные самостоятельно, потом самопроверка).

Прочитайте задачу.

Чему равна градусная мера развернутого угла?

Если один угол в 4 раза меньше, то что можно сказать про второй угол? (Он в 4 раза больше.)

Запишите это в краткую запись.

Каким способом будете решать задачу? (Алгебраическим.)

Решение:

1) Пусть х - градусная мера угла СОК,

4х - градусная мера угла KOD .

Так как сумма углов СОК и KOD равна 180°, то составим уравнение:

х + 4х = 180

5х = 180

х = 180: 5

х = 36; 36° - градусная мера угла СОК.

2) 36 · 4 = 144° - градусная мера угла KOD .

(Ответ: 36°, 144°.)

Постройте эти углы.

Определите вид углов СОК и KOD . (Угол СОК - острый, угол KOD - тупой.)

Почему?

IX. Закрепление изученного материала

1. № 149 стр. 26 (у доски с подробным комментарием).

Что нужно сделать, чтобы определить, являются ли числа взаимно простыми? (Найти их наибольший общий делитель, если он равен 1, то числа взаимно простые.)

2. № 150 стр. 26 (устно).

Подтвердите свой ответ. (9 и 14; 14 и 15; 14 и 27 - пары взаимно простых чисел, так как их НОД равен 1.)

3. № 151 стр. 26 (один ученик у доски, остальные в тетрадях).

(Ответ: .)

Кто не согласен?

4. Устно, с подробным объяснением.

Как находят наибольший общий делитель нескольких натуральных чисел? (Находят так же, как и двух чисел.)

Найдите наибольший общий делитель чисел:

а) 18, 14 и 6; б) 26, 15 и 9; в) 12, 24, 48; г) 30, 50, 70.

Решение:

а) 1. Проверим, делятся ли числа 18 и 14 на 6. Нет.

2. Разложим на простые множители наименьшее число 6 = 2 · 3.

3. Проверим, делятся ли числа 18 и 14 на 3. Нет.

4. Проверим, делятся ли числа 18 и 14 на 2. Да. Следовательно, НОД (18; 14; 6) = 2.

б) НОД (26; 15; 9) = 1.

Что можно сказать об этих числах? (Они взаимно простые.)

в) НОД (12; 24; 48) = 12.

г) НОД (30; 50; 70) = 10.

X. Самостоятельная работа

Взаимопроверка. (На закрывающейся доске записаны ответы.)

Вариант I. № 161 (а, б) стр. 27, № 157 (б - 1 и 3 число) стр. 27.

Вариант II . № 161 (в, г) стр. 27, № 157 (б - 2 и 3 число) стр. 27.

XI. Подведение итогов урока

Какие числа называют взаимно простыми?

Как можно узнать, являются ли данные числа взаимно простыми?

Как найти наибольший общий делитель нескольких натуральных чисел?

Домашнее задание

№ 169 (6), 170 (в, г), 171, 174 стр. 28.

Дополнительное задание: При перестановке цифр простого числа 311 опять получится простое число (проверьте это по таблице простых чисел). Найдите все двузначные числа, обладающие таким же свойством. (113, 131; 13, 31; 17, 71; 37, 73; 79, 97.)

Муниципальное бюджетное общеобразовательное учреждение лицей № 57

городского округа Тольятти

«Наибольший общий делитель. Взаимно простые числа.

Учитель Костина Т.К.

г. о. Тольятти

Тема урока: «Наибольший общий делитель.

Взаимно простые числа»

Предварительная подготовка к уроку: учащиеся должны знать следующие темы: «Делители и кратные», «Признаки делимости на 10, 5, 2, 3, 9», « Простые и составные числа», «Разложение на простые множители»»

Цели урока :


  1. Образовательная: изучить понятия НОД и взаимно простых чисел; научить учащихся находить НОД чисел; создать условия для выработки умения обобщать изученный материал, анализировать, сопоставлять и делать выводы.

  2. Воспитательная: формирование навыков самоконтроля; воспитание чувства ответственности.

  3. Развивающая: развитие памяти, воображения, мышления, внимания, сообразительности.
Оборудование урока: Таблицы НОД, учебники, карточки-задания в 4 вариантах с образцами решения, слайды с изображением животных, карта Самарской области, фотографии ВАЗа.

Ход урока

Минутки логических задачУстная работа.

1. Бабушка и дедушка принесли из сада для двух своих внуков по нечетному числу абрикос. Можно ли эти абрикосы разделить поровну между внуками? [можно]

2. От одного села до другого 3 км. Из этих сел навстречу друг другу с одной и той же скоростью вышли два человека. Встреча произошла через полчаса. Найдите скорость каждого.

3.Турист прошел 2/5 всего пути. После этого ему осталось пройти на 4 км больше, чем он прошел. Найдите весь путь.

4. Число яиц в корзине меньше 40. Если их сосчитать парами, то останется 1 яйцо. Если же сосчитать их тройками, то все равно останется по одному яйцу. Сколько яиц в корзине? (31)

2. Повторение.

По таблице повторяем определение делителя, кратного, признаки делимости, определение простых и составных чисел. На экране слайды с изображением животных, карта Самарской области, фотографии ВАЗа.

3. Изучение нового материала в форме беседы.


  • Назовите делители числа 18, 21, 24.

  • Площадь ВАЗа 500 га. На какие простые множители можно разложить это число? 500=2*5*2*5*5=2 2 *5 3

  • Назовите общие делители чисел 120 и 80.

  • Масса медведя 525 кг. Масса слона 5025 кг. Назовите несколько общих делителей

  • Бобер весит 24 кг, а его длина 97 см. Какие эти числа простые или сложные? Назовите их общие делители.

  • 56640 т кислорода расходует 1 пассажирский самолет за 9 часов работы. Такое количество кислорода выделяется при фотосинтезе 35000 га леса. Назовите несколько делителей этого числа.

  • Какие из этих чисел простые, а какие составные? 111, 313, 323, 437, 549, 677, 781, 891?
Легенда гласит, что когда один из помощников Магомета – мудрец Хозрат Али садился на коня, подошедший к нему человек спросил его: «Какое число делится на 2, 3, 4, 5, 6, 7, 8, 9 без остатка?» Мудрец ответил: «Умножь число дней в неделе на число дней в месяце (30) и на число месяцев в году. Проверьте, прав ли Хозрат Али?

  • Какое из чисел делится на все числа без остатка?

  • Какое число является делителем любого натурального числа?

  • Делится ли выражение 34*28+85*20 на 17?

  • Делится ли выражение 4132*7008 на 3?

  • Чему равно частное (3*5*2*7*13)/(5*2*13)=?

  • Чему равно произведение (2*5*5*5*3)*(2*2*2*2*3)?

  • Назовите несколько простых чисел.
Числа соседи 2 и 3; 3 и 5; 5 и 7 –близнецы. В первой сотне 25 простых чисел. В первой тысяче – 168 простых чисел. В настоящее время самые большие числа близнецы: 1000000009649 и 1000000009681. Самое большее простое число, которое известно в настоящее время записано 25962 знаками и равно 2 8643 -1. Это очень большое число. Представим себе, маленький росток и его рост за каждый день увеличивался бы вдвое. Он рос бы 263 года и вырос бы на недосягаемую высоту во Вселенной.

Чем дальше мы идем по натуральному ряду чисел, тем труднее находить простые числа. Представим себе, что мы летим на самолете, который летит вдоль натурального ряда. Кругом темно и только простые числа обозначены огоньками. В начале пути огоньков много, а затем все реже и реже.

Древнегреческий ученый Евклид 2300 лет назад доказал, что простых чисел бесконечно много и что наибольшего простого числа не существует.

Проблемой простых чисел занимались многие ученые математики, в том числе древнегреческий ученый Эратосфен. Его способ отыскания простых чисел назвали решетом Эратосфена.

Гольдбах и Эйлер, жившие в 18 веке и бывшие членами Петербургской академии наук занимались проблемой простых чисел. Они предполагали, что всякое натуральное число можно представить в виде суммы простых чисел, но это не доказано. В 1937 году советский академик Виноградов доказал это предложение.


  • Индийский слон прожил 65 лет, крокодил – 51 год, верблюд – 23, лошадь – 19 лет. Какие из этих чисел простые и составные?

  • Зайца догоняет волк, ему надо пробраться через лабиринт. Можно пройти, если в ответе простое число [лабиринты в виде окружностей, на которых по три примера, а в центре домик]
Следующие примеры ребята решают устно, называют простые числа.

  1. 1000-2; 250*2+9; 310/5

  2. 24/4, 2 2 +41, 23+140

  3. 10-3; 133+12; 28*5
Задача . Какое наибольшее число одинаковых подарков можно составить из 48 конфет «Ласточка» и 36 конфет «Чебурашка», если надо использовать все конфеты.

К задаче на доске запись:

Делители 48: 1, 2, 3, 4, 6, 8, 12, 16, 48

Делители 36: 1, 2, 3, 4, 6, 12, 18, 36

НОД (48; 36) = 12  12 подарков  определение НОД делителя  правило нахождения НОД

А как найти НОД больших чисел, когда трудно перечислить все делители. По таблице и учебнику выводим правило. Выделяем главные слова: разложить, составить, перемножить.

Показываю примеры нахождения НОД с больших чисел, здесь можно сказать, что НОД больших чисел можно находить с помощью алгоритма Евклида. Подробно с этим алгоритмом мы познакомимся на занятиях математической школы.

Алгоритм – это правило, по которому выполняются действия. В 9 веке такие правила дал арабский математик Альхваруими.

4. Работа в группах по 4 человека.

Каждый получает один из 4 вариантов заданий, где указано следующее:


  1. Ученик должен по учебнику изучить теорию и ответить на один вопрос

  2. Изучить пример нахождения НОД

  3. Выполнить задания для самостоятельной работы.
Учитель консультирует учащихся в ходе работы. После выполнения своего задания, ребята рассказывают друг другу ответы на свои вопросы. Таким образом, к концу выполнения этой части урока, учащиеся должны знать все четыре варианта. Затем, проводится анализ всей работы, учитель отвечает на вопросы учащихся.

В конце работы проводится небольшая самостоятельная работа.

Карточки КСО

Вариант 1

1. Какое число называется простым? Какое число называется составным?

2. Найти НОД (96; 36)

Чтобы найти НОД чисел, надо разложить данные числа на простые множители.


96

2

48

2

24

2

12

2

6

2

3

3

1

36

2

18

2

9

3

3

3

1

36=2 2 *3 2

96=2 5 *3


В разложение числа, являющегося НОД чисел 96 и 36, войдут общие простые множители с наименьшим показателем:

НОД (96;36)=2 2 *3=4*3=12

3. Решите самостоятельно. НОД(102; 84), НОД(75; 28), НОД(120; 144)

Вариант 2

1. Что значит разложить натуральное число на простые множители? Какое число называется общим делителем данных чисел?

2. Образец НОД (54; 72)=18

3. Решите самостоятельно НОД(144; 128), НОД (81; 64), НОД(360; 840)

Вариант 3

1. Какие числа называются взаимно простыми? Приведите пример.

2. Образец НОД (72; 96) =24

3. Решите самостоятельно НОД(102; 170), НОД(45; 64), НОД(864; 192)

Вариант 4

1. Как найти общий делитель чисел?

2. Образец НОД (360; 432)

3. Решите самостоятельно НОД (135; 105), НОД (128; 75), НОД(360;8400)

Самостоятельная работа


Вариант 1

Вариант 2

Вариант 3

Вариант 4

НОД (180; 120)

НОД (150; 375)

НОД (135; 315; 450)

НОД (250; 125; 375)

НОД (2016; 1320)

НОД (504; 756)

НОД (1575, 6615)

НОД (468; 702)

НОД (3120; 900)

НОД (1028; 1152)

НОД (1512; 1008)

НОД (3375; 2250)

5. Подведение итогов урока. Сообщение оценок за самостоятельную работу.

В этом статье мы расскажем о том, что такое взаимно простые числа. В первом пункте сформулируем определения для двух, трех и более взаимно простых чисел, приведем несколько примеров и покажем, в каких случаях два числа можно считать простыми по отношению друг к другу. После этого перейдем к формулировке основных свойств и их доказательствам. В последнем пункте мы поговорим о связанном понятии – попарно простых числах.

Что такое взаимно простые числа

Взаимно простыми могут быть как два целых числа, так и их большее количество. Для начала введем определение для двух чисел, для чего нам понадобится понятие их наибольшего общего делителя. Если нужно, повторите материал, посвященный ему.

Определение 1

Взаимно простыми будут два таких числа a и b , наибольший общий делитель которых равен 1 , т.е. НОД (a , b) = 1 .

Из данного определения можно сделать вывод, что единственный положительный общий делитель у двух взаимно простых чисел будет равен 1 . Всего два таких числа имеют два общих делителя – единицу и минус единицу.

Какие можно привести примеры взаимно простых чисел? Например, такой парой будут 5 и 11 . Они имеют только один общий положительный делитель, равный 1 , что является подтверждением их взаимной простоты.

Если мы возьмем два простых числа, то по отношению друг к другу они будут взаимно простыми во всех случаях, однако такие взаимные отношения образуются также и между составными числами. Возможны случаи, когда одно число в паре взаимно простых является составным, а второе простым, или же составными являются они оба.

Это утверждение иллюстрирует следующий пример: составные числа - 9 и 8 образуют взаимно простую пару. Докажем это, вычислив их наибольший общий делитель. Для этого запишем все их делители (рекомендуем перечитать статью о нахождении делителей числа). У 8 это будут числа ± 1 , ± 2 , ± 4 , ± 8 , а у 9 – ± 1 , ± 3 , ± 9 . Выбираем из всех делителей тот, что будет общим и наибольшим – это единица. Следовательно, если НОД (8 , − 9) = 1 , то 8 и - 9 будут взаимно простыми по отношению друг к другу.

Взаимно простыми числами не являются 500 и 45 , поскольку у них есть еще один общий делитель – 5 (см. статью о признаках делимости на 5). Пять больше единицы и является положительным числом. Другой подобной парой могут быть - 201 и 3 , поскольку их оба можно разделить на 3 , на что указывает соответствующий признак делимости.

На практике довольно часто приходится определять взаимную простоту двух целых чисел. Выяснение этого можно свести к поиску наибольшего общего делителя и сравнению его с единицей. Также удобно пользоваться таблицей простых чисел, чтобы не производить лишних вычислений: если одно из заданных чисел есть в этой таблице, значит, оно делится только на единицу и само на себя. Разберем решение подобной задачи.

Пример 1

Условие: выясните, являются ли взаимно простыми числа 275 и 84 .

Решение

Оба числа явно имеют больше одного делителя, поэтому сразу назвать их взаимно простыми мы не можем.

Вычисляем наибольший общий делитель, используя алгоритм Евклида: 275 = 84 · 3 + 23 , 84 = 23 · 3 + 15 , 23 = 15 · 1 + 8 , 15 = 8 · 1 + 7 , 8 = 7 · 1 + 1 , 7 = 7 · 1 .

Ответ: поскольку НОД (84 , 275) = 1 , то данные числа будут взаимно простыми.

Как мы уже говорили раньше, определение таких чисел можно распространить и на случаи, когда у нас есть не два числа, а больше.

Определение 2

Взаимно простыми целые числа a 1 , a 2 , … , a k , k > 2 будут тогда, когда они имеют наибольший общий делитель, равный 1 .

Иными словами, если у нас есть набор некоторых чисел с наибольшим положительным делителем, большим 1 , то все эти числа не являются по отношению друг к другу взаимно обратными.

Возьмем несколько примеров. Так, целые числа − 99 , 17 и − 27 – взаимно простые. Любое количество простых чисел будет взаимно простым по отношению ко всем членам совокупности, как, например, в последовательности 2 , 3 , 11 , 19 , 151 , 293 и 667 . А вот числа 12 , − 9 , 900 и − 72 взаимно простыми не будут, потому что кроме единицы у них будет еще один положительный делитель, равный 3 . То же самое относится к числам 17 , 85 и 187: кроме единицы, их все можно разделить на 17 .

Обычно взаимная простота чисел не является очевидной с первого взгляда, этот факт нуждается в доказательстве. Чтобы выяснить, будут ли некоторые числа взаимно простыми, нужно найти их наибольший общий делитель и сделать вывод на основании его сравнения с единицей.

Пример 2

Условие: определите, являются ли числа 331 , 463 и 733 взаимно простыми.

Решение

Сверимся с таблицей простых чисел и определим, что все три этих числа в ней есть. Тогда их общим делителем может быть только единица.

Ответ: все эти числа будут взаимно простыми по отношению друг к другу.

Пример 3

Условие: приведите доказательство того, что числа − 14 , 105 , − 2 107 и − 91 не являются взаимно простыми.

Решение

Начнем с выявления их наибольшего общего делителя, после чего убедимся, что он не равен 1 . Поскольку у отрицательных чисел те же делители, что и у соответствующих положительных, то НОД (− 14 , 105 , 2 107 , − 91) = НОД (14 , 105 , 2 107 , 91) . Согласно правилам, которые мы привели в статье о нахождении наибольшего общего делителя, в данном случае НОД будет равен семи.

Ответ: семь больше единицы, значит, взаимно простыми эти числа не являются.

Основные свойства взаимно простых чисел

Такие числа имеют некоторые практически важные свойства. Перечислим их по порядку и докажем.

Определение 3

Если разделить целые числа a и b на число, соответствующее их наибольшему общему делителю, мы получим взаимно простые числа. Иначе говоря, a: НОД (a , b) и b: НОД (a , b) будут взаимно простыми.

Это свойство мы уже доказывали. Доказательство можно посмотреть в статье о свойствах наибольшего общего делителя. Благодаря ему мы можем определять пары взаимно простых чисел: достаточно лишь взять два любых целых числа и выполнить деление на НОД. В итоге мы должны получить взаимно простые числа.

Определение 4

Необходимым и достаточным условием взаимной простоты чисел a и b является существование таких целых чисел u 0 и v 0 , при которых равенство a · u 0 + b · v 0 = 1 будет верным.

Доказательство 1

Начнем с доказательства необходимости этого условия. Допустим, у нас есть два взаимно простых числа, обозначенных a и b . Тогда по определению этого понятия их наибольший общий делитель будет равен единице. Из свойств НОД нам известно, что для целых a и b существует соотношение Безу a · u 0 + b · v 0 = НОД (a , b) . Из него получим, что a · u 0 + b · v 0 = 1 . После этого нам надо доказать достаточность условия. Пусть равенство a · u 0 + b · v 0 = 1 будет верным, в таком случае, если НОД (a , b) делит и a , и b , то он будет делить и сумму a · u 0 + b · v 0 , и единицу соответственно (это можно утверждать, исходя из свойств делимости). А такое возможно только в том случае, если НОД (a , b) = 1 , что доказывает взаимную простоту a и b .

В самом деле, если a и b являются взаимно простыми, то согласно предыдущему свойству, будет верным равенство a · u 0 + b · v 0 = 1 . Умножаем обе его части на c и получаем, что a · c · u 0 + b · c · v 0 = c . Мы можем разделить первое слагаемое a · c · u 0 + b · c · v 0 на b , потому что это возможно для a · c , и второе слагаемое также делится на b , ведь один из множителей у нас равен b . Из этого заключаем, что всю сумму можно разделить на b , а поскольку эта сумма равна c , то c можно разделить на b .

Определение 5

Если два целых числа a и b являются взаимно простыми, то НОД (a · c , b) = НОД (c , b) .

Доказательство 2

Докажем, что НОД (a · c , b) будет делить НОД (c , b) , а после этого – что НОД (c , b) делит НОД (a · c , b) , что и будет доказательством верности равенства НОД (a · c , b) = НОД (c , b) .

Поскольку НОД (a · c , b) делит и a · c и b , а НОД (a · c , b) делит b , то он также будет делить и b · c . Значит, НОД (a · c , b) делит и a · c и b · c , следовательно, в силу свойств НОД он делит и НОД (a · c , b · c) , который будет равен c · НОД (a , b) = c . Следовательно, НОД (a · c , b) делит и b и c , следовательно, делит и НОД (c , b) .

Также можно сказать, что поскольку НОД (c , b) делит и c , и b , то он будет делить и c , и a · c . Значит, НОД (c , b) делит и a · c и b , следовательно, делит и НОД (a · c , b) .

Таким образом, НОД (a · c , b) и НОД (c , b) взаимно делят друг друга, значит, они являются равными.

Определение 6

Если числа из последовательности a 1 , a 2 , … , a k будут взаимно простыми по отношению к числам последовательности b 1 , b 2 , … , b m (при натуральных значениях k и m), то их произведения a 1 · a 2 · … · a k и b 1 · b 2 · … · b m также являются взаимно простыми, в частности, a 1 = a 2 = … = a k = a и b 1 = b 2 = … = b m = b , то a k и b m – взаимно простые.

Доказательство 3

Согласно предыдущему свойству, мы можем записать равенства следующего вида: НОД (a 1 · a 2 · … · a k , b m) = НОД (a 2 · … · a k , b m) = … = НОД (a k , b m) = 1 . Возможность последнего перехода обеспечивается тем, что a k и b m взаимно просты по условию. Значит, НОД (a 1 · a 2 · … · a k , b m) = 1 .

Обозначим a 1 · a 2 · … · a k = A и получим, что НОД (b 1 · b 2 · … · b m , a 1 · a 2 · … · a k) = НОД (b 1 · b 2 · … · b m , A) = НОД (b 2 · … · b · b m , A) = … = НОД (b m , A) = 1 . Это будет справедливым в силу последнего равенства из цепочки, построенной выше. Таким образом, у нас получилось равенство НОД (b 1 · b 2 · … · b m , a 1 · a 2 · … · a k) = 1 , с помощью которого можно доказать взаимную простоту произведений a 1 · a 2 · … · a k и b 1 · b 2 · … · b m

Это все свойства взаимно простых чисел, о которых бы мы хотели вам рассказать.

Понятие попарно простых чисел

Зная, что из себя представляют взаимно простые числа, мы можем сформулировать определение попарно простых чисел.

Определение 7

Попарно простые числа – это последовательность целых чисел a 1 , a 2 , … , a k , где каждое число будет взаимно простым по отношению к остальным.

Примером последовательности попарно простых чисел может быть 14 , 9 , 17 , и − 25 . Здесь все пары (14 и 9 , 14 и 17 , 14 и − 25 , 9 и 17 , 9 и − 25 , 17 и − 25) взаимно просты. Отметим, что условие взаимной простоты является обязательным для попарно простых чисел, но взаимно простые числа будут попарно простыми далеко не во всех случаях. Например, в последовательности 8 , 16 , 5 и 15 числа не являются таковыми, поскольку 8 и 16 не будут взаимно простыми.

Также следует остановиться на понятии совокупности некоторого количества простых чисел. Они всегда будут и взаимно, и попарно простыми. Примером может быть последовательность 71 , 443 , 857 , 991 . В случае с простыми числами понятия взаимной и попарной простоты будут совпадать.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter