При повышении температуры на 10 градусов температурный. Правило Вант- Гоффа

Закон действующих масс устанавливает соотношение между массами реагирующих веществ в химических реакциях при равновесии. Закон действующих масс сформулирован в 1864-1867 гг. К. Гульдбергом и П. Вааге. Согласно этому закону скорость, с которой вещества реагируют друг с другом, зависит от их концентрации. Закон действующих масс используют при различных расчетах химических процессов. Он позволяет решить вопрос, в каком направлении возможно самопроизвольное течение рассматриваемой реакции при заданном соотношении концентраций реагирующих веществ, какой выход нужного продукта может быть получен.

Вопрос 18.Правило Вант-Гоффа.

Правило Вант-Гоффа - эмпирическое правило, позволяющее в первом приближении оценить влияние температуры на скорость химической реакции в небольшом температурном интервале (обычно от 0 °С до 100 °С). Вант-Гофф на основании множества экспериментов сформулировал следующее правило: При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличиваеться в два - четыре раза. Уравнение, которое описывает это правило следующее:

V = V0 * Y(T2 − T1) / 10

где V-скорость реакции при данной температуре(T2), V0-скорость реакции при температуре T1, Y-температурный коэффициент реакции (если он равен 2, например, то скорость реакции будет увеличиватся в 2 раза при повышении температуры на 10 градусов).

Следует помнить, что правило Вант-Гоффа ограниченную область применимости. Ему не подчиняются многие реакции, например реакции, происходящие при высоких температурах, очень быстрые и очень медленные реакции. Правилу Вант-Гоффа также не подчиняются реакции, в которых принимают участие громоздкие молекулы, например белки в биологических системах. Температурную зависимость скорости реакции более корректно описывает уравнение Аррениуса.

V = V0 * Y(T2 − T1) / 10

Вопрос 19.Энегрия активации.

Энергия активации в химии и биологии - минимальное количество энергии, которую требуется сообщить системе (в химии выражается в джоулях на моль), чтобы произошла реакция. Термин введён Сванте Августом Аррениусом в 1889. Типичное обозначение энергии реакции Ea.

Энергия активации в физике -- минимальное количество энергии, которое должны получить электроны донорной примеси, для того чтобы попасть в зону проводимости.

В химической модели, известной как Теория активных соударений (ТАС), есть три условия, необходимых для того, чтобы произошла реакция:

Молекулы должны столкнуться. Это важное условие, однако его не достаточно, так как при столкновении не обязательно произойдёт реакция.

Молекулы должны обладать необходимой энергией (энергией активации). В процессе химической реакции взаимодействующие молекулы должны пройти через промежуточное состояние, которое может обладать большей энергией. То есть молекулы должны преодолеть энергетический барьер; если этого не произойдёт, реакция не начнётся.

Молекулы должны быть правильно ориентированы друг относительно друга.

При низкой (для определённой реакции) температуре большинство молекул обладают энергией меньшей, чем энергия активации, и неспособны преодолеть энергетический барьер. Однако в веществе всегда найдутся отдельные молекулы, энергия которых значительно выше средней. Даже при низких температурах большинство реакций продолжают идти. Увеличение температуры позволяет увеличить долю молекул, обладающих достаточной энергией, чтобы преодолеть энергетический барьер. Таким образом повышается скорость реакции.

Математическое описание

Уравнение Аррениуса устанавливает связь между энергией активации и скоростью протекания реакции:

k - константа скорости реакции, A - фактор частоты для реакции, R - универсальная газовая постоянная, T - температура в кельвинах.

С повышением температуры растёт вероятность преодоления энергетического барьера. Общее эмпирическое правило: повышение температуры на 10 К удваивает скорость реакции

Переходное состояние

Соотношение между энергией активации (Ea) и энтальпией (энтропией) реакции (ΔH) при наличии и при отсутствии катализатора. Наивысшая точка энергии представляет собой энергетический барьер. В присутствии катализатора энергии, которая необходима для начала реакции, требуется меньше.

Переходное состояние - состояние системы, при котором уравновешены разрушение и создание связи. В переходном состоянии система находится в течение небольшого (10-15 с) времени. Энергия, которую необходимо затратить, чтобы привести систему в переходное состояние, называется энергией активации. В многоступенчатых реакциях, которые включают в себя несколько переходных состояний, энергия активации соответствует наибольшему значению энергии. После преодоления переходного состояния молекулы вновь разлетаются с разрушением старых связей и образованием новых или с преобразованием исходных связей. Оба варианта возможны, так как происходят с высвобождением энергии (это хорошо видно на рисунке, поскольку оба положения лежат энергетически ниже энергии активации). Существуют вещества, способные уменьшить энергию активации для данной реакции. Такие вещества называют катализаторами. Биологи же такие вещества называют ферментами. Интересно, что катализаторы таким образом ускоряют ход реакции, самостоятельно в ней не участвуя.

Константа скорости реакции есть функция от температуры; повышение температуры, как правило, увеличивает константу скорости. Первая попытка учесть влияние температуры была сделана Вант-Гоффом, сформулировавшим следующее эмпирическое правило:

При повышении температуры на каждые 10 градусов константа скорости элементарной химической реакции увеличивается в 2 – 4 раза.

Величина, показывающая, во сколько раз увеличивается константа скорости при повышении температуры на 10 градусов, есть температурный коэффициент константы скорости реакции γ. Математически правило Вант-Гоффа можно записать следующим образом:

(II.30)

Однако правило Вант-Гоффа применимо лишь в узком температурном интервале, поскольку температурный коэффициент скорости реакции γ сам является функцией от температуры; при очень высоких и очень низких температурах γ становится равным единице (т.е. скорость химической реакции перестает зависеть от температуры).

Уравнение Аррениуса

Очевидно, что взаимодействие частиц осуществляется при их столкновениях; однако число столкновений молекул очень велико и, если бы каждое столкновение приводило к химическому взаимодействию частиц, все реакции протекали бы практически мгновенно. Аррениус постулировал, что столкновения молекул будут эффективны (т.е. будут приводить к реакции) только в том случае, если сталкивающиеся молекулы обладают некоторым запасом энергии – энергией активации.

Энергия активации есть минимальная энергия, которой должны обладать молекулы, чтобы их столкновение могло привести к химическому взаимодействию.

Рассмотрим путь некоторой элементарной реакции

А + В ––> С

Поскольку химическое взаимодействие частиц связано с разрывом старых химических связей и образованием новых, считается, что всякая элементарная реакция проходит через образование некоторого неустойчивого промежуточного соединения, называемого активированным комплексом:

А ––> K # ––> B

Образование активированного комплекса всегда требует затраты некоторого количества энергии, что вызвано, во-первых, отталкиванием электронных оболочек и атомных ядер при сближении частиц и, во-вторых, необходимостью построения определенной пространственной конфигурации атомов в активированном комплексе и перераспределения электронной плотности. Таким образом, по пути из начального состояния в конечное система должна преодолеть своего рода энергетический барьер. Энергия активации реакции приближённо равна превышению средней энергии активированного комплекса над средним уровнем энергии реагентов. Очевидно, что если прямая реакция является экзотермической, то энергия активации обратной реакции Е" А выше, нежели энергия активации прямой реакции E A . Энергии активации прямой и обратной реакции связаны друг с другом через изменение внутренней энергии в ходе реакции. Вышесказанное можно проиллюстрировать с помощью энергетической диаграммы химической реакции (рис. 2.5).

Рис. 2.5. Энергетическая диаграмма химической реакции. E исх – средняя энергия частиц исходных веществ, E прод – средняя энергия частиц продуктов реакции.

Поскольку температура есть мера средней кинетической энергии частиц, повышение температуры приводит к увеличению доли частиц, энергия которых равна или больше энергии активации, что приводит к увеличению константы скорости реакции (рис.2.6):

Рис. 2.6. Распределение частиц по энергии. Здесь nЕ/N - доля частиц, обладающих энергией E; E i - средняя энергия частиц при температуре T i (T 1 < T 2 < T 3).

Рассмотрим термодинамический вывод выражения, описывающего зависимость константы скорости реакции от температуры и величины энергии активации – уравнения Аррениуса. Согласно уравнению изобары Вант-Гоффа,

Поскольку константа равновесия есть отношение констант скоростей прямой и обратной реакции, можно переписать выражение (II.31) следующим образом:

(II.32)

Представив изменение энтальпии реакции ΔHº в виде разности двух величин E 1 и E 2 , получаем:

(II.33)

(II.34)

Здесь С – некоторая константа. Постулировав, что С = 0, получаем уравнение Аррениуса, где E A – энергия активации:

После неопределенного интегрирования выражения (II.35) получим уравнение Аррениуса в интегральной форме:

(II.36)

(II.37)

Рис. 2.7. Зависимость логарифма константы скорости химической реакции от обратной температуры.

Здесь A – постоянная интегрирования. Из уравнения (II.37) нетрудно показать физический смысл предэкспоненциального множителя A, который равен константе скорости реакции при температуре, стремящейся к бесконечности. Как видно из выражения (II.36), логарифм константы скорости линейно зависит от обратной температуры (рис.2.7); величину энергии активации E A и логарифм предэкспоненциального множителя A можно определить графически (тангенс угла наклона прямой к оси абсцисс и отрезок, отсекаемый прямой на оси ординат).

Зная энергию активации реакции и константу скорости при какой-либо температуре T 1 , по уравнению Аррениуса можно рассчитать величину константы скорости при любой температуре T 2:

(II.39)

При повышении температуры скорость большинства химических реакций существенно увеличивается, причем для гомогенных реакций при нагревании на каждые десять градусов скорость реакции возрастает в 2-4 раза.

Общее число частиц в системе (N) равно площади под кривой. Общее число частиц с энергией большей, чем Еа - равно заштрихованной площади.

Из рисунка 2 видно, что при увеличении температуры распределение частиц по энергии меняется так, что увеличивается доля частиц с более высокой энергией. Таким образом важным понятием для химической реакции является энергия активации.

Энергию активации - это энергия которой должны обладать частицы, чтобы взаимодействие их привело к химической реакции. Энергия активации выражается в кДж/моль. Для реакций, протекающих с заметной скоростью, энергия активации не превышает 50кДж/моль (для реакций ионного обмена Ea » 0); если Ea > 100 кДж/моль, то скорость реакции неизмеримо мала.

В 1889 г. С.Аррениус привел уравнение зависимости константу скорости химической реакции от температуры:


k = Ae - Ea/RT

где, A - предэкспотенциальный множитель, зависящий от природы реагирующих веществ;

R - газовая постоянная = 8,314 Дж/(моль? К);

Ea - энергия активации.

Из уравнения Аррениуса следует, что чем выше энергия активации, тем в большей степени необходимо повышать температуру для поддержания необходимой скорости реакции.

На рисунке 3 показана зависимость изменения потенциальной энергии реагирующей системы от пути протекания реакции. Из приведенного рисунка видно, что для экзотермической реакции (идущей с выделением теплоты) убыль активных молекул восполняется за счет энергии, выделяющейся в ходе реакции. В случае эндотермической реакции для поддержания необходимой скорости реакции требуется подвод тепла.

Экзотермическая реакция Эндотермическая реакция

Рисунок 10.3 Энергетическая диаграмма химической реакции

А - реагенты, С - продукты.

2.4 Влияние посторонних веществ

Посторонние вещества в зависимости от оказываемого воздействия могут ускорять реакции - катализаторы или замедлять - ингибиторы.

Катализаторы - это вещества ускоряющие химические реакции, но сами после реакции остаются в неизменном виде.

Ингибиторы - это вещества замедляющие реакцию.На практике иногда необходимо замедлять реакции (коррозия металлов и др.) это достигается введением в реакционную систему ингибиторов. Например, нитрит натрия, хромата и дихромата калия снижают скорость коррозии металлов.

Промоторы - вещества, повышающие активность катализатора. При этом промоторы могут сами и не обладать каталитическими свойствами.

Каталитические яды - посторонние примеси в реакционной смеси, приводящие к частичной или полной потере активности катализатора. Так, следы мышьяка, фосфора вызывают быструю потерю активности катализатором V 2 O 5 при контактном способе получения H 2 SO 4 .

3. Химическое равновесие

В химических реакциях исходные вещества не всегда полностью превращаются в продукты реакции. Это происходит потому, что по мере накопления продуктов реакции могут создаваться условия для протекания обратной реакции. Большинство химических реакций являются обратимыми.

В качестве примера проанализируем крайне важную для промышленности обратимую реакцию синтеза аммиака из азота и водорода:

прямая реакция - 2N 2 + 3H 2 → 2NH 3 ,

обратная реакция - 2NH 3 → N 2 + 3H 2 ,

обратимая реакция - 2N 2 + 3H 2 « 2NH 3 .

Прямая и обратная реакции являются отдельными реакциями с соответствующими им кинетическими уравнениями, предэкспотециальными множителями, энергиями активаций и т.д

Важной количественной характеристикой обратимых реакций является константа равновесия, которая определяется при достижении системой химического равновесия - состояния при котором скорости прямой и обратной реакций равны. Примеры применения закона действующих масс (з.д.м.).

Выведем константу равновесия на примере реакции синтеза аммиака.

Кинетическое уравнение прямой реакции

N 2 +3H 2 → 2NH 3

имеет вид Vпр = Кпр 3 .

Кинетическое уравнение обратной реакции

2NH 3 → N 2 + 3H 2

имеет вид Vобр = Кобр 2 .

В состоянии химического равновесия Vпр = Vобр.

Подставляя в условие химического равновесия выражения скоростей прямой и обратной реакций получаем следующее равенство Кпр 3 = Кобр 2 .

После преобразования получаем

.

4. Принцип Ле-Шателье

Если на систему, находящуюся в состоянии химического равновесия, оказывается какое-либо внешнее воздействие, то равновесие в результате протекающих в системе процессов сместится таким образом, что оказанное воздействие уменьшится.

4.1 Влияние изменения концентраций на равновесие

При увеличении концентрации какого-либо из веществ, участвующих в реакции, равновесие смещается в сторону расходования этого вещества, а при её уменьшении - в сторону образования этого вещества.

Пример 1. Если в равновесную систему

2N 2 + 3H 2 « 2NH 3

добавить N 2 или H 2 , то в соответствии с принципом Ле-Шателье для уменьшения концентраций данных веществ, равновесие должно сместится вправо, выход NH 3 увеличится. При увеличении концентрации NH 3 равновесие соответственно сместится влево.

4.2 Влияние изменения давления на равновесие

Давление в замкнутой реакционной системе обусловлено наличием в ней газообразных веществ: чем их больше, тем больше давление. Поэтому изменение внешнего давления повлияет на равновесие только в тех случаях, когда в нем участвуют газообразные вещества, причем количество их в прямой и обратной реакциях разное.

Если в системе, находящейся в состоянии химического равновесия увеличить давление, то преимущественно будет протекать реакция, в результате которой уменьшается количество газообразных веществ; при уменьшении давления преимущественно протекает реакция, в результате которой увеличивается количество газообразных продуктов.

Пример 1. Можно ли изменением давления увеличить выход продуктов в реакцииCO 2 (г) + H 2 (г) « CO(г) + H 2 O(г).

Решение: Реакционная смесь включает газообразные реагенты, но количество их в реакции не меняется: из одного моля CO 2 (г) и одного моля H2(г) получаются по одному молю CO(г) и H 2 O(г). По этой причине изменение давления на состояние равновесия не влияет.

Пример 2. Как изменятся равновесные концентрации реагентов при увеличении давления в системе N 2 + 3H 2 « 2NH 3 ?

Из уравнения реакции видно, что из 4 моль газа исходных продуктов образуется 2 моль газа продуктов реакции. Таким образом при увеличении давления равновесие сместится прямой реакции, так как она приводит к уменьшению давления.

4.3 Влияние изменения температуры на химическое равновесие

Большинство химических реакций протекают с выделением или поглощением тепла. В первом случае температура смеси увеличивается, во втором - уменьшается.

Если реакционную смесь, находящуюся в состоянии химического равновесия, нагреть, то в соответствии с принципом Ле Шателье должна протекать преимущественно реакция, в результате которой тепло будет поглощаться, т.е. эндотермическая реакция; при охлаждении смеси должна протекать преимущественно реакция, в результате которой тепло будет выделяться, т.е. эндотермическая реакция.

Если в системе, находящейся в состоянии химического равновесия, увеличить температуру, то равновесие смещается в сторону эндотермической реакции, а при понижении температуры - в сторону экзотермической реакции.

Пример: 2N 2 + 3H 2 « 2NH 3 , H0 = - 92 кДж

Реакция экзотермическая, поэтому при увеличении температуры равновесие сдвигается влево, а при понижении температуры - вправо.

Из этого следует, что для увеличения выхода аммиака температуру необходимо понижать. На практике выдерживают температуру 500 0С, так как при более низкой температуре резко снижается скорость прямой реакции.

Химическое равновесие имеет динамический характер: прямая и обратная реакции при равновесии не прекращаются.

Константа равновесия зависит от температуры и природы реагирующих веществ. Чем больше константа равновесия, тем больше равновесие сдвинуто в сторону образования продуктов прямой реакции

Принцип Ле Шателье универсален, так как применим не только к чисто химическим процессам, но и к физико-химическим явлениям, таким, как кристаллизация, растворение, кипение, фазовые превращения в твердых телах.

Влияние температуры на количество столкновений молекул может быть показано с помощью модели . В первом приближении влияние температуры на скорость реакций определяется правилом Вант-Гоффа (сформулировано Я. Х. Вант-Гоффом на основании экспериментального изучения множества реакций):

где g - tтемпературный коэффициент, принимающий значения от 2 до 4.

Объяснение зависимости скорости реакции от температуры было дано С.Аррениусом . К реакции приводит не каждое столкновение молекул реагентов, а только наиболее сильные столкновения. Лишь молекулы, обладающие избытком кинетической энергии, способны к химической реакции.

С.Аррениус рассчитал долю активных (т.е. приводящих к реакции) соударений реагирующих частиц a, зависящую от температуры: - a = exp(-E/RT). и вывел уравнение Аррениуса для константы скорости реакции :

k = k o e -E/RT

где k o и E dзависят от природы реагентов. Е - это энергия, которую надо придать молекулам, чтобы они вступили во взаимодействие, называемая энергией активации .

Зависимость скорости химической реакции от температуры.

Скорость гетерогенных реакций.

В гетерогенных системах реакции протекают на поверхности раздела фаз. При этом концентрация твердой фазы остается прак­тически постоянной и не влияет на скорость реакции. Скорость гетерогенной реакции будет зависить только от концентрации ве­щества в жидкой или газообразной фазе. Поэтому в кинетическом уравнении концентрации твердых веществ не указываются, их ве­личины входят в значения констант. Например, для гетерогенной реакции

кинетическое уравнение можно записать

ПРИМЕР 4. Кинетический порядок реакции взаимо­действия хрома с алюминием равен 1. Написать химическое и кине­тическое уравнения реакции.

Реакция взаимодействия алюминия схлором гетерогенная, кинетическое уравнение может быть записано

ПРИМЕР 5. Кинетическое уравнение реакции

имеет вид

Определить размерность константы скорости и вычислить скорость растворения серебра при парциональном давлении кислорода Па и концентрации цианистого калия 0,055 моль/л.

Размерность константы определяем из кинетического уравнения, чанного в условии задачи:

Подставляя в кинетическое уравнение данные задачи, находим скорость растворения серебра:

ПРИМЕР 6. Кинетическое уравнение реакции

имеет вид

Как изменится скорость реакции, если концентрацию хлорида ртути (П) в два раза уменьшить, а концентрацию оксалат ионов в два раза увеличить?

После изменения концентрации исходных веществ скорость реакции выражается кинетическим уравнением

Сравнивая и, находим, что скорость реакции уве­личилась в 2 раза.

При повышении температуры скорость химической реакции заметно возрастает.

Количественная зависимость скорости реакции от температуры определяется правилом Вант-Гоффа.

Для характеристики зависимости скорости химической реакции (константы скорости) от температуры используют температурный коэф­фициент скорости, реакции (), называемый также коэффициентом Вант-Гоффа. Температурный коэффициент скорости реакции показывает, во сколько раз увеличится скорость реакции с повышением температуры реагирующих веществ на 10 градусов.

Математически зависимость скорости реакции от температуры выражается соотношением

где температурный коэффициент скорости;



Т ;

Т ;

–– константа скорости реакции при температуре Т + 10;

–– скорость реакции при температуре Т + 10.

Для расчетов удобнее пользоваться уравнениями

а также логарифмическими формами этих уравнений

Возрастание скорости реакции с повышением температуры объясняет теория активации. Согласно этой теория частицы реагирующих веществ пристолкновении должны преодолеть силы отталкивания, ослабить или разорвать старые химические связи и образовать новые. На это они должны затратить определен­ную энергию, т.е. преодолеть какой-то энергетический барьер. Частица, обладающие избыточной энергией достаточной дня преодо­ления энергетического барьера, называют активными частицами.

При обычныхусловиях активных частиц в системе мало, и реакцияпротекает с меньшей скоростью. Но неактивные частицы могут стать активными, если сообщить им дополнительную энергий. Одним из способов активации частиц является повышением температуры. При повышении температуры резко возрастает число активных частиц в системе и скорость реакции увеличивается.