В какие химические реакции вступают алканы. Алканы – определение, строение, физические и химические свойства

Нагревание натриевой соли уксусной кислоты (ацетата натрия) с избытком щелочи приводит к отщеплению карбоксильной группы и образованию метана:

СН3СОNа + NаОН СН4 + Nа2С03

Если вместо ацетата натрия взять пропионат натрия, то образуется этан, из бутаноата натрия - пропан и т. д.

RСН2СОNа +NаОН -> RСН3 + Nа2С03

5. Синтез Вюрца. При взаимодействии галогеналканов с щелочным металлом натрием образуются предельные углеводороды и галогенид щелочного металла, например:

Действие щелочного металла на смесь галогенуглеводородов (например, бромэтана и бромметана) приведет к образованию смеси алканов (этана, пропана и бутана).

Реакция, на которой основан синтез Вюрца, хорошо протекает только с галогеналканами, в молекулах которых атом галогена присоединен к первичному атому углерода.

6. Гидролиз карбидов. При обработке некоторых карбидов, содержащих углерод в степени окисления -4 (например, карбида алюминия), водой образуется метан:

Аl4С3 + 12Н20 = ЗСН4 + 4Аl(ОН)3 Физические свойства

Первые четыре представителя гомологического ряда метана - газы. Простейший из них - метан - газ без цвета, вкуса и запаха (запах «газа», почувствовав который надо звонить по телефону 04, определяется запахом меркаптанов - серусодер-жащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных газовых приборах, для того чтобы люди, находящиеся рядом с ними, могли по запаху определить утечку).

Углеводороды состава от С5Н12 до С15Н32 - жидкости, более тяжелые углеводороды - твердые вещества.

Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются распространенными органическими растворителями.

Химические свойства

1. Реакции замещения. Наиболее характерными для ал-канов являются реакции свободнорадикального замещения, в ходе которых атом водорода замещается на атом галогена или какую-либо группу.

Приведем уравнения наиболее характерных реакций.

Галогенирование:

СН4 + С12 -> СН3Сl + HCl

В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор:

СН3Сl + С12 -> HCl + СН2Сl2
дихлорметан хлористый метилен

СН2Сl2 + Сl2 -> HCl + CHCl3
трихлорметан хлороформ

СНСl3 + Сl2 -> HCl + ССl4
тетрахлорметан четыреххлористый углерод

Полученные вещества широко используются как растворители и исходные вещества в органических синтезах.

2. Дегидрирование (отщепление водорода). При пропускании алканов над катализатором (Pt, Ni, А1203, Сг2O3) при высокой температуре (400-600 °С) происходит отщепление молекулы водорода и образование алкена:

СН3-СН3 -> СН2=СН2 + Н2

3. Реакции, сопровождающиеся разрушением углеродной цепи. Все предельные углеводороды горят с образованием углекислого газа и воды. Газообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться. Горение предельных углеводородов - это свободнора-дикальная экзотермическая реакция, которая имеет очень большое значение при использовании алканов в качестве топлива.

СН4 + 2O2 -> С02 + 2Н2O + 880кДж

В общем виде реакцию горения алканов можно записать следующим образом:


Реакции термического расщепления лежат в основе промышленного процесса - крекинга углеводородов. Этот процесс является важнейшей стадией переработки нефти.

При нагревании метана до температуры 1000 °С начинается пиролиз метана - разложение на простые вещества. При нагревании до температуры 1500 °С возможно образование ацетилена.

4. Изомеризация. При нагревании линейных углеводородов с катализатором изомеризации (хлоридом алюминия) происходит образование веществ с разветвленным углеродным скелетом:


5. Ароматизация. Алканы с шестью или более углеродными атомами в цепи в присутствии катализатора циклизуются с образованием бензола и его производных:

В чем причина того, что алканы вступают в реакции, протекающие по свободнорадикальному механизму? Все атомы углерода в молекулах алканов находятся в состоянии sр 3 -гибридизации. Молекулы этих веществ построены при помощи ковалентных неполярных С-С (углерод-углерод) связей и слабополярных С-Н (углерод-водород) связей. В них нет участков с повышенной и пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних воздействий (электростатических полей ионов). Следовательно, алканы не будут реагировать с заряженными частицами, так как связи в молекулах алканов не разрываются по гетеролитическому механизму.

Наиболее характерными реакциями алканов являются реакции свободнорадикального замещения. В ходе этих реакций атом водорода замещается на атом галогена или какую-либо группу.

Кинетику и механизм свободнорадикальных цепных реакций, т. е. реакций, протекающих под действием свободных радикалов - частиц, имеющих неспаренные электроны, - изучал замечательный русский химик Н. Н. Семенов. Именно за эти исследования ему была присуждена Нобелевская премия по химии .

Обычно механизм реакции свободнорадикального замещения представляют тремя основными стадиями:

1. Инициирование (зарождение цепи, образование свободных радикалов под действием источника энергии - ультрафиолетового света, нагревания).

2. Развитие цепи (цепь последовательных взаимодействий свободных радикалов и неактивных молекул, в результате которых образуются новые радикалы и новые молекулы).

3. Обрыв цепи (объединение свободных радикалов в неактивные молекулы (рекомбинация), «гибель» радикалов, прекращение развития цепи реакций).

Научные исследования Н.Н. Семенова

Семенов Николай Николаевич

(1896 - 1986)


Советский физик и физикохимик, академик. Лауреат Нобелевской премии (1956). Научные исследования относятся к учению о химических процессах, катализе, цепных реакциях, теории теплового взрыва и горении газовых смесей.

Рассмотрим этот механизм на примере реакции хлорирования метана:

СН4 + Сl2 -> СН3Сl + НСl

Инициирование цепи происходит в результате того, что под действием ультрафиолетового облучения или при нагревании происходит гомолитический разрыв связи Сl-Сl и молекула хлора распадается на атомы:

Сl: Сl -> Сl· + Сl·

Образовавшиеся свободные радикалы атакуют молекулы метана, отрывая у них атом водорода:

СН4 + Сl· -> СН3· + НСl

и превращая в радикалы СН3·, которые, в свою очередь, сталкиваясь с молекулами хлора, разрушают их с образованием новых радикалов:

СН3· + Сl2 -> СН3Сl + Сl· и т. д.

Происходит развитие цепи.

Наряду с образованием радикалов происходит их «гибель» в результате процесса рекомбинации - образования неактивной молекулы из двух радикалов:

СН3· + Сl· -> СН3Сl

Сl· + Сl· -> Сl2

СН3· + СН3· -> СН3-СН3

Интересно отметить, что при рекомбинации выделяется ровно столько энергии, сколько необходимо для разрушения только что образовавшейся связи. В связи с этим рекомбинация возможна только в том случае, если в соударении двух радикалов участвует третья частица (другая молекула, стенка реакционного сосуда), которая забирает на себя избыток энергии. Это дает возможность регулировать и даже останавливать свободнорадикальные цепные реакции.

Обратите внимание на последний пример реакции рекомбинации - образование молекулы этана. Этот пример показывает, что реакция с участием органических соединений представляет собой достаточно сложный процесс, в результате которого, наряду с основным продуктом реакции, очень часто образуются побочные продукты, что приводит к необходимости разрабатывать сложные и дорогостоящие методики очистки и выделения целевых веществ.

В реакционной смеси, полученной при хлорировании метана, наряду с хлорметаном (СН3Сl) и хлороводородом, будут содержаться: дихлорметан (СН2Сl2), трихлорметан (СНСl3), тетрахлорметан (ССl4), этан и продукты его хлорирования.

Теперь попытаемся рассмотреть реакцию галогенирования (например, бромирования) более сложного органического соединения - пропана.

Если в случае хлорирования метана возможно только одно моно-хлорпроизводное, то в этой реакции может образоваться уже два монобромпроизводных:


Видно, что в первом случае происходит замещение атома водорода при первичном атоме углерода, а во втором - при вторичном. Одинаковы ли скорости этих реакций? Оказывается, что в конечной смеси преобладает продукт замещения атома водорода, который находится при вторичном углероде, т. е. 2-бромпропан (СН3-СНВг-СН3). Давайте попытаемся объяснить это.

Для того чтобы это сделать, нам придется воспользоваться представлением об устойчивости промежуточных частиц. Вы обратили внимание, что при описании механизма реакции хлорирования метана мы упомянули радикал метил - СН3·? Этот радикал является промежуточной частицей между метаном СН4 и хлорметаном СН3Сl. Промежуточной частицей между пропаном и 1-бромпропаном является радикал с неспаренным электроном при первичном углероде, а между пропаном и 2-бромпропаном - при вторичном.

Радикал с неспаренным электроном при вторичном атоме углерода (б) является более устойчивым по сравнению со свободным радикалом с неспаренным электроном при первичном атоме углерода (а). Он и образуется в большем количестве. По этой причине основным продуктом реакции бромирования пропана является 2-бром-пропан - соединение, образование которого протекает через более устойчивую промежуточную частицу.

Приведем несколько примеров свободнорадикальных реакций:

Реакция нитрования (реакция Коновалова)

Реакция применяется для получения нитросоединений - растворителей, исходных веществ для многих синтезов.

Каталитическое окисление алканов кислородом

Эти реакции являются основой важнейших промышленных процессов получения альдегидов, кетонов, спиртов непосредственно из предельных углеводородов, например:

СН4 + [О] -> СН3ОН

Применение

Предельные углеводороды, в особенности метан, находят очень широкое применение в промышленности (схема 2). Они являются простым и достаточно дешевым топливом, сырьем для получения большого количества важнейших соединений.

Соединения, полученные из метана, самого дешевого углеводородного сырья, применяют для получения множества других веществ и материалов. Метан используют как источник водорода в синтезе аммиака, а также для получения синтез-газа (смесь СО и Н2), применяемого для промышленного синтеза углеводородов, спиртов, альдегидов и других органических соединений.

Углеводороды более высококипящих фракций нефти используются как горючее для дизельных, турбореактивных двигателей, как основа смазочных масел, как сырье для производства синтетических жиров и т. д.

Приведем несколько промышленно значимых реакций, протекающих с участием метана. Метан используют для получения хлороформа, нитрометана, кислородсодержащих производных. Спирты, альдегиды, карбоновые кислоты могут образовываться при непосредственном взаимодействии алканов с кислородом в зависимости от условий проведения реакций (катализатора, температуры, давления):

Как вы уже знаете, углеводороды состава от С5Н12 до С11Н24 входят в бензиновую фракцию нефти и применяются в основном как горючее для двигателей внутреннего сгорания. Известно, что наиболее ценными компонентами бензина являются изомерные углеводороды, так как они обладают максимальной детонационной устойчивостью.

Углеводороды при контакте с кислородом воздуха медленно образуют с ним соединения - перекиси. Это медленно протекающая свободнорадикальная реакция, инициатором которой является молекула кислорода:

Обратите внимание на то, что гидропероксидная группа образуется при вторичных атомах углерода, которых больше всего в линейных, или нормальных, углеводородах.

При резком повышении давления и температуры, происходящем в конце такта сжатия, начинается разложение этих перекисных соединений с образованием большого числа свободных радикалов, которые «запускают» свободнорадикальную цепную реакцию горения раньше, чем это необходимо. Поршень еще идет вверх, а продукты горения бензина, которые уже успели образоваться в результате преждевременного поджига смеси, толкают его вниз. Это приводит к резкому уменьшению мощности двигателя, его износу.

Таким образом, основной причиной детонации является наличие перекисных соединений, способность образовывать которые максимальна у линейных углеводородов.

Наименьшей детонационной устойчивостью среди углеводородов бензиновой фракции (С5Н14 - С11Н24) обладает к-гептан. Наиболее устойчив (т. е. в наименьшей степени образует перекиси) так называемый изооктан (2,2,4-триметилпентан).

Общепринятой характеристикой детонационной устойчивости бензина является октановое число. Октановое число 92 (например, бензин А-92) означает, что данный бензин обладает теми же свойствами, что и смесь, состоящая из 92% изооктана и 8% гептана.

В заключение можно добавить, что использование высокооктанового бензина дает возможность повысить степень сжатия (давление в конце такта сжатия), что приводит к повышению мощности и КПД двигателя внутреннего сгорания.

Нахождение в природе и получение

На сегодняшнем уроке вы познакомились с таким понятием, как алканы, а также узнали о его химическом составе и методах получения. Поэтому давайте сейчас более подробно остановимся на теме нахождения алканов в природе и узнаем, как и где алканы нашли применение.

Главными источниками для получения алканов являются природный газ и нефть. Они составляют основную часть продуктов от нефтипереботки. Распространенный, в залежах осадочных пород метан, также является газовым гидратом алканов.

Основной составляющей природного газа является метан, но в его составе присутствует и небольшая доля этана, пропана и бутана. Метан можно обнаружить в выделениях угольных пластов, болот и в попутных нефтяных газах.

Также анканы можно получить методом коксования каменного угля. В природе встречаются и так называемые твердые алканы – озокериты, которые представлены в виде залежей горного воска. Озокерит можно обнаружить в восковых покрытиях растений или их семян, а также в составе пчелиного воска.

Промышленное выделение алканов берется из природных источников, которые к счастью пока неисчерпаемые. Их получают методом каталитического гидрирования оксидов углерода. Также метан можно получить в лабораторных условиях, используя метод нагревания ацетата натрия с твердой щелочью или гидролизом некоторых карбидов. Но и также алканы можно получить способом декарбоксилирования карбоновых кислот и при их электролизе.

Применение алканов

Алканы на бытовом уровне, широко применяются во многих сферах деятельности человека. Ведь очень сложно представить нашу жизнь без природного газа. И ни для кого не будет секретом, что основой природного газа является метан, из которого производят технический углерод, используемый при производстве топографических красок и шин. Холодильник, который есть в доме у каждого, также работает благодаря соединениям алканов, применяющихся в качестве хладагентов. А полученный из метана ацетилен используют для сварки и резки металлов.

Теперь вы уже знаете, что алканы используются как топливо. Они присутствуют в составе бензина, керосина, солярового масла и мазута. Кроме этого, они есть и в составе смазочных масел, вазелина и парафина.

В качестве растворителя и для синтеза различных полимеров, широкое применение нашел циклогексан. А в наркозе используют циклопропан. Сквалан, как высококачественное смазочное масло, является компонентом многих фармацевтических и косметических препаратов. Алканы являются сырьем, с помощью которого получают такие органические соединения, как спирт, альдегиды и кислоты.

Парафин является смесью высших алканов, а так как он нетоксичен, то широко используется в пищевой промышленности. Его применяют для пропитки упаковок для молочной продукции, соков, круп и так далее, но в том числе и при изготовлении жевательных резинок. А разогретый парафин используют в медицине при парафинолечении.

Помимо выше сказанного, парафином пропитаны головки спичек, для их лучшего горения, карандаши и из него изготавливают свечи.

С помощью окисления парафина получают кислородосодержащие продукты, в основном органические кислоты. При смешении жидких углеводоpодов с определенным числом атомов углерода получают вазелин, который нашел широкое применение как парфюмерии и косметологии, так и в медицине. Его применяют для приготовления различных мазей, кремов и гелей. А также используют для тепловых процедур в медицине.

Практические задания

1. Запишите общую формулу углеводородов гомологического ряда алканов.

2. Напишите формулы возможных изомеров гексана и назовите их по систематической номенклатуре.

3. Что такое крекинг? Какие виды крекинга вы знаете?

4. Напишите формулы возможных продуктов крекинга гексана.

5. Расшифруйте следующую цепочку превращений. Назовите соединения А, Б и В.

6. Приведите структурную формулу углеводорода С5Н12, образующего при бромировании только одно монобром-производное.

7. На полное сгорание 0,1 моль алкана неизвестного строения израсходовано 11,2 л кислорода (при н. у.). Какова структурная формула алкана?

8. Какова структурная формула газообразного предельного углеводорода, если 11 г этого газа занимают объем 5,6 л (при н. у.)?

9. Вспомните, что вам известно о применении метана, и объясните, почему утечка бытового газа может быть обнаружена по запаху, хотя его составляющие запаха не имеют.

10*. Какие соединения могут быть получены каталитическим окислением метана в различных условиях? Напишите уравнения соответствующих реакций.

11*. Продукты полного сгорания (в избытке кислорода) 10,08 л (н. у.) смеси этана и пропана пропустили через избыток известковой воды. При этом образовалось 120 г осадка. Определите объемный состав исходной смеси.

12*. Плотность по этану смеси двух алканов равна 1,808. При бромировании этой смеси выделено только две пары изомерных монобромалканов. Суммарная масса более легких изомеров в продуктах реакции равна суммарной массе более тяжелых изомеров. Определите объемную долю более тяжелого алкана в исходной смеси.

Строение алканов

Алканы - углеводороды, в молекулах которых атомы связаны одинарными связями и которые соответствуют общей формуле C n H 2n+2 . В молекулах алканов все атомы углерода находятся в состоянии sр 3 -гибридизации .

Это означает, что все четыре гибридные орбитали атома углерода одинаковы по форме, энергии и направлены в углы равносторон­ней треугольной пирамиды - тетраэдра . Углы между орбиталями равны 109° 28′. Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение, и молекулы алканов могут приобретать самую разнообразную форму с углами при атомах углерода, близкими к тетраэдрическому (109° 28′), напри­мер, в молекуле н-пентан.

Особо стоит напомнить о связях в молекулах ал­канов. Все связи в молекулах предельных углеводо­родов одинарные. Перекрывание происходит по оси, соединяющей ядра атомов, т. е. это σ-связи . Связи углерод - углерод являются неполярными и плохо поляризуемыми. Длина С-С связи в алканах равна 0,154 нм (1,54 10 10 м). Связи С-Н несколько коро­че. Электронная плотность немного смещена в сто­рону более электроотрицательного атома углерода, т. е. связь С-Н является слабополярной .

Гомологический ряд метана

Гомологи - вещества, сходные по строению и свойствам и отличающиеся на одну или более групп СН 2 .

Предельные углеводороды составляют гомоло­гический ряд метана.

Изомерия и номенклатура алканов

Для алканов характерна так называемая струк­турная изомерия . Структурные изомеры отлича­ются друг от друга строением углеродного скеле­та. Простейший алкан, для которого характерны структурные изомеры, - это бутан.

Рассмотрим подробнее для алканов основы но­менклатуры ИЮПАК .

1. Выбор главной цепи . Формирование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле, которая является как бы ее основой.

2. Нумерация атомов главной цепи . Атомам главной цепи присваивают номера. Нумерация атомов главной цепи начинается с того конца, к которому ближе стоит заместитель (структуры А, Б). Если заместители находятся на равном уда­лении от конца цепи, то нумерация начинается от того конца, при котором их больше (структу­ра В). Если различные заместители находятся на равном удалении от концов цепи, то нумерация начинается с того конца, к которому ближе стар­ший (структура Г). Старшинство углеводородных заместителей определяется по тому, в каком порядке следует в алфавите буква, с которой начи­нается их название: метил (-СН 3), затем пропил (-СН 2 -СН 2 -СН 3), этил (-СН 2 -СН 3) и т. д.

Обратите внимание на то, что название заме­стителя формируется заменой суффикса -ан на суффикс -ил в названии соответствующего алкана.

3. Формирование названия . В начале названия указывают цифры - номера атомов углерода, при которых находятся заместители. Если при данном атоме находятся несколько заместителей, то соот­ветствующий номер в названии повторяется дваж­ды через запятую (2,2-). После номера через дефис указывают количество заместителей (ди - два, три - три, тетра - четыре, пента - пять) и на­звание заместителя (метил, этил, пропил). Затем без пробелов и дефисов - название главной цепи. Главная цепь называется как углеводород - член гомологического ряда метана (метан, этан, пропан и т. д.).

Названия веществ, структурные формулы кото­рых приведены выше, следующие:

Структура А: 2-метилпропан;

Структура Б: 3-этилгексан;

Структура В: 2,2,4-триметилпентан;

Структура Г: 2-метил 4-этилгексан.

Отсутствие в молекулах предельных углеводоро­дов полярных связей приводит к тому, что они плохо растворяются в воде , не вступают во взаимодействие с заряженными частицами (ионами) . Наиболее ха­рактерными для алканов являются реакции, проте­кающие с участием свободных радикалов .

Физические свойства алканов

Первые четыре представителя гомологического ряда метана - газы . Простейший из них - ме­тан - газ без цвета, вкуса и запаха (запах «газа», почувствовав который, надо звонить 04, опреде­ляется запахом меркаптанов - серосодержащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных га­зовых приборах для того, чтобы люди, находя­щиеся рядом с ними, могли по запаху определить утечку).

Углеводороды состава от С 5 Н 12 до С 15 Н 32 - жидкости; более тяжелые углеводороды - твердые ве­щества. Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются рас­пространенными органическими растворителями.

Химические свойства алканов

Реакции замещения.

Наиболее характерными для алканов являются реакции свободнорадикаль­ного замещения , в ходе которого атом водорода за­мещается на атом галогена или какую-либо группу.

Приведем уравнения характерных реакций галогенирования :

В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор :

Полученные вещества широко используются как растворители и исходные вещества в органи­ческих синтезах.

Реакция дегидрирования (отщепления водоро­да).

В ходе пропускания алканов над катализато­ром (Pt, Ni, Al 2 O 3 , Cr 2 O 3) при высокой температуре (400-600 °C) происходит отщепление молекулы во­дорода и образование алкена :

Реакции, сопровождающиеся разрушением углеродной цепи. Все предельные углеводороды горят с образованием углекислого газа и воды. Га­зообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться.

1. Горение предельных углеводородов - это сво­боднорадикальная экзотермическая реакция, кото­рая имеет очень большое значение при использова­нии алканов в качестве топлива:

В общем виде реакцию горения алканов можно записать следующим образом:

2. Термическое расщепление углеводородов .

Процесс протекает по свободнорадикальному механизму . Повышение температуры приводит к гомолитическому разрыву углерод-углеродной связи и образованию свободных радикалов.

Эти радикалы взаимодействуют между собой, обмениваясь атомом водорода, с образованием мо­лекулы алкана и молекулы алкена :

Реакции термического расщепления лежат в ос­нове промышленного процесса - крекинга угле­водородов . Этот процесс является важнейшей ста­дией переработки нефти.

3. Пиролиз . При нагревании метана до темпе­ратуры 1000 °С начинается пиролиз метана - раз­ложение на простые вещества:

При нагревании до температуры 1500 °С воз­можно образование ацетилена :

4. Изомеризация . При нагревании линейных углеводородов с катализатором изомеризации (хло­ридом алюминия) происходит образование веществ с разветвленным углеродным скелетом :

5. Ароматизация . Алканы с шестью или более углеродными атомами в цепи в присутствии ка­тализатора циклизуются с образованием бензола и его производных:

Алканы вступают в реакции, протекающие по свободнорадикальному механизму, т. к. все атомы углерода в молекулах алканов находятся в состоянии sp 3 -гибридизации. Молекулы этих веществ по­строены при помощи ковалентных неполярных С-С (углерод - углерод) связей и слабополярных С-Н (углерод - водород) связей. В них нет участков с повышенной и с пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних факторов (элек­тростатических полей ионов). Следовательно, алка­ны не будут реагировать с заряженными частицами, т. к. связи в молекулах алканов не разрываются по гетеролитическому механизму.

Химические свойства насыщенных углеводородов обусловлены наличием в их молекулах атомов углерода, водорода и связей $C-H$ и $C-C$.

В молекуле простейшего алкана метана химические связи образуют 8 валентных электронов (4 электрона атома углерода и 4 - атомов водорода), которые размещены на четырех связующих молекулярных орбиталях.

Итак, в молекуле метана из четырех $sp3$-гибридизированных орбиталей атома углерода и s-орбиталей четырех атомов водорода образуются четыре $sp3-s (C-H)$ ковалентные связи (рис 1.).

Молекула этана образуется из двух углеродных тетраэдров - одной $sp3-sp3 (C-C)$ ковалентной связи и шести $sp3-s (C-H)$ ковалентных связей (рис. 2).

Рисунок 2. Строение молекулы этана: а - размещение $\sigma $-связей в молекуле; б - тетраэдрическое модель молекулы; в - шаростержневая модель молекулы; г- масштабная модель молекулы по Стюарту - Бриглебу

Особенности химических связей в алканах

В рассмотренных типах ковалентных связей области наибольшей электронной плотности находятся на линии, соединяющей ядра атомов. Эти ковалентные связи образованы локализованными $\sigma $-${\rm M}$${\rm O}$ и называются $\sigma $-связями. Важной особенностью этих связей является то, что электронная плотность в них распределена симметрично относительно оси, проходящей через ядра атомов (цилиндрическая симметрия электронной плотности). Благодаря этому атомы или группы атомов, которые соединены этой связью, могут свободно вращаться не вызывая деформации связи. Угол между направлениями валентностей атомов углерода в молекулах алканов составляет $109^\circ 28"$. Поэтому в молекулах этих веществ даже с прямой углеродной цепью атомы углерода в действительности размещаются не по прямой. Эта цепь имеет зигзагообразную форму, которая связана с сохранением межвалентных углов атомов углерода (рис. 3).

Рисунок 3. Схема строения углеродной цепи нормального алкана

В молекулах алканов с достаточно длинной углеродной цепью этот угол увеличен на $2^\circ$ вследствие отталкивания валентно не соединенных между собой атомов углерода.

Замечание 1

Каждая химическая связь характеризуется определенной энергией. Экспериментально установлено, что энергия связи $C-H$ в молекуле метана составляет 422,9 кДж/моль, этана - 401,9 кДж/моль, других алканов - около 419 кДж/моль. Энергия связи $C-C$ равен 350 кДж / моль.

Взаимосвязь строения алканов с их реакционной способностью

Высокая энергия связей $C-C$ и $C-H$ обуславливает низкую реакционную способность насыщенных углеводородов при комнатной температуре. Так, алканы не обесцвечивают бромную воду, раствор перманганата калия, не взаимодействуют с ионными реагентами (кислотами, щелочами), не реагируют с окислителями, с активными металлами. Поэтому, например, металлический натрий можно хранить в керосине, который представляет собой смесь насыщенных углеводородов. Даже концентрированная серная кислота, которая обугливает много органических веществ, при комнатной температуре не действует на алканы. Учитывая сравнительно малую реакционную способность насыщенных углеводородов, их в свое время назвали парафинами. Алканы не имеют способности присоединять водород, галогены и другие реагенты. Поэтому этот класс органических веществ назвали насыщенными углеводородами.

Химические реакции насыщенных углеводородов могут происходить за счет разрыва связей $C-C$ или $C-H$. Разрыв $C-H$-связей сопровождается отщеплением атомов водорода с образованием ненасыщеных соединений или последующим замещением отщеплений атомов водорода другими атомами или группами атомов.

В зависимости от строения алкана и условий реакции в молекулах насыщенных углеводородов связь $C-H$ может разрываться гомолитично:

Рисунок 4. Химические свойства алканов

И гетеролитично с образованием анионов и катионов:

Рисунок 5. Химические свойства алканов

При этом могут образовываться свободные радикалы, имеющие неспаренный электрон, но не имеют электрического заряда, или карбкатионы или карбанионы, которые имеют соответствующие электрические заряды. Свободные радикалы образуются в качестве промежуточных частиц в реакциях радикального механизма, а карбкатионы и карбанионы - в реакциях ионного механизма.

Вследствие того, что связи $C-C$ неполярные, а $C-H$-связи - малополярные и эти $\sigma $-связи имеют низкую поляризуемость, гетеролитический разрыв $\sigma $-связей в молекулах алканов с образованием ионов требует большой затраты энергии. Гемолитическое расщепление этих связей требует меньше енергии. Поэтому для насыщенных углеводородов более характерны реакции, протекающие по радикальному механизму. Расщепление $\sigma $-связи $C-C$ требует меньшей затраты энергии, чем расщепление связи $C-H$, поскольку энергия $C-C$-связи меньше энергии $C-H$-связи. Однако химические реакции чаще происходят с расщеплением $C-H$-связей, поскольку они более доступны для реагентов.

Влияние разветвленности и размеров алканов на их реакционную способность

Реакционная способность $C-H$-связи меняется при переходе от алканов линейной структуры к алканам-разветвленной структуры. Например, энергия диссоциации связи $C-H$ (кДж / моль) при образовании свободных радикалов меняется следующим образом:

Рисунок 6. Химические свойства алканов

Кроме того, значение энергии ионизации (ЭИ) для алканов показывает, что рост общего количества $\sigma $-связей повышает их донорные свойства и отколоть электрон становится легче для соединений с большей молекулярной массой, например:

Рисунок 7. Химические свойства алканов

Итак, в свободнорадикальных процессах реакции происходят преимущественно у третичного атома углерода, затем у вторичного и в последнюю очередь у первичного, что совпадает с рядом устойчивости свободных радикалов. Однако с повышением температуры наблюдаемая тенденция уменьшается или совсем нивелируется.

Таким образом, для алканов характерны два типа химических реакций:

  1. замещения водорода, в основном по радикальному механизму и
  2. расщепление молекулы за связями $C-C$ или $C-H$.

I. АЛКАНЫ (предельные углеводороды, парафины)

    Алканы – алифатические (ациклические) предельные углеводороды, в которых атомы углерода связаны между собой простыми (одинарными) связями в неразветвленные или разветвленные цепи.

Алканы – название предельных углеводородов по международной номенклатуре.
Парафины – исторически сложившееся название, отражающее свойства этих соединений (от лат. parrum affinis – имеющий мало сродства, малоактивный).
Предельными , или насыщенными , эти углеводороды называют в связи с полным насыщением углеродной цепи атомами водорода.

Простейшие представители алканов:


При сравнении этих соединений видно, что они отличаются друг от друга на группу -СН 2 - (метилен ). Добавляя к пропану еще одну группу -СН 2 - , получим бутан С 4 Н 10 , затем алканы С 5 Н 12 , С 6 Н 14 и т.д.

Теперь можно вывести общую формулу алканов. Число атомов углерода в ряду алканов примем за n , тогда число атомов водорода составит величину 2n+2 . Следовательно, состав алканов соответствует общей формуле C n H 2n+2 .
Поэтому часто используется такое определение:

  • Алканы - углеводороды, состав которых выражается общей формулой C n H 2n+2 , где n – число атомов углерода.

II. Строение алканов

  • Химическое строение (порядок соединения атомов в молекулах) простейших алканов – метана, этана и пропана – показывают их структурные формулы. Из этих формул видно, что в алканах имеются два типа химических связей:

    С–С и С–Н .

    Связь С–С является ковалентной неполярной. Связь С–Н - ковалентная слабополярная, т.к. углерод и водород близки по электроотрицательности (2.5 - для углерода и 2.1 - для водорода). Образование ковалентных связей в алканах за счет общих электронных пар атомов углерода и водорода можно показать с помощью электронных формул:

    Электронные и структурные формулы отражают химическое строение , но не дают представления о пространственном строении молекул , которое существенно влияет на свойства вещества.

    Пространственное строение , т.е. взаимное расположение атомов молекулы в пространстве, зависит от направленности атомных орбиталей (АО) этих атомов. В углеводородах главную роль играет пространственная ориентация атомных орбиталей углерода, поскольку сферическая 1s-АО атома водорода лишена определенной направленности.

    Пространственное расположение АО углерода в свою очередь зависит от типа его гибридизации. Насыщенный атом углерода в алканах связан с четырьмя другими атомами. Следовательно, его состояние соответствует sp 3 -гибридизации. В этом случае каждая из четырех sp 3 -гибридных АО углерода участвует в осевом (σ-) перекрывании с s-АО водорода или с sp 3 -АО другого атома углерода, образуя σ-связи С-Н или С-С.

    Четыре σ-связи углерода направлены в пространстве под углом 109 о 28", что соответствует наименьшему отталкиванию электронов. Поэтому молекула простейшего представителя алканов – метана СН 4 – имеет форму тетраэдра, в центре которого находится атом углерода, а в вершинах – атомы водорода:

    Валентный угол Н-С-Н равен 109 о 28". Пространственное строение метана можно показать с помощью объемных (масштабных) и шаростержневых моделей.

    Для записи удобно использовать пространственную (стереохимическую) формулу.

    В молекуле следующего гомолога – этана С 2 Н 6 – два тетраэдрических sp 3 -атома углерода образуют более сложную пространственную конструкцию:

    2. Если в молекулах одинакового состава и одинакового химического строения возможно различное взаимное расположение атомов в пространстве, то наблюдается пространственная изомерия (стереоизомерия) . В этом случае использование структурных формул недостаточно и следует применять модели молекул или специальные формулы - стереохимические (пространственные) или проекционные.

    Алканы, начиная с этана H 3 C–СН 3 , существуют в различных пространственных формах (конформациях ), обусловленных внутримолекулярным вращением по σ-связям С–С, и проявляют так называемую поворотную (конформационную) изомерию .

      Различные пространственные формы молекулы, переходящие друг в друга путем вращения вокруг σ-связей С–С, называют конформациями или поворотными изомерами (конформерами).

    Поворотные изомеры молекулы представляют собой энергетически неравноценные ее состояния. Их взаимопревращение происходит быстро и постоянно в результате теплового движения. Поэтому поворотные изомеры не удается выделить в индивидуальном виде, но их существование доказано физическими методами. Некоторые конформации более устойчивы (энергетически выгодны) и молекула пребывает в таких состояниях более длительное время.

    3. Кроме того, при наличии в молекуле атома углерода, связанного с 4-мя различными заместителями, возможен еще один вид пространственной изомерии - оптическая изомерия .

    Например:

    то возможно существование двух соединений с одинаковой структурной формулой, но отличающихся пространственным строением. Молекулы таких соединений относятся друг к другу как предмет и его зеркальное изображение и являются пространственными изомерами.

    Изомерия этого вида называется оптической, изомеры – оптическими изомерами или оптическими антиподами:


    Молекулы оптических изомеров несовместимы в пространстве (как левая и правая руки), в них отсутствует плоскость симметрии.
    Таким образом,

      оптическими изомерами называются пространственные изомеры, молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное изображение.

    Оптические изомеры имеют одинаковые физические и химические свойства, но различаются отношением к поляризованному свету. Такие изомеры обладают оптической активностью (один из них вращает плоскость поляризованного света влево, а другой - на такой же угол вправо). Различия в химических свойствах наблюдаются только в реакциях с оптически активными реагентами.

    Оптическая изомерия проявляется в органических веществах различных классов и играет очень важную роль в химии природных соединений.

Применение алканов довольно разнообразное — их используют в качестве топлива, а также в механике, медицине и т.д. Роль этих химических соединений в жизни современного человека трудно переоценить.

Алканы: свойства и краткая характеристика

Алканы представляют собой нециклические углеродные соединения, в которых атомы углерода связаны простыми насыщенными связями. Эти вещества представляют собой целый ряд с определенными свойствами и характеристиками. выглядит следующим образом:

N здесь представляет собой количество атомов углерода. Например, CH3, C2H6.

Первые четыре представителя ряда алканов — газообразные вещества — это метан, этан, пропан и бутан. Следующие соединения (от C5 до C17) — это жидкости. Ряд продолжается соединениями, которые при нормальных условиях представляют собой твердые вещества.

Что же касается химических свойств, то алканы являются малоактивными — они практически не взаимодействуют со щелочами и кислотами. Кстати, именно химическими свойствами определяется применение алканов.

Тем не менее, для этих соединения характерны некоторые реакции, включая замещение атомов водорода, а также процессы расщепления молекул.

  • Самой характерной реакцией считается галогенирование, при котором атомы водорода заменяются галогенами. Большое значение имеют реакции хлорирования и бромирования этих соединений.
  • Нитрование — замещение водородного атома нитрогруппой при реакции с разбавленной (концентрация 10%) В обычных условиях алканы не взаимодействуют с кислотами. Для того чтобы провести подобную реакцию, нужна температура 140 °С.
  • Окисление — при нормальных условиях алканы не поддаются воздействию кислорода. Тем не менее, после поджигания на воздухе эти вещества вступают в окончательными продуктами которой являются вода и
  • Крекинг — эта реакция проходит лишь при наличии необходимых катализаторов. В процессе происходит расщепление стойких гомологических связей между атомами углерода. Например, при крекинге бутана в результате реакции можно получить этан и этилен.
  • Изомеризация — в результате воздействия некоторых катализаторов возможна некая перестройка углеродного скелета алкана.

Применение алканов

Основным естественным источником этих веществ являются столь ценные продукты, как природный газ и нефть. Области применения алканов на сегодняшний день очень широки и разнообразны.

Например, газообразные вещества используют как ценный источник топлива. Примером может служить метан, из которого и состоит природный газ, а также пропанобутановая смесь.

Еще один источник алканов — нефть , значение которой для современного человечества переоценить трудно. К нефтяным продуктам относят:

  • бензины — используются в качестве топлива;
  • керосин;
  • дизельное топливо, или легкий газойль;
  • тяжелый газойль, который применяют в качестве смазочного масла;
  • остатки используют для изготовления асфальта.

Нефтяные продукты также используются для получения пластмасс, синтетических волокон, каучуков и некоторых моющих средств.

Вазелин и вазелиновое масло — продукты, которые состоят из смеси алканов. Их используют в медицине и косметологии (в основном для приготовления мазей и кремов), а также в парфюмерии.

Парафин — еще один всем известный продукт, которые представляет собой смесь твердых алканов. Это твердая белая масса, температура топления которой составляет 50 - 70 градусов. В современном производстве парафин используется для изготовления свечей. Этим же веществом пропитывают спички. В медицине с помощью парафина проводят разного рода тепловые процедуры.