Общая характеристика физических и химических свойств алкенов. Общая формула алкенов

ОПРЕДЕЛЕНИЕ

Непредельные (ненасыщенные) углеводороды, в составе которых имеется одна кратная (двойная) связь носят название алкенов .

Эти соединения подчиняются общей формуле C n H 2 n , а в их названии присутствует суффикс -ен. Гомологический ряд алкенов начинается с этилена (этен) C 2 H 6 .

По сравнению с алканами, алкены характеризуются более низкими температурами плавления и кипения. Внутри гомологического ряда эти физические величины возрастают. Алкены, имеющие в своем составе от 2-х до 4-х атомов углерода представляют собой газы, от 5-ти до 17-ти - жидкости, более 17-ти - твердые вещества.

Электронное строение алкенов и их особенности

Рассмотрим строение алкенов на примере первого представителя их гомологического ряда - молекуле этилена, структурная формула которого выглядит следующим образом:

Если в алканах атомы углерода были связаны между собой только посредством одинарных σ-связей, то с появлением кратной двойной связи в молекулах алкенов наблюдается образование π-связи.

Атомы углерода, связанные двойной связью в алкенах находятся в sp 2 -гибридизации. Для того, чтобы объяснить это явление запишем электронные конфигурации атомов углерода и водорода в основном состоянии:

6 C1s 2 2s 2 2p 2 ;

И зарисуем их электронно-графические формулы:

Наличие двух неспаренных электронов в атоме углерода свидетельствует о том, что в основном состоянии он может образовать только две химические связи, поэтому углерод переходит в возбужденное состояние (электроны 2s-подуровня распариваются и один из них занимает вакантную орбиталь 2p-подуровня):

Из этого следует, что один электрон идет на образование σ-связи с соседним атомом углерода, два — на образование σ-связей с атомами водорода, а четвертый - на образование π-связи (рис. 1)


Рис. 1. Образование двойной связи на примере молекулы этилена.

Длина двойной связи С=С несколько меньше, чем одинарной (0,133 нм, против 0,154 нм), равно как и её энергия 606 кДж/моль против 694 кДж/моль), что связано с меньшей энергией π-связи.

Для алкенов, также как и для алканов, характерно явление изомерии. Однако, помимо изомерии углеродного скелета (1, 2) им свойственна изомерия положения кратной связи (3, 4) и пространственная (цис-транс-) изомерия (5, 6):

CH 2 = CH - CH 2 - CH 3 (бутен -1) (1);

CH 2 = C(CH 3) - CH 3 (2-метилпропен -1) (2);

CH 2 = CH - CH 2 - CH 2 — CH 3 (пентен -1) (3);

CH 3 — CH = CH - CH 2 — CH 3 (пентен -2) (4);

Примеры решения задач

ПРИМЕР 1

Задание Установите молекулярную формулу алкена, если известно, что одно и тоже количество его, взаимодействуя с галогенами, образует, соответственно, или 56,5 г дихлорпроизводного или 101 г дибромпроизводного.
Решение Химические свойства алкенов определяются их способностью присоединять вещества по механизму электрофильного присоединения, при этом двойная связь превращается в одинарную:

СnH 2 n + Cl2 → CnH 2 nCl 2 ;

CnH 2 n + Br 2 → CnH 2 nBr 2 .

Масса алкена, вступившего в реакцию одна и та же, значит в реакции участвует одинаковое количество моль алкена. Выразим количество моль углеводорода, если молярная масса дихлорпроизводного 12n+2n+71, молярная масса дибромпроизводного (12n+2n+160):

m(CnH 2 nCl 2) \ (12n+2n+71) = m(СnH 2 nBr 2) \ (12n+2n+160);

56.5 \ (12n+2n+71) = 101 \ (12n+2n+160);

Следовательно, алкен имеет формулу C 3 H 6 . Это пропен.

Ответ Формула алкена C 3 H 6 . Это пропен.

ПРИМЕР 2

Задание Осуществите ряд превращений:

этан → этен → этанол → этен → хлорэтан → бутан.

Решение Для получения этена из этана необходимо использовать реакцию дегидрирования этана, которая протекает в присутствии катализатора (Ni, Pd, Pt) и при нагревании:

C 2 H 6 →C 2 H 4 + H 2 .

Получение этанола из этена осуществляют по реакции гидратации, протекающей водой в присутствии минеральных кислот (серной, фосфорной):

C 2 H 4 + H 2 O = C 2 H 5 OH.

Для получения этена из этанола используют реакцию дегидротации:

C 2 H 5 OH →(t, H2SO4) → C 2 H 4 + H 2 O.

Получение хлорэтана из этена осуществляют по реакции гидрогалогенирования:

C 2 H 4 + HCl → C 2 H 5 Cl.

Для получения бутана из хлорэтана используют реакцию Вюрца:

2C 2 H 5 Cl +2Na → C 4 H 10 + 2NaCl.

Первым представителем ряда алкенов является этен (этилен), чтобы построить формулу следующего представителя ряда нужно к исходной формуле прибавить группу CH 2 ; многократно повторяя такую процедуру можно построить гомологический ряд алкенов.

CH 2 +CH 2 +CH 2 +CH 2 +CH 2 +CH 2 +CH 2 +CH 2

C 2 H 4 ® C 3 H 6 ® C 4 H 8 ® C 5 H 10 ® C 6 H 12 ® C 7 H 14 ® C 8 H 16 ® C 9 H 18 ® C 10 H 20

Чтобы построить название алкена необходимо в названии соответствующего алкана (с таким же числом атомов углерода как ив алкене) поменять суффикс – ан на - ен (или – илен).Например, алкан с четырьмя атомами углерода в цепи называется бутан, а соответствующий ему алкен – бутен (бутилен). Исключение составляет декан, соответствующий ему алкен будет называться не декен, а децен (децилен). Алкен с пятью атомами углерода в цепи помимо названия пентен имеет название амилен. В таблице ниже приведены формулы и названия первых десяти представителей ряда алкенов.

Однако, начиная с третьего, представитель ряда алкенов – бутена помимо словесного названия «бутен» после его написания должна стоять цифра 1 или 2, которая показывает местоположение двойной связи в углеродной цепи.

CH 2 = CH – CH 2 – CH 3 CH 3 – CH = CH – CH 3

бутен 1 бутен 2

Помимо систематической номенклатуры часто употребляются и рациональные названия алкенов при этом алкены рассматриваются, как производные этилена, в молекуле которого атомы водорода замещены на радикалы, а за основу берется название «этилен».

Например, CH 3 – CH = CH – C 2 H 5 – симметричный метилэтилэтилен.

(СH 3) – CH = CH – C 2 H 5 – симметричный этилизопропилэтилен.

(СH 3)C – CH = CH – CH(CH 3) 2 – симметричный изопропилизобутилэтилен.

Непредельные углеводородные радикалы по систематической номенклатуре называют, добавляя к корню суффикс - енил : этенил

CH 2 =CH -, пропенил-2 CH 2 = CH – CH 2 - . Но гораздо чаще для этих радикалов употребляют эмпирические названия – соответственно винил и аллил .

Изомерия алкенов.

Для алкенов характерно большое количество разных видов изомерии.

А) Изомерия углеродного скелета.

CH 2 = C – CH 2 – CH 2 – CH 3 СH 2 = CH – CH – CH 2 – CH 3

2-метил пентен-1 3-метил пентен-1

СH 2 = CH – CH 2 – CH – CH 3

4- метил пентен-1

Б) Изомерия положения двойной связи.

СH 2 = СH – CH 2 – CH 3 CH 3 – CH = CH – CH 3

бутен-1 бутен-2

В) Пространственная (стереоизомерия).

Изомеры, у которых одинаковые заместители расположены по одну сторону от двойной связи, называют цис -изомеры, а по разную – транс­­ -изомерами:

H 3 C CH 3 H 3 C H

цис -бутен транс -бутен

Цис - и транс - изомеры отличаются не только пространственным строением, но и многими физическими и химическими (и даже физиологическими) свойствами. Транс - Изомеры более устойчивы по сравнению с цис-изомерами . Это объясняется большей удаленностью в пространстве групп при атомах, связанных двойной связью, в случае транс – изомеров.

Г) Изомерия веществ разных классов органических соединений.

Изомерами алкенам являются циклопарафины, имеющие сходную с ними общую формулу – С n H 2 n .

CH 3 – CH = CH – CH 3

бутен -2

циклобутан

4. Нахождение алкенов в природе и способы их получения.

Также как и алканы, алкены в природе встречаются в составе нефти, попутного нефтяного и природного газов, бурого и каменного угля горючих сланцев.

А) Получение алкенов каталитической дегидрогенизацией алканов.

СH 3 – CH – CH 3 ® CH 2 = C – CH 3 + H 2 ­

CH 3 кат. (K 2 O-Cr 2 O 3 -Al 2 O 3) CH 3

Б) Дегидратация спиртов под действием серной кислоты или с участием Al 2 O ­3 (парафазная дегидратация).

этанол H 2 SO 4 (конц.) этен

C 2 H 5 OH ® CH 2 = CH 2 + H 2 O

этанол Al 2 O 3 этен

Дегидратация спиртов протекает по правилу А.М. Зайцева, согласно которому водород отщепляется от наименее гидрогенезированного атома углерода, то есть вторичного или третичного.

H 3 C – CH – C ® H 3 C – CH = C – CH 3


3-метилбутанол-2 2-метилбутен

В) Взаимодействие галогеналкилов со щелочами (дегидрогалогенирование).

H 3 C – C – CH 2 Cl + KOH ® H 3 C – C = CH 2 + H 2 O + KCl

1-хлор 2-метлпропан (спирт. р-р) 2-метилпропен-1

Г) Действие магнием или цинком на дигалогенпроизводные алкилов с атомами галогена при соседних углеродных атомах (дегалогенирование).

спирт. t

CH 3 -CHCl-CH 2 Cl + Zn ® CH 3 -CH = CH 2 + ZnCl 2

1.2- дихлорпропан пропен-1

Д) Селективное гидрирование алкинов на катализаторе.

СH º CH + H 2 ® CH 2 =CH 2

этин этен

5. Физические свойства алкенов.

Первые три представителя гомологического ряда этилена газы.

Начиная с C 5 H 10 до С 17 Н 34 – жидкости, начиная с С 18 Н 36 и далее твердые вещества. С увеличением молекулярной массы повышаются температуры плавления и кипения. Алкены с углеродной цепью нормального строения кипят при более высокой температуре, чем их изомеры, имеющие изостроение. Температура кипения цис - изомеров выше, чем транс – изомеров, а температура плавления – наоборот. Алкены малополярны, но легко поляризуются. Алкены плохо растворимы в воде (однако лучше, чем соответствующие алканы). Они хорошо растворяются в органических растворителях. Этилен и пропилен горят кипящим пламенем.

В таблице ниже приведены основные физические свойства некоторых представителей ряда алкенов.

Алкен Формула t пл. ­ o C t кип. ­ o C d 4 20
Этен (этилен) C 2 H 4 -169,1 -103,7 0,5700
Пропен (пропилен) C 3 H 6 -187,6 -47,7 0,6100 (при t(кип) )
Бутен (бутилен-1) C 4 H 8 -185,3 -6,3 0,5951
цис – Бутен-2 C 4 H 8 -138,9 3,7 0,6213
транс – Бутен-2 C 4 H 8 -105,5 0,9 0,6042
Изобутилен (2-метилпропен) C 4 H 8 -140,4 -7,0 0,6260
Пентен-1 (амилен) C 5 H 10 -165,2 +30,1 0,6400
Гексен-1 (гексилен) C 6 H 12 -139,8 63,5 0,6730
Гептен-1 (гептилен) C 7 H 14 -119 93,6 0,6970
Октен-1 (октилен) C 8 H 16 -101,7 121,3 0,7140
Нонен-1 (нонилен) C 9 H 18 -81,4 146,8 0,7290
Децен-1 (децилен) C 10 H 20 -66,3 170,6 0,7410

6. Химические свойства алкенов.

А) Присоединение водорода (гидрирование).

CH 2 = CH 2 + H 2 ® CH 3 – CH 3

этен этан

Б)Взаимодействие с галогенами (галогенирование).

Легче идет присоединение хлора и брома к алкенам, труднее - йода

CH 3 – CH = CH 2 + Cl 2 ® CH 3 – CHCl – CH 2 Cl

пропилен 1,2-дихлорпропан

В) Присоединение галогенводородов (гидрогалогенирование)

Присоединение галогенводородов к алкенам при обычных условиях протекает согласно правилу Марковникова: при ионном присоединении галогенводородов к несимметричным алкенам (при обычных условиях) водород присоединяется по месту двойной связи к наиболее гидрогенизированному (связанному с наибольшим числом водородных атомов)атому углерода, а галоген – менее гидрогенизированному.

CH 2 =CH 2 + HBr ® CH 3 – CH 2 Br

этен бромэтан

Г) Присоединение воды к алкенам (гидратация).

Присоединение воды к алкенам протекает также согласно правилу Марковникова.

CH 3 – CH = CH 2 + H – OH ® CH 3 – CHOH – CH 3

пропен-1 пропанол-2

Е) Алкилирование алканов алкенами.

Алкилирование – реакция, с помощью которой можно вводить различные углеводородные радикалы (алкилы) в молекулы органических соединений. В качестве алкилирующих средств используют галогеналкилы, непредельные углеводороды, спирты и другие органические вещества. Например, в присутствии концентрированной серной кислоты активно протекает реакция алкилирования изобутана изобутиленом:

3CH 2 = CH 2 + 2KMnO 4 + 4H 2 O ® 3CH 2 OH – CH 2 OH + 2MnO 2 + 2KOH

этен этиленгликоль

(этандиол-1,2)

Расщепление молекулы алкена по месту двойной связи может вести к образованию соответствующей карбоновой кислоты, если используется энергичный окислитель (азотная концентрированная кислота или хромовая смесь).

HNO 3(конц.)

CH 3 – CH = CH – CH 3 ® 2CH 3 COOH

бутен-2 этановая кислота (уксусная кислота)

Окисление этилена кислородом воздуха в присутствии металлического серебра ведёт к образованию этиленоксида.

2CH 2 = CH 2 + O 2 ® 2CH 2 – CH 2

И) Реакция полимеризации алкенов.

n CH 2 = CH 2 ® [–CH 2 – CH 2 –]n

этилен кат.полиэтилен

7.Применение алкенов.

А) Резка и сварка металлов.

Б) Производство красителей, растворителей, лаков, новых органических веществ.

В) Производство пластмасс и других синтетических материалов.

Г) Синтез спиртов, полимеров, каучуков

Д) Синтез лекарственных препаратов.

IV. Диеновые углеводороды (алкадиены или диолефины) – это непредельные сложные органические соединения с общей формулой C n H 2 n -2 , содержащие две двойные связи между атомами углерода в цепи и способные присоединять молекулы водорода, галогенов и других соединений в силу валентной не насыщенности атома углерода.

Первым представителем ряда диеновых углеводородов является пропадиен (аллен). Строение диеновых углеводородов сходно со строением алкенов, разница лишь только в том, что в молекулах диеновых углеводородов две двойные связи, а не одна.

Алкены ненасыщенные алифатические углеводороды с одной или несколькими двойными углерод-углеродными связями. Двойная связь превращает два атома углерода в плоскую структуру с валентными углами между соседними связями по 120°С:

Гомологический ряд алкенов имеет общую формулу двумя его первыми членами являются этен (этилен) и пропен (пропилен):

Члены ряда алкенов с четырьмя или большим числом атомов углерода обнаруживают изомерию положения связей. Например, алкен с формулой имеет три изомера, два из которых являются изомерами положения связей:

Заметим, что нумерация цепи алкенов производится с того ее конца, который ближе к двойной связи. Положение двойной связи указывается меньшим из двух номеров, которые соответствуют двум атомам углерода, связанным между собой двойной связью. Третий изомер имеет разветвленную структуру:

Число изомеров какого-либо алкена возрастает с числом атомов углерода. Например, гексен имеет три изомера положения связей:

диенов является бута-1,3-диен, или просто бутадиен:

Соединения, содержащие три двойные связи, называются триенами. Соединения с несколькими двойными связями имеют общее название полиены.

Физические свойства

Алкены имеют несколько более низкие температуры плавления и кипения, чем соответствующие им алканы. Например, пентан имеет температуру кипения . Этилен, пропен и три изомера бутена при комнатной температуре и нормальном давлении находятся в газообразном состоянии. Алкены с числом атомов углерода от 5 до 15 в нормальных условиях находятся в жидком состоянии. Их летучесть, как и у алканов, возрастает при наличии разветвления в углеродной цепи. Алкены с числом атомов углерода больше 15 при нормальных условиях представляют собой твердые вещества.

Получение в лабораторных условиях

Двумя основными способами получения алкенов в лабораторных условиях являются дегидратация спиртов и дегидрогалогенирование галогеноалканов. Например, этилен можно получить дегидратацией этанола при действии избытка концентрированной серной кислоты при температуре 170 °С (см. разд. 19.2):

Этилен можно также получить из этанола, пропуская пары этанола над поверхностью нагретого оксида алюминия. Для этой цели можно использовать установку, схематически изображенную на рис. 18.3.

Второй распространенный метод получения алкенов основан на проведении дегидрогалогенирования галогеноалканов в условиях основного катализа

Механизм реакции элиминирования такого типа описан в разд. 17.3.

Реакции алкенов

Алкены обладают намного большей реакционной способностью, чем алканы. Это обусловлено способностью -электронов двойной связи притягивать электрофилы (см. разд. 17.3). Поэтому характерные реакции алкенов представляют собой главным образом реакции электрофильного присоединения по двойной связи:

Многие из этих реакций имеют ионные механизмы (см. разд. 17.3).

Гидрирование

Если какой-нибудь алкен, например этилен, смешать с водородом и пропустить эту смесь над поверхностью платинового катализатора при комнатной температуре или никелевого катализатора при температуре около 150°С, то произойдет присоединение

водорода по двойной связи алкена. При этом образуется соответствующий алкан:

Реакция этого типа представляет собой пример гетерогенного катализа. Его механизм описан в разд. 9.2 и схематически показан на рис. 9.20.

Присоединение галогенов

Хлор или бром легко присоединяются по двойной связи алкена; эта реакция протекает в неполярных растворителях, например в тетрахлорометане или гексане. Реакция протекает по ионному механизму, который включает образование карбкатиона. Двойная связь поляризует молекулу галогена, превращая ее в диполь:

Поэтому раствор брома в гексане или тетрахлорометане при встряхивании с алкеном обесцвечивается. То же самое происходит, если встряхивать алкен с бромной водой. Бромная вода представляет собой раствор брома в воде. Этот раствор содержит бромноватистую кислоту . Молекула бромноватистой кислоты присоединяется по двойной связи алкена, и в результате образуется бромозамещенный спирт. Например

Присоединение галогеноводородов

Механизм реакции этого типа описан в разд. 18.3. В качестве примера рассмотрим присоединение хлороводорода к пропену:

Отметим, что продукт этой реакции представляет собой 2-хлоропропан, а не 1-хлоро-пропан:

В таких реакциях присоединения наиболее электроотрицательный атом или наиболее электроотрицательная группа всегда присоединяются к атому углерода, связанному с

наименьшим числом атомов водорода. Эта закономерность носит название правила Марковникова.

Предпочтительное присоединение электроотрицательного атома или группы к атому углерода, связанному с наименьшим числом атомов водорода, обусловлено повышением устойчивости карбкатиона по мере возрастания числа алкильных заместителей на атоме углерода. Это повышение устойчивости в свою очередь объясняется индуктивным эффектом, возникающим в алкильных группах, так как они являются донорами электронов:

В присутствии какого-либо органического пероксида пропен реагирует с бромоводородом, образуя т. е. не по правилу Марковникова. Такой продукт называется антимарковниковским. Он образуется в результате протекания реакции по радикальному, а не ионному механизму.

Гидратация

Алкены реагируют с холодной концентрированной серной кислотой, образуя алкил-гидросульфаты. Например

Эта реакция представляет собой присоединение, поскольку в ней происходит присоединение кислоты по двойной связи. Она является обратной реакцией по отношению к дегидратации этанола с образованием этилена. Механизм этой реакции подобен механизму присоединения галогеноводородов по двойной связи. Он включает образование промежуточного карбкатиона. Если продукт этой реакции разбавить водой и осторожно нагревать, он гидролизуется, образуя этанол:

Реакция присоединения серной кислоты к алкенам подчиняется правилу Марковникова:

Реакция с подкисленным раствором перманганата калия

Фиолетовая окраска подкисленного раствора перманганата калия исчезает, если этот раствор встряхивают в смеси с каким-либо алкеном. Происходит гидроксилирование алкена (введение в него гидроксигруппы, образующейся вследствие окисления), который в результате превращается в диол. Например, при встряхивании избыточного количества этилена с подкисленным раствором происходит образование этан-1,2-диола (этиленгликоля)

Если алкен встряхивают с избыточным количеством раствора -ионов, происходит окислительное расщепление алкена, приводящее к образованию альдегидов и кетонов:

Альдегиды, образующиеся при этом, подвергаются дальнейшему окислению с образованием карбоновых кислот.

Гидроксилирование алкенов с образованием диолов может также проводиться с помощью щелочного раствора перманганата калия.

Реакция с пербензойной кислотой

Алкены реагируют с пероксикислотами (надкислотами), например с пербензойной кислотой, образуя простые циклические эфиры (эпоксисоединения). Например

При осторожном нагревании эпоксиэтана с разбавленным раствором какой-либо кислоты образуется этан-1,2-диол:

Реакции с кислородом

Как и все другие углеводороды, алкены горят и при обильном доступе воздуха образуют диоксид углерода и воду:

При ограниченном доступе воздуха горение алкенов приводит к образованию моноксида углерода и воды:

Поскольку алкены имеют более высокое относительное содержание углерода, чем соответствующие алканы, они горят с образованием более дымного пламени. Это обусловлено образованием частиц углерода:

Если смешать какой-либо алкен с кислородом и пропустить эту смесь над поверхностью серебряного катализатора, при температуре около 200 °С образуется эпоксиэтан:

Озонолиз

При пропускании газообразного озона через раствор какого-либо алкена в трихлорометане или тетрахлорометане при температуре ниже 20 °С образуется озонид соответствующего алкена (оксиран)

Озониды - неустойчивые соединения и могут быть взрывоопасными. Они подвергаются гидролизу с образованием альдегидов или кетонов. Например

В этом случае часть метаналя (формальдегида) реагирует с пероксидом водорода, образуя метановую (муравьиную) кислоту:

Полимеризация

Простейшие алкены могут полимеризоваться с образованием высокомолекулярных соединений, которые обладают той же эмпирической формулой, что и исходный алкен:

Эта реакция протекает при высоком давлении, температуре 120°С и в присутствии кислорода, который играет роль катализатора. Однако полимеризацию этилена можно проводить и при более низком давлении, если воспользоваться катализатором Циглера. Одним из наиболее распространенных катализаторов Циглера является смесь триэтилалюминия и тетрахлорида титана.

Полимеризация алкенов более подробно рассматривается в разд. 18.3.


Алке́ны (олефины , этиленовые углеводороды C n H 2n

Гомологический ряд.

этен (этилен)

Простейшим алкеном является этилен (C 2 H 4). По номенклатуре IUPAC названия алкенов образуются от названий соответствующих алканов заменой суффикса «-ан» на «-ен»; положение двойной связи указывается арабской цифрой.

Углеводородные радикалы, образованные от алкенов имеют суффикс «-енил» . Тривиальные названия: CH 2 =CH- «винил» , CH 2 =CH-CH 2 - «аллил» .

Атомы углерода при двойной связи находятся в состоянии sp² гибридизации, и имеют валентный угол 120°.

Для алкенов характерны изомерия углеродного скелета, положения двойной связи, межклассовая и пространственная.

Физические свойства

    Температуры плавления и кипения алкенов (упрощенно) увеличиваются с молекулярной массой и длиной главной углеродной цепи.

    При нормальных условиях алкены с C 2 H 4 до C 4 H 8 - газы; с пентена C 5 H 10 до гексадецена C 17 H 34 включительно - жидкости, а начиная с октадецена C 18 H 36 - твёрдые вещества. Алкены не растворяются в воде, но хорошо растворяются в органических растворителях.

Дегидрирование алканов

Это один из промышленных способов получения алкенов

Гидрирование алкинов

Частичное гидрирование алкинов требует специальных условий и наличие катализатора

Двойная связь является сочетания сигма- и пи-связей. Сигма- связь возникает при осевом перекрывании sp2 – орбиталей, а пи-связь при боковом перекрывании

Правило Зайцева:

Отщепление атома водорода в реакциях элиминирования происходит преимущественно от наименее гидрогенизированного атома углерода.

13. Алкены. Строение. sp 2 гибридизация, параметры кратной связи. Реакции электрофильного присоединения галогенов, галогеноводородов, хлорноватистой кислоты. Гидратация алкенов. Правило Морковникова. Механизмы реакций.

Алке́ны (олефины , этиленовые углеводороды ) - ациклические непредельные углеводороды, содержащие одну двойную связьмежду атомами углерода, образующие гомологический ряд с общей формулой C n H 2n

Одна s- и 2 p-орбитали смешиваются и образуются 2 равноценные sp2-гибридные орбитали, расположенные в одной плоскости под углом 120.

Если связь образуется более чем одной парой электронов, то она называется кратной .

Кратная связь образуется в тех случаях, когда имеется слишком мало электронов и связывающихся атомов, чтобы каждая пригодная для образования связи валентная орбиталь центрального атома могла перекрыться с какой-либо орбиталью окружающего атома.

Реакции электрофильного присоединения

В данных реакциях атакующей частицей является электрофил.

Галогенирование:

Гидрогалогенирование

Электрофильное присоединение галогенводородов к алкенам происходит по правилу Марковникова

Марковникова правило

    Присоединение хлорноватистой кислоты с образованием хлоргидринов:

Гидратация

Реакция присоединения воды к алкенам протекает в присутствии серной кислоты :

Карбкатион - частица, в которой на атоме углерода сосредоточен положительный заряд, атом углерода имеет вакантную p-орбиталь.

14. Этиленовые углеводороды. Химические свойства: реакции с окислителями. Каталитическое окисление, реакция с надкислотами, реакция окисления до гликолей, с разрывом связи углерод-углерод, озонирование. Вакер-процесс. Реакции замещения.

Алке́ны (олефины , этиленовые углеводороды ) - ациклические непредельные углеводороды, содержащие одну двойную связьмежду атомами углерода, образующие гомологический ряд с общей формулой C n H 2n

Окисление

Окисление алкенов может происходить в зависимости от условий и видов окислительных реагентов как с разрывом двойной связи, так и с сохранением углеродного скелета.

При сжигании на воздухе олефины дают углекислый газ и воду.

H 2 C=CH 2 + 3O 2 => 2CO 2 + 2H 2 O

C n H 2n + 3n/O 2 => nCO 2 + nH 2 O – общая формула

Каталитическое окисление

В присутствии солей палладия этилен окисляется до ацетальдегида. Аналогично образуется ацетон из пропена.

    При действии на алкены сильных окислителей (KMnO 4 или K 2 Cr 2 O 7 в среде Н 2 SO 4) при нагревании происходит разрыв двойной связи:

При окислении алкенов разбавленным раствором марганцовки образуются двухатомные спирты – гликоли (реакция Е.Е.Вагнера). Реакция протекает на холоде.

Ациклические и циклические алкены при взаимодействии с надкислотами RCOOOH в неполярной, среде образуют эпоксиды (оксираны), поэтому сама реакция носит название реакции эпоксидирования.

Озонирование алкенов.

при взаимодействии алкенов с озоном образуются перекисные соединения, которые называются озо-нидами. Реакция алкенов с озоном является наиболее важным методом окислительного расщепления алкенов по двойной связи

Алкены не вступают в реакции замещения.

Вакер-процесс -процесс получения ацетальдегида прямым окислением этилена.

Вакер-процесс основан на реакции окисления этилена дихлоридом палладия:

CH 2 =CH 2 + PdCl 2 + H 2 O = CH 3 CHO + Pd + 2HCl

15. Алкены: химические свойства. Гидрирование. Правило Лебедева. Изомеризация и олигомеризация алкенов. Радикальная и ионная полимеризация. Понятие полимер, олигомер, мономер, элементарное звено, степень полимеризации. Теломеризация и сополимеризация.

Гидрирование

Гидрирование алкенов непосредственно водородом происходит только в присутствии катализатора. Катализаторами гидрирования служат платина,палладий, никель

Гидрирование можно проводить и в жидкой фазе с гомогенными катализаторами

Реакции изомеризации

При нагревании возможна изомеризация молекул алкенов, которая

может привести как к перемещению двойной связи, так и к изменению скелета

углеводорода.

CH2=CH-CH2-CH3 CH3-CH=CH-CH3

Реакции полимеризации

Это разновидность реакции присоединения. Полимеризация - это реакция последовательного соединения одинаковых молекул в большие по размеру молекулы, без выделения какого-либо низкомолекулярного продукта. При полимеризации атом водорода присоединяется к наиболее гидрогенизированному атому углерода, находящемуся у двойной связи, а к другому атому углерода присоединяется остальная часть молекулы.

CH2=CH2 + CH2=CH2 + ... -CH2-CH2-CH2-CH2- ...

или n CH2=CH2 (-CH2-CH2-)n (полиэтилен)

Вещество, молекулы которого вступают в реакцию полимеризации, называются мономером . Молекула мономера обязательно должна иметь хотя бы одну двойную связь. Образующиеся полимеры состоят из большого количества повторяющихся цепочек, имеющих одинаковое строение (элементарных звеньев). Число, показывающее, сколько раз в полимере повторяется структурное (элементарное) звено, называется степенью полимеризации (n).

В зависимости от вида промежуточных частиц, образующихся при полимеризации, различают 3 механизма полимеризации: а) радикальный; б)катионный; в) анионный.

По первому методу получают полиэтилен высокого давления:

Катализатором реакции выступают пероксиды.

Второй и третий методы предполагает использование в качестве катализаторов кислот (катионная полимеризация), металлорганических соединений.

В химии олигомер ) - молекула в виде цепочки изнебольшого числа одинаковых составных звеньев.

Теломеризация

Теломеризация – олигомеризация алкенов в присутствии веществ – передатчиков цепи (телогенов). В результате реакции образуется смесь олигомеров (теломеров), концевые группы которых представляют собой части телогена. Например, в реакции CCl 4 с этиленом телогеном является CCl 4 .

CCl 4 + nCH 2 =CH 2 => Cl(CH 2 CH 2) n CCl 3

Инициирование этих реакций может осуществляться радикальными инициаторами или g -излучением.

16. Алкены. Реакции радикального присоединения галогенов и галогеноводородов (механизм). Присоединение карбенов к олефинам. Этилен, пропилен, бутилены. Промышленные источники и основные пути использования.

Алкены легко присоединяют галогены, особенно хлор и бром (галогенирование).

Типичной реакцией такого типа является обесцвечивание бромной воды

CH2=CH2 + Вr2 → СH2Br-CH2Br (1,2-дибромэтан)

Электрофильное присоединение галогенводородов к алкенам происходит по правилу Марковникова:

Марковникова правило : при присоединении протонных кислот или воды к несимметричным алкенам или алкинаматом водорода присоединяется к наиболее гидрогенизированному атому углерода

гидрогенизированный атом углерода – тот атом, к которому присоединен водород. Наиболее гидрогенизированный – там где больше всего Н

Реакции присоединения карбенов

Карбены CR 2: - высокореакционные короткоживущие частицы, которые способны легко присоединяться к двойной связи алкенов . В результате реакции присоединения карбена образуются производные циклопропана

Этиле́н - органическое химическое описываемое формулой С 2 H 4 . Является простейшималкеном (олефином )соединение. При нормальных условиях - бесцветный горючий газ со слабым запахом. Частично растворим в воде. Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам. Играет чрезвычайно важную роль в промышленности. Этилен - самое производимое органическое соединение в мире: Окись этилена; полиэтилен, уксусная кислота, этиловый спирт.

Основные химические свойства (не учи, просто пусть будут на всякий случай, вдруг списать получится)

Этилен - химически активное вещество. Так как в молекуле между атомами углерода имеется двойная связь, то одна из них, менее прочная, легко разрывается, и по месту разрыва связи происходит присоединение, окисление, полимеризация молекул.

    Галогенирование:

CH 2 =CH 2 + Br 2 → CH 2 Br-CH 2 Br

Происходит обесцвечивание бромной воды. Это качественная реакция на непредельные соединения.

    Гидрирование:

CH 2 =CH 2 + H - H → CH 3 - CH 3 (под действием Ni)

    Гидрогалогенирование:

CH 2 =CH 2 + HBr → CH 3 - CH 2 Br

    Гидратация:

CH 2 =CH 2 + HOH → CH 3 CH 2 OH (под действием катализатора)

Эту реакцию открыл A.M. Бутлеров, и она используется для промышленного получения этилового спирта.

    Окисление:

Этилен легко окисляется. Если этилен пропускать через раствор перманганата калия, то он обесцветится. Эта реакция используется для отличия предельных и непредельных соединений. Окись этилена - непрочное вещество, кислородный мостик разрывается и присоединяется вода, в результате образуетсяэтиленгликоль. Уравнение реакции :

3CH 2 =CH 2 + 2KMnO 4 + 4H 2 O → 3HOH 2 C - CH 2 OH + 2MnO 2 + 2KOH

C 2 H 4 + 3O 2 → 2CO 2 + 2H 2 O

    Полимеризация (получение полиэтилена):

nCH 2 =CH 2 → (-CH 2 -CH 2 -) n

Пропиле́н (пропен) СН 2 =СН-СН 3 - непредельный (ненасыщенный) углеводород ряда этилена, горючий газ. Пропилен представляет собой газообразное вещество с низкой температурой кипения t кип = −47,6 °C

Обычно пропилен выделяют из газов нефтепереработки (при крекинге сырой нефти, пиролизе бензиновых фракций) или попутных газов, а также из газов коксования угля.

Гипермаркет знаний >>Химия >>Химия 10 класс >> Химия: Алкены

К непредельным относят углеводороды, содержащие в молекулах кратные связи между атомами углерода. Непредельными являются алкены, алкины , алкадиены (полиены). Непредельным характером обладают также циклические углеводороды, содержащие двойную связь в цикле (циклоалке-ны), а также циклоалканы с небольшим числом атомов углерода в цикле (три или четыре атома). Свойство «непредельности» связано со способностью этих веществ вступать в реакции присоединения, прежде всего водорода, с образованием предельных, или насыщенных, углеводородов - алканов.

Строение

Алкены - ациклические , содержащие в молекуле, помимо одинарных связей, одну двойную связь между атомами углерода и соответствующие общей формуле С n Н 2n .

Свое второе название - «олефины» - алкены получили по аналогии с жирными непредельными кислотами (олеиновая, линолевая), остатки которых входят в состав жидких жиров - масел (от англ. oil - масло).

Атомы углерода, между которыми имеется двойная связь, как вы знаете, находятся в состоянии sp 2 -гибридизации. Это означает, что в гибридизации участвуют одна s- и две р-орбитали, а одна р-орбиталь остается негибридизованной. Перекрывание гибридных орбиталей приводит к образованию а-связи, а за счет негибридизованных -орбиталей соседних молекулы этилена атомов углерода образуется вторая, п -связь. Таким образом, двойная связь состоит из одной Þ- и одной п-связи.

Гибридные орбитали атомов, образующих двойную связь, находятся в одной плоскости, а орбитали, образующие л-связь, располагаются перпендикулярно плоскости молекулы (см. рис. 5).

Двойная связь (0,132 нм) короче одинарной, а ее энергия больше, т. е. она является более прочной. Тем не менее наличие подвижной, легко поляризуемой 7г-связи приводит к тому, что алкены химически более активны, чем алканы, и способны вступать в реакции присоединения.

Гомологический ряд этена

Неразветвленные алкены составляют гомологический ряд этена (этилена).

С2Н4 - этен, С3Н6 - пропен, С4Н8 - бутен, С5Н10 - пентен, С6Н12 - гексен и т. д.

Изомерия и номенклатура

Для алкенов, так же как и для алканов, характерна структурная изомерия. Структурные изомеры, как вы помните, отличаются друг от друга строением углеродного скелета. Простейший алкен, для которого характерны структурные изомеры , - это бутен.

СН3-СН2-СН=СН2 СН3-С=СН2
l
СН3
бутен-1 метилпропен

Особым видом структурной изомерии является изомерия положения двойной связи:

СН3-СН2-СН=СН2 СН3-СН=СН-СН3
бутен-1 бутен-2

Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение атомов углерода, поэтому молекулы алканов могут приобретать самую разнообразную форму. Вращение вокруг двойной связи невозможно, что приводит к появлению у алкенов еще одного вида изомерии - геометрической, или цис-транс-изомерии.

Цис-изомеры отличаются от торакс-изомеров пространственным расположением фрагментов молекулы (в данном случае метильных групп) относительно плоскости п -связи, а следовательно, и свойствами.

Алкены изомерны циклоалканам (межклассовая изомерия), например:

сн2=сн-сн2-сн2-сн2-сн3
гексен-1 циклогексан

Номенклатура алкенов , разработанная ИЮПАК, схожа с номенклатурой алканов.

1. Выбор главной цепи

Образование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле. В случае алкенов главная цепь должна содержать двойную связь.

2. Нумерация атомов главной цепи

Нумерация атомов главной цепи начинается с того конца, к которому ближе находится двойная связь. Например, правильное название соединения

сн3-сн-сн2-сн=сн-сн3 сн3

5-метилгексен-2, а не 2-метилгексен-4, как можно было бы предположить.

Если по расположению двойной связи нельзя определить начало нумерации атомов в цепи, то его определяет положение заместителей так же, как для предельных углеводородов.

CH3- CH2-CH=CH-СН-СН3
l
СН3
2-метилгексен-З

3. Формирование названия

Названия алкенов формируются так же, как и названия ал-канов. В конце названия указывают номер атома углерода, у которого начинается двойная связь, и суффикс , обозначающий принадлежность соединения к классу алкенов, -ен.

Получение

1. Крекинг нефтепродуктов. В процессе термического крекинга предельных углеводородов наряду с образованием алка-нов происходит образование алкенов.

2. Дегидрирование предельных углеводородов. При пропускании алканов над катализатором при высокой температуре (400-600 °С) происходит отщепление молекулы водорода и образование алкена:

3. Дегидратация спиртов (отщепление воды). Воздействие водоотнимающих средств (Н2804, Аl203) на одноатомные спирты при высокой температуре приводит к отщеплению молекулы воды и образованию двойной связи:

Эту реакцию называют внутримолекулярной дегидратацией (в отличие от межмолекулярной дегидратации, которая приводит к образованию простых эфиров и будет изучена в § 16 «Спирты»).

4. Дегидрогалогенирование (отщепление галогеноводорода).

При взаимодействии галогеналкана со щелочью в спиртовом растворе образуется двойная связь в результате отщепления молекулы галогеноводорода.

Обратите внимание, что в результате этой реакции образуется преимущественно бутен-2, а не бутен-1, что соответствует правилу Зайцева:

При отщеплении галогеноводорода от вторичных и третичных галогеналканов атом водорода отщепляется от наименее гидрированного атома углерода.

5. Дегалогенирование. При действии цинка на дибромпроиз-водное алкана происходит отщепление атомов галогенов, находящихся при соседних атомах углерода, и образование двойной связи:

Физические свойства

Первые три представителя гомологического ряда алкенов - газы, вещества состава С5Н10-С16Н32 - жидкости, высшие алкены - твердые вещества.

Температуры кипения и плавления закономерно повышаются при увеличении молекулярной массы соединений.

Химические свойства

Реакции присоединения

Напомним, что отличительной чертой представителей непредельных углеводородов - алкенов является способность вступать в реакции присоединения. Большинство этих реакций протекает по механизму электрофильного присоединения.

1. Гидрирование алкенов. Алкены способны присоединять водород в присутствии катализаторов гидрирования - металлов - платины, палладия, никеля:

CH3-СН2-СН=СН2 + Н2 -> CH3-CH2-СН2-СН3

Эта реакция протекает и при атмосферном и при повышенном давлении и не требует высокой температуры, так как является экзотермической. При повышении температуры на тех же катализаторах может пойти обратная реакция - дегидрирование.

2. Галогенирование (присоединение галогенов). Взаимодействие алкена с бромной водой или раствором брома в органическом растворителе (ССl4) приводит к быстрому обесцвечиванию этих растворов в результате присоединения молекулы галогена к алкену и образования дигалогеналканов.

Марковников Владимир Васильевич

(1837-1904)

Русский химик-органик. Сформулировал (1869) правила о направлении реакций замещения, отщепления, присоединения по двойной связи и изомеризации в зависимости от химического строения. Исследовал (с 1880 г.) состав нефти, заложил основы нефтехимии как самостоятельной науки. Открыл (1883) новый класс органических веществ - цикло-парафины (нафтены).

3. Гидрогалогенирование (присоединение галогеноводорода).

Реакция присоединения галогеноводорода более подробно будет рассмотрена ниже. Эта реакция подчиняется правилу Марковникова:

При присоединении галогеноводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором находится больше атомов водорода, а галоген - к менее гидрированному.

4. Гидратация (присоединение воды). Гидратация алкенов приводит к образованию спиртов. Например, присоединение воды к этену лежит в основе одного из промышленных способов получения этилового спирта:

CH2=CH2 + H2O -> СН3-СН2ОН
этен этанол

Обратите внимание на то, что первичный спирт (с гидроксигруппой при первичном углероде) образуется только при гидратации этена. При гидратации пропена или других алкенов образуются вторичные спирты.

Эта реакция также протекает в соответствии с правилом Марковникова - катион водорода присоединяется к более гидрированному атому углерода, а гидроксигруппа - к менее гидрированному.

5. Полимеризация. Особым случаем присоединения является реакция полимеризации алкенов:

Эта реакция присоединения протекает по свободноради-кальному механизму.

Реакции окисления

Как и любые органические соединения, алкены горят в кислороде с образованием С02 и Н20.

В отличие от алканов, которые устойчивы к окислению в растворах, алкены легко окисляются под действием водных растворов перманганата калия. В нейтральных или слабощелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов), причем гидроксильные группы присоединяются к тем атомам, между которыми до окисления существовала двойная связь.

Как вы уже знаете, непредельные углеводороды - алкены способны вступать в реакции присоединения. Большинство этих реакций протекает по механизму электрофильного присоединения.

Электрофильное присоединение

Электрофильные реакции - это реакции, протекающие под действием электрофилов - частиц, имеющих недостаток электронной плотности, например незаполненную орбиталь. Простейшей электрофильной частицей является катион водорода. Известно, что атом водорода имеет один электрон на З-в-орбитали. Катион водорода образуется, когда атом теряет этот электрон, таким образом, у катиона водорода вообще отсутствуют электроны:

Н· - 1е - -> Н +

При этом катион имеет достаточно высокое сродство к электрону. Сочетание этих факторов делает катион водорода достаточно сильной электрофильной частицей.

Образование катиона водорода возможно при электролитической диссоциации кислот:

НВr -> Н + + Вr -

Именно по этой причине многие электрофильные реакции идут в присутствии и с участием кислот.

Электрофильные частицы, как уже говорилось раньше, действуют на системы, содержащие области повышенной электронной плотности. Примером такой системы может являться кратная (двойная или тройная) углерод-углеродная связь.

Вы уже знаете, что атомы углерода, между которыми образована двойная связь, находятся в состоянии sр 2 -гибридизации. Негибри-дизованные р-орбитали соседних атомов углерода, находящиеся в одной плоскости, перекрываются, образуя п -связь, которая менее прочна, чем Þ-связь, и, что наиболее существенно, легко поляризуется под действием внешнего электрического поля. Это означает, что при приближении положительно заряженной частицы электроны тс-связи смещаются в ее сторону и образуется так называемый п- комплекс.

Получается п -комплекс и при присоединении катиона водорода к п -связи. Катион водорода как бы натыкается на выступающую из плоскости молекулы электронную плотность п -связи и присоединяется к ней.

На следующей стадии происходит полное смещение электронной пары п -связи к одному из атомов углерода, что приводит к появлению на нем неподеленной пары электронов. Орбиталь атома углерода, на которой находится эта пара, и незаполненная орбиталь катиона водорода перекрываются, что приводит к образованию ковалентной связи по донорно-акцепторному механизму. У второго атома углерода при этом остается незаполненная орбиталь, т. е. положительный заряд.

Образовавшаяся частица называется карбокатионом, так как она содержит положительный заряд на атоме углерода. Эта частица может соединиться с каким-либо анионом, частицей, имеющей неподеленную электронную пару, т. е. нуклеофилом.

Рассмотрим механизм реакции электрофильного присоединения на примере гидробромирования (присоединения бромоводорода) этена:

СН2= СН2 + НВг --> СНВr-СН3

Реакция начинается с образования электрофильной частицы - катиона водорода, которое происходит в результате диссоциации молекулы бромоводорода.

Катион водорода атакует п -связь, образуя п -комплекс, который быстро преобразуется в карбокатион:

Теперь рассмотрим более сложный случай.

Реакция присоединения бромоводорода к этену протекает однозначно, а взаимодействие бромоводорода с пропеном теоретически может дать два продукта: 1-бромпропан и 2-бромпропан. Данные эксперимента показывают, что в основном получается 2-бромпропан.

Для того чтобы объяснить это, нам придется рассмотреть промежуточную частицу - карбокатион.

Присоединение катиона водорода к пропену может привести к образованию двух карбокатионов: если катион водорода присоединится к первому атому углерода, к атому, который находится на конце цепи, то положительный заряд окажется у второго, т. е. в центре молекулы (1); если присоединится ко второму, то положительный заряд окажется у первого атома (2).

Преимущественное направление реакции будет зависеть от того, какого карбокатиона окажется больше в реакционной среде, что, в свою очередь, определяется устойчивостью карбокатиона. Эксперимент показывает преимущественное образование 2-бромпропа-на. Это означает, что в большей степени происходит образование карбокатиона (1) с положительным зарядом на центральном атоме.

Большая устойчивость этого карбокатиона объясняется тем, что положительный заряд на центральном атоме углерода компенсируется положительным индуктивным эффектом двух метильных групп, суммарный эффект которых выше, чем +/-эффект одной этильной группы:

Закономерности реакций гидрогалогенирования алкенов были изучены известным русским химиком В. В. Марковниковым, учеником А. М. Бутлерова , который, как это уже было сказано выше, сформулировал правило, носящее его имя.

Это правило было установлено эмпирически, т. е. опытным путем. В настоящее время мы можем привести вполне убедительное его объяснение.

Интересно, что правилу Марковникова подчиняются и другие реакции электрофильного присоединения, поэтому будет правильно сформулировать его в более общем виде.

В реакциях электрофильного присоединения электрофил (частица с незаполненной орбиталью) присоединяется к более гидрированному атому углерода, а нуклеофил (частица с неподеленной парой электронов) - к менее гидрированному.

Полимеризация

Особым случаем реакции присоединения является реакция полимеризации алкенов и их производных. Эта реакция протекает по механизму свободнорадикального присоединения:

Полимеризацию проводят в присутствии инициаторов - пере-кисных соединений, которые являются источником свободных радикалов. Перекисными соединениями называют вещества, молекулы которых включают группу -О-О-. Простейшим перекисным соединением является перекись водорода НООН.

При температуре 100 °С и давлении 100 МПа происходит гомо-лиз неустойчивой кислород-кислородной связи и образование радикалов - инициаторов полимеризации. Под действием радикалов КО- происходит инициирование полимеризации, которая развивается как реакция свободнорадикального присоединения. Рост цепи прекращается, когда в реакционной смеси происходит рекомбинация радикалов - полимерной цепи и радикалов или КОСН2СН2-.

При помощи реакции свободнорадикальной полимеризации веществ, содержащих двойную связь, получают большое количество высокомолекулярных соединений:

Применение алкенов с различными заместителями дает возможность синтезировать богатый ассортимент полимерных материалов с широким набором свойств.

Все эти полимерные соединения находят широкое применение в самых разных областях человеческой деятельности - промышленности, медицине, используются для изготовления оборудования биохимических лабораторий, некоторые являются полупродуктами для синтеза других высокомолекулярных соединений.

Окисление

Вы уже знаете, что в нейтральных или слабощелочных растворах происходит окисление алкенов до диолов (двухатомных спиртов). В кислой среде (подкисленный серной кислотой раствор) происходит полное разрушение двойной связи и превращение атомов углерода, между которыми существовала двойная связь, в атомы углерода карбоксильной группы:

Деструктивное окисление алкенов можно применять для определения их структуры. Так, например, если при окислении некоторого алкена получены уксусная и пропионовая кислоты, это означает, что окислению подвергся пентен-2, а если получены масляная (бутановая) кислота и углекислый газ, то исходный углеводород - пентен-1.

Применение

Алкены широко используются в химической промышленности как сырье для получения разнообразных органических веществ и материалов.

Так, например, этен является исходным веществом для производства этанола, этиленгликоля, эпоксидов, дихлорэтана.

Большое количество этена перерабатывается в полиэтилен, который используется для изготовления упаковочной пленки, посуды, труб, электроизоляционных материалов.

Из пропена получают глицерин, ацетон, изопропанол, растворители. Полимеризацией пропена получают полипропилен, который по многим показателям превосходит полиэтилен: имеет более высокую температуру плавления, химическую устойчивость.

В настоящее время из полимеров - аналогов полиэтилена производят волокна, обладающие уникальными свойствами. Так, например, волокно из полипропилена прочнее всех известных синтетических волокон.

Материалы, изготовленные из этих волокон, являются перспективными и находят все большее применение в разных областях человеческой деятельности.

1. Какие виды изомерии характерны для алкенов? Напишите формулы возможных изомеров пентена-1.
2. Из каких соединений может быть получен: а) изобутен (2-метилпропен); б) бутен-2; в) бутен-1? Напишите уравнения соответствующих реакций.
3. Расшифруйте следующую цепочку превращений. Назовите соединения А, Б, В. 4. Предложите способ получения 2-хлорпропана из 1-хлор-пропана. Напишите уравнения соответствующих реакций.
5. Предложите способ очистки этана от примесей этилена. Напишите уравнения соответствующих реакций.
6. Приведите примеры реакций, с помощью которых можно различить предельные и непредельные углеводороды.
7. На полное гидрирование 2,8 г алкена израсходовано 0,896 л водорода (н. у.). Какова молекулярная масса и структурная формула этого соединения, имеющего нормальную цепь углеродных атомов?
8. Какой газ находится в цилиндре (этен или пропен), если известно, что на полное сгорание 20 см3 этого газа потребовалось 90 см3 (н. у.) кислорода?
9*. При реакции алкена с хлором в темноте образуется 25,4 г дихлорида, а при реакции этого алкена той же массы с бромом в тетрахлорметане - 43,2 г дибромида. Установите все возможные структурные формулы исходного алкена.

История открытия

Из вышеизложенного материала мы с вами уже поняли, что этилен является родоначальником гомологического ряда непредельных углеводородов, имеющий одну двойную связь. Их формула C n H 2n и носят они название алкенов.

Немецкому врачу и химику Бехеру в 1669 году впервые удалось получить этилен путем воздействия серной кислоты на этиловый спирт. Бехер установил, что этилен является, более химически активным, чем метан. Но, на жаль, в то время, полученный газ ученый идентифицировать не смог, поэтому и названия ему никакого не присвоил.

Немного позже таким же способом получения этилена воспользовался и голландские химики. А так как при взаимодействии с хлором он имел свойство образовывать маслянистуюю жидкость, то соответственно и получил название «маслородного газа». Позднее стало известно, что эта жидкость является дихлорэтаном.

Во французском языке термин «маслородный» звучит, как oléfiant. А после того, как были обнаружены и другие углеводороды подобного типа, то Антуан Фуркруа,французский химик и ученый, ввел новый термин, который стал общим для всего класса олефинов или алкенов.

Но уже в начале девятнадцатого века французским химиком Ж. Гей-Люссаком было доведено, что этанол состоит не только из «маслородного» газа, но и воды. Кроме того, такой же газ был обнаружен и в хлористом этиле.

И хотя химики и определили, что этилен состоит из водорода и углерода, и уже знали состав веществ, но найти его настоящую формулу еще долго не могли. И лишь в 1862 году Э.Эрленмейеру удалось доказать наличие в молекуле этилена двойной связи. Это признал и российский ученый А. М. Бутлеров и подтвердил правильность такой точки зрения экспериментально.

Нахождение в природе и физиологическая роль алкенов

Многих интересует вопрос, где в природе можно встретить алкены. Так вот, оказывается, что в природе они практически не встречаются, так как простейший его представитель этилен является гормоном для растений и лишь в незначительном количестве в них синтезируется.

Правда в природе существует такой алкен, как мускалур. Этот один из природных алкенов является половым аттрактантом самки домашней мухи.

Стоит обратить внимание на то, что, имея, высокую концентрацию низшие алкены обладают наркотическим эффектом, которые способны вызывать судороги и раздражение слизистых.

Применение алкенов

Жизнь современного общества на сегодняшний день трудно представить без применения полимерных материалов. Так как в отличие от природных материалов, полимеры обладают различными свойствами, они легкие в обработке, да и если смотреть по цене, то они сравнительно дешевы. Еще важным аспектом в пользу полимеров, является то, что многие из них можно вторично перерабатывать.

Алкены свое применение нашли при производстве пластмасс, каучуков, пленок, тефлона, этилового спирта, уксусного альдегида и других органических соединений.



В сельском хозяйстве его применяют, как средство, которое ускоряет процесс созревания фруктов. Для получения различных полимеров и спиртов используют пропилен и бутилены. А вот в производстве синтетического каучука используют изобутилен. Поэтому можно сделать вывод, что без алкенов не обойтись, так как они являются важнейшим химическим сырьем.

Промышленное использование этилена

В промышленных масштабах пропилен, как правило, используют для синтеза полипропилена и для получения изопропанола, глицерина, масляных альдегидов и т.д. С каждым годом потребность в пропилене возрастает.