Дайте объяснение давления света. Давление света

13.2. Свет и микрочастицы как объекты квантовой теории

13.2.3. Давление света

Свет оказывает на поверхность давление.

Давление света равно импульсу, который передают фотоны единице площади поверхности, расположенной перпендикулярно пучку фотонов, в единицу времени:

p = (1 + ρ) p γ (N / t) S ,

где ρ - коэффициент отражения поверхности; N /t - число фотонов, падающих на поверхность ежесекундно (в единицу времени); p γ - импульс фотона, p γ = h ν/c или p γ = h λ ; S - площадь поверхности, расположенной перпендикулярно падающему пучку фотонов.

Коэффициент отражения - доля отраженных от поверхности фотонов; коэффициент отражения определяется отношением

ρ = N отр N ,

где N - число фотонов, падающих на поверхность; N отр - число фотонов, отраженных от поверхности.

Для поверхностей с различными свойствами коэффициент отражения имеет различные значения:

  • для зеркальной поверхности ρ = 1;
  • зачерненной поверхности ρ = 0.

Коэффициент поглощения - доля поглощенных поверхностью фотонов; коэффициент поглощения определяется отношением

ρ * = N погл N ,

где N погл - число фотонов, поглощенных поверхностью.

Для поверхностей с различными свойствами коэффициент поглощения имеет различные значения:

  • для зеркальной поверхности ρ * = 0;
  • зачерненной поверхности ρ * = 1.

Сила давления света на поверхность

F = pS ,

где p - давление света; S - площадь поверхности, расположенной перпендикулярно падающему пучку фотонов.

Сила давления связана с мощностью пучка фотонов формулой

F = (1 + ρ) P c ,

где ρ - коэффициент отражения; P - мощность пучка фотонов, P = Nh ν/t = Nhc /λt ; ν - частота фотона; λ - длина волны фотона; c - скорость света в вакууме; h - постоянная Планка, h = 6,626 ⋅ 10 −34 Дж ⋅ с; N /t - число фотонов, падающих на поверхность ежесекундно.

Сила давления света на поверхность не зависит от площади поверхности , а определяется только мощностью падающего пучка и отражающими свойствами поверхности.

Пример 6. На некоторую поверхность ежесекундно падает 1,0 ⋅ 10 19 фотонов с длиной волны 560 нм. При нормальном падении на площадку 10 см 2 свет оказывает давление 20 мкПа. Найти коэффициент поглощения этой поверхности.

Решение . Давление света равно импульсу, который передают все фотоны единице площади поверхности, расположенной перпендикулярно пучку фотонов, в единицу времени:

p = (1 + ρ) p γ (N / t) S = (1 + ρ) h N λ S t ,

где ρ - коэффициент отражения; p γ - импульс одного фотона, p γ = h /λ; λ - длина волны света, падающего на поверхность, λ = 560 нм; h - постоянная Планка, h = 6,63 ⋅ 10 −34 Дж ⋅ с; N /t - число фотонов, падающих на поверхность ежесекундно, N /t = 1,0 ⋅ 10 19 c −1 ; S - площадь поверхности, расположенной перпендикулярно падающему пучку фотонов, S = 10 см 2 .

Выразим отсюда коэффициент отражения поверхности:

ρ = p λ S h (N / t) − 1 ,

где p - давление света на поверхность, p = 20 мкПа.

Коэффициенты поглощения и отражения одной и той же поверхности связаны между собой формулой

где ρ - коэффициент отражения поверхности; ρ * - коэффициент поглощения той же поверхности.

Отсюда следует

ρ * = 1 − ρ,

или с учетом явного вида выражения для коэффициента отражения

ρ * = 1 − (p λ S h (N / t) − 1) = 2 − p λ S h (N / t) .

Вычислим:

ρ * = 2 − 20 ⋅ 10 − 6 ⋅ 560 ⋅ 10 − 9 ⋅ 10 ⋅ 10 − 4 6,63 ⋅ 10 − 34 ⋅ 1,0 ⋅ 10 19 = 0,31 .

Коэффициент поглощения данной поверхности равен 0,31.

Коэффициент поглощения представляет собой долю поглощенных поверхностью фотонов; следовательно, можно утверждать, что 31 % падающих на поверхность фотонов поглощается этой поверхностью.

Страница 1
§ 36. ДАВЛЕНИЕ СВЕТА. ФОТОНЫ.

Основные формулы

Давление, производимое светом при нормальном падении,

p=(E e /c)*(1+ρ), или p=(1+ρ),

где E e - облученность поверхности; с - скорость электромагнит­ного излучения в вакууме; - объемная плотность энергии излу­чения; ρ - коэффициент отражения.

Энергия фотона

ε = hυ=hc/λ , или ε = ħ ,

где h - постоянная Планка; ħ=h/(2π); υ - частота света;  - круговая частота; λ - длина волны.

Масса и импульс фотона выражаются соответственно форму­лами

m=ε/c 2 = h/(cλ); p=mc=h/λ .
Примеры решения задач

Пример 1. Пучок монохроматического света с длиной волны λ = 663 нм падает нормально на зеркальную плоскую поверхность Поток энергии Ф е =0,6 Вт. Определить силу F давления, испытывае­мую этой поверхностью, а также число N фотонов, падающих на нее за время t=5 с

Решение Сила светового давления на поверхность равна произведению светового давления р на площадь S поверхности:

F = pS . (1)

Световое давление может быть найдено по формуле

P=E e (ρ+l)/c (2)

Подставляя выражение (2) дaвлeния света в формулу (1), получим

F= [(E e S)/c]*(ρ+1). (3)

Так как произведение облученности E e на площадь S поверх­ности равно потоку Ф энергии излучения, падающего на поверх­ность, то соотношение (3) можно записать в виде

F = (Ф е /с)*(ρ+1).

После подстановки значений Ф е и с с учетом, что ρ=1 (поверх­ность зеркальная), получим

Число N фотонов, падающих за время ∆t на поверхность, опре­деляется по формуле

N=∆W/ε = Ф е ∆t/ε ,

где ∆W - энергия излучения, получаемая поверхностью за время t

Выразив в этой формуле энергию фотона через длину волны (ε =hc/λ), получим

N = Ф е λ∆t/(hc).

Подставив в этой формуле числовые значения величин, найдем

N= 10 19 фотонов.

Пример 2. Параллельный пучок света длиной волны λ=500 нм падает нормально на зачерненную поверхность, производя давление p=10 мкПа. Определить: 1) концентрацию п фотонов в пучке, 2) число n 1 фотонов, падающих на поверхность площадью 1 м 2 за вре­мя 1 с.

Решение. 1. Концентрация п фотонов в пучке может быть найдена, как частное от деления объемной плотности энергии  на энергию ε одного фотона:

n=/ε (1)

Из формулы p=(1+ρ), определяющей давление света, где ρ-коэффициент отражения, найдем

 = p/(ρ+1). (2)

Подставив выражение для из уравнения (2) в формулу (1), получим

n = ρ/[(ρ+1)*ε]. (3)

Энергия фотона зависит от частоты υ, а следовательно, и от длины световой волны λ:

ε = hυ = hc/λ (4)

Подставив выражение для энергии фотона в формулу (3), опре­делим искомую концентрацию фотонов:

n = (ρλ)/[(ρ+1)*ε]. (5)

Коэффициент отражения ρ для зачерненной поверхности прини­маем равным нулю.

Подставив числовые значения в формулу (5), получим

n=2,52*10 13 м -3 .

2. Число n 1 фотонов, падающих на поверхность площадью 1 м 2 за время 1 с, найдем из соотношения n 1 = N /(St ), где N - число фо­тонов, падающих за время t на поверхность площадью S. Но N = ncSt , следовательно,

n 1 =(ncSt)/(St)=nc

Подставив сюда значения п и с, получим

n 1 =7,56*10 21 м -2 *с -1 .

Пример 3 . Монохроматический (λ = 0.582 мкм) пучок света падает нормально на поверхность с коэффициентом отражения ρ = 0.7. Определить число фотонов, ежесекундно падающих на 1 см 2 этой поверхности, если давление света на эту поверхность р = 1.2мкПа. Найти концентрацию фотонов в 1 см 3 падающего светового пучка.

Решение. Давление, производимое светом на поверхность при нормальном падении, определяется формулой:

где E - энергия, падающая на единицу поверхности за единицу времени (энергетическая освещенность), с - скорость света, ρ - коэффициент отражения поверхности.

С другой стороны, энергетическая освещенность может быть выражена через число падающих фотонов N:

(2)

где
- энергия падающего фотона. Тогда на основании (1) и (2) получим:

(3)

Подставляя числовые данные, получим число фотонов, падающих на 1 м 2 поверхности в течение 1 с. Соответственно на площадку S = 1 см 2 падает число фотонов N":

(4)

Подставляя числовые данные в системе СИ (S = 10 -4 м 2), получим
фотонов.

Концентрация фотонов вблизи поверхности в падающем луче определяется формулой:

где n 0 - число фотонов в 1 м 3 . Тогда число фотонов в 1 см 3 равно

(5)

Подставляя числовые данные в (5) с учетом того, что V = 10 -6 м 3 , получим

4. На зачерненную поверхность нормально падает монохроматический свет с длиной волны λ = 0,65 мкм, производя давление p =510 -6 Па. Определить концентрацию фотонов вблизи поверхности и число фотонов, падающих на площадь S = 1 м 2 в t = 1 с.


или
, (1)

где Е е – энергетическая освещенность поверхности;

с – скорость света в вакууме; ω – объемная плотность энергии.

Объемная плотность энергии равна произведению концентрации фотонов (число фотонов в единице объема) на энергию одного фотона:

, т.е.
, откуда
. (2)

Из выражения (1) определяем объемную плотность энергии
.

Тогда
, где ρ = 0 (зачерненная поверхность).

Число фотонов, падающих на площадь S = 1 м 2 в 1 секунду, численно равно отношению энергетической освещенности к энергии одного фотона:

.

Из выражения (1) энергетическая освещенность


Интенсивность люминесценции можно вычислить по формуле:

I л = 2,3 I 0  D, откуда квантовый выход люминесценции

Рассматриваемая формула является определением квантового выхода люминесценции, подставим числа и произведём вычисления:

= .

Ответ: квантовый выход люминесценции вещества 0,6.

страница 1

Давлением света называется давление, которое производят электромагнитные световые волны, падающие на поверхность какого-либо тела. Существование давления было предсказано Дж. Максвеллом в его электромагнитной теории света.

Если, например, электромагнитная волна падает на металл (рис. 19.9), то под действием электрического поля волны с напряженностью \(\vec E\) электроны поверхностного слоя металла будут двигаться в направлении, противоположном вектору \(\vec E,\) со скоростью \(\vec \upsilon = const.\) Магнитное поле волны с индукцией \(~В\) действует на движущиеся электроны с силой Лоренца F Л в направлении, перпендикулярном поверхности металла (согласно правилу левой руки). Давление р, оказываемое волной на поверхность металла, можно рассчитать как отношение равнодействующей сил Лоренца, действующих на свободные электроны в поверхностном слое металла, к площади поверхности металла:

\(p = \dfrac{ \sum_{n=1}^n \vec F_{iL} }{S}.\)

На основании электромагнитной теории Максвелл получил формулу для светового давления. С ее помощью он рассчитал давление солнечного света в яркий полдень на абсолютно черное тело, расположенное перпендикулярно солнечным лучам. Это давление оказалось равным 4,6 мкПа:

\(~p = (1 + \rho)\dfrac{J}{c}.\)

где J - интенсивность света, \(~\rho\) - коэффициент отражения света (см. § 16.3), с - скорость света в вакууме. Для зеркальных поверхностей \(~\rho = 1,\) при полном поглощении (для абсолютно черного тела) \(~\rho = 0\)

С точки зрения квантовой теории, давление является следствием того, что у фотона имеется импульс \(p_f = \dfrac{h \nu}{c}.\) Пусть свет падает перпендикулярно поверхности тела и за 1 с на 1 м 2 поверхности падает N фотонов. Часть из них поглотится поверхностью тела (неупругое соударение), и каждый из поглощенных фотонов передает этой поверхности свой импульс \(p_f = \dfrac{h \nu}{c}.\) Часть же фотонов отразится (упругое соударение). Отраженный фотон полетит от поверхности в противоположном направлении. Полный импульс, переданный поверхности отраженным фотоном, будет равен

\(\Delta p_f = p_f - (-p_f) = 2p_f = 2\dfrac{h \nu}{c}.\)

Давление света на поверхность будет равно импульсу, который передают за 1 с все N фотонов, падающих на 1 м 2 поверхности тела (\(F\Delta t=\Delta p \Rightarrow F=\frac{\Delta p}{\Delta t}; p = \frac{F}{S}=\frac{\Delta p}{S\Delta t}\)). Если \(~\rho\) - коэффициент отражения света от произвольной поверхности, \(k\) - коэффициент пропускания света, то \(~\rho \cdot N\) - это число отраженных фотонов, а \(~(1 - k - \rho)N\) - число поглощенных фотонов. Следовательно, давление света

\(p = 2 \rho N \dfrac{h \nu}{c}+(1-k-\rho)N\dfrac{h \nu}{c} = (1 - k + \rho) N \dfrac{h \nu}{c}.\)

Произведение представляет собой энергию всех фотонов, падающих на 1 м 2 поверхности за 1 с. Это есть интенсивность света (поверхностная плотность потока излучения падающего света):

\(Nh\nu = \dfrac{W}{S \cdot t} = I.\)

Таким образом, давление света \(p = (1 - k + \rho)\dfrac{I}{c}.\)

Предсказанное Максвеллом световое давление было экспериментально обнаружено и измерено русским физиком П. Н. Лебедевым. В 1900 г. он измерил давление света на твердые тела, а в 1907-1910 гг. - давление света на газы.

Прибор, созданный Лебедевым для измерения давления света, представлял собой очень чувствительный крутильный динамометр (крутильные весы). Его подвижной частью являлась подвешенная на тонкой кварневой нити легкая рамка с укрепленными на ней крылышками - светлыми и черными дисками толщиной до 0,01 мм. Крылышки делали из металлической фольги (рис. 19.10). Рамка была подвешена внутри сосуда, из которого откачали воздух.

Свет, падая на крылышки, оказывал на светлые и черные диски разное давление. В результате на рамку действовал вращающий момент, который закручивал нить подвеса. По углу закручивания нити определялось давление света.

Трудности измерения светового давления вызывались его исключительно малым значением и существованием явлений, сильно влияющих на точность измерений. К их числу относилась невозможность полностью откачать воздух из сосуда, что приводило к возникновению так называемого радиометрического эффекта.

Сущность этого явления в следующем. Сторона крылышек, обращенная к источнику света, нагревается сильнее противоположной стороны. Поэтому  молекулы воздуха, отражающиеся от более нагретой стороны, передают крылышку больший импульс, чем молекулы, отражающиеся от менее нагретой стороны. Так появляется дополнительный вращающий момент.

Схема установки Лебедева для измерения давления света на газы изображена на рисунке 19.11. Свет, проходящий сквозь стеклянную стенку А, действует на газ, заключенный в цилиндрическом канале В. Под давлением света газ из канала В перетекает в сообщающийся с ним канал С. В канале С находится легкий подвижный поршень D, подвешенный на тонкой упругой нити Е, перпендикулярной плоскости чертежа. Световое давление рассчитывалось по углу закручивания нити.

ДАВЛЕНИЕ CBETA, давление, оказываемое светом на отражающие и поглощающие тела, частицы, а также отдельные молекулы и атомы; одно из пондеромоторных действий света, связанное с передачей импульса электромагнитного поля веществу. Гипотеза о существовании давления света была впервые высказана И. Кеплером в 17 веке для объяснения отклонения хвостов комет от Солнца. Теория давления света в рамках классической электродинамики дана Дж. К. Максвеллом в 1873. В ней давления света объясняется рассеянием и поглощением электромагнитной волны частицами вещества. В рамках квантовой теории давления света - результат передачи импульса фотонами телу.

При нормальном падении света на поверхность твёрдого тела давления света р определяется формулой:

р = S(1 + R)/с, где

S - плотность потока энергии (интенсивность света), R - коэффициент отражения света от поверхности, с - скорость света. В обычных условиях давление света малозаметно. Даже в мощном лазерном луче (1 Вт/см 2) давления света порядка 10 -4 г/см 2 . Широкий по сечению лазерный луч можно сфокусировать, и тогда сила давления света в фокусе луча может удерживать на весу миллиграммовую частичку.

Экспериментально давление света на твёрдые тела было впервые исследовано П. Н. Лебедевым в 1899 году. Основные трудности в экспериментальном обнаружении давления света заключались в выделении его на фоне радиометрических и конвективных сил, величина которых зависит от давления окружающего тело газа и при недостаточном вакууме может превышать давление света на несколько порядков. В опытах Лебедева в вакуумированном (давление порядка 10 -4 мм ртутного столба) стеклянном сосуде на тонкой серебряной нити подвешивались коромысла крутильных весов с закреплёнными на них тонкими дисками-крылышками, которые облучались. Крылышки изготавливались из различных металлов и слюды с идентичными противоположными поверхностями. Последовательно облучая переднюю и заднюю поверхности крылышек различной толщины, Лебедев сумел нивелировать остаточное действие радиометрических сил и получить удовлетворительное (с ошибкой ± 20%) согласие с теорией Максвелла. В 1907-10 Лебедев исследовал давление света на газы.

Давление света играет большую роль в астрономических и атомных явлениях. Давление света в звёздах наряду с давлением газа обеспечивает их стабильность, противодействуя силам гравитации. Действием давления света объясняются некоторые формы кометных хвостов. При испускании фотона атомами происходит так называемая световая отдача, и атомы получают импульс фотона. В конденсированных средах давление света может вызывать ток носителей заряда (смотри Увлечение электронов фотонами). Давление солнечного излучения пытаются использовать для создания разновидности космического движителя - так называемого солнечного паруса.

Специфические особенности давления света обнаруживаются в разреженных атомных системах при резонансном рассеянии интенсивного света, когда частота лазерного излучения равна частоте атомного перехода. Поглотив фотон, атом получает импульс в направлении лазерного пучка и переходит в возбуждённое состояние. Далее, спонтанно испуская фотон, атом приобретает импульс (световая отдача) в произвольном направлении. При последующих поглощениях и спонтанных испусканиях фотонов атом получает постоянно импульсы, направленные вдоль светового луча, что и создаёт давление света.

Сила F резонансного давления света на атом определяется как импульс, переданный потоком фотонов с плотностью N в единицу времени: F = Nћkσ, где ћk = 2πћ/λ - импульс одного фотона, σ ≈ λ 2 - сечение поглощения резонансного фотона, λ - длина волны света, k - волновое число, ћ - постоянная Планка. При относительно малых плотностях излучения резонансное давление света прямо пропорционально интенсивности света. При больших плотностях потока фотонов N происходит насыщение поглощения и насыщение резонансного давления света (смотри Насыщения эффект). В этом случае давление света создают фотоны, спонтанно испускаемые атомами со средней частотой γ (обратной времени жизни возбуждённого атома) в случайном направлении. Сила светового давления перестаёт зависеть от интенсивности, а определяется скоростью спонтанных актов испускания: F≈ћkγ. Для типичных значений γ ≈ 10 8 с -1 и λ ≈0,6 мкм сила давления света.F≈5·10 -3 эВ/см; при насыщении резонансное давление света может создавать ускорение атомов до 10 5 g (g - ускорение свободного падения). Столь большие силы позволяют селективно управлять атомными пучками, варьируя частоту света и по-разному воздействуя на атомы с малоразличающимися частотами резонансного поглощения. В частности, удаётся сжимать максвелловское распределение по скоростям, убирая из пучка высокоскоростные атомы. Свет лазера направляют навстречу атомному пучку, подбирая при этом частоту и форму спектра излучения так, чтобы давление света тормозило быстрые атомы с большим смещением резонансной частоты (смотри Доплера эффект). Резонансное давление света можно использовать для разделения газов: при облучении двухкамерного сосуда, наполненного смесью двух газов, атомы одного из которых находятся в резонансе с излучением, резонансные атомы под действием давления света перейдут в дальнюю камеру.

Некоторые особенности имеет резонансное давление света на атомы, помещённые в поле интенсивной стоячей волны. С квантовой точки зрения стоячая волна, образованная встречными потоками фотонов, вызывает толчки атома, обусловленные поглощением фотонов и их стимулированным испусканием. Средняя сила, действующая на атом, при этом не равна нулю вследствие неоднородности поля на длине волны. С классической точки зрения сила давления света обусловлена действием пространственно неоднородного поля на наведённый им атомный диполь. Эта сила минимальна в узлах, где дипольный момент не наводится, и в пучностях, где градиент поля обращается в нуль. Максимальная сила давления света по порядку величины равна F≈ ±Ekd (знаки относятся к синфазному и противофазному движению диполей с моментом d по отношению к полю с напряжённостью Е). Эта сила может достигать гигантских значений: d≈ 1 дебай, λ≈0,6 мкм и Е≈ 10 6 В/см сила F≈5∙10 2 эВ/см. Поле стоячей волны расслаивает пучок атомов, проходящий сквозь луч света, так как диполи, колеблющиеся в противофазе, двигаются по различным траекториям, подобно атомам в Штерна-Герлаха опыте. На атомы, двигающиеся вдоль лазерного луча, действует радиальная сила давления света, обусловленная радиальной неоднородностью плотности светового поля. Как в стоячей, так и в бегущей волне происходит не только детерминированное движение атомов, но и их диффузия в фазовом пространстве, так как поглощение и испускание фотонов - квантовые случайные процессы. Резонансное давления света могут испытывать и квазичастицы в твёрдых телах: электроны, экситоны и др.

Лит.: Лебедев П. Н. Собр. соч. М., 1963; Эшкин А. Давление лазерного излучения // Успехи физических наук. 1973. Т. 110. Вып. 1; Казанцев А. П. Резонансное световое давление // Там же. 1978. Т. 124. Вып. 1; Летохов В. С., Миногин В. Г. Давление лазерного излучения на атомы. М., 1986.

С. Г. Пржибельский.

48. Элементы квантовой оптики. Энергия, масса и импульс фотона. Вывод формулы давления света на основе квантовых представлений о природе света.

Таким образом, распространение света следует рассматривать не как непрерывный волновой про-

цесс, а как поток локализованных в пространстве дискретных частиц, движущихся со скоростью с распространения света в вакууме. Впоследствии (в 1926 г.) эти частицы получили название фотонов. Фотоны обладают всеми свойствами частицы (корпускулы).

Развитие гипотезы Планка привело к созданию представлений о квантовых свойствах света. Кванты света получили название фотонов. Согласно закону пропорциональности массы и энергии и гипотезе Планка, энергия фотона определяется по формулам

.

Приравнивая правые части этих уравнений, получим выражение для массы фотона

или с учетом, что ,

Импульс фотона определяется по формулам:

Масса покоя фотона равна нулю. Квант электромагнитного излучения существует только распространяясь со скоростью света, обладая при этом конечными значениями энергии и импульса. В монохроматическом свете с частотой ν все фотоны имеют одинаковую энергию, импульс и массу.

Давление света

Световое излучение может передавать свою энергию телу в виде механического давления.

Он доказал, что свет, полностью поглощенный зачерненной пластинкой, оказывает на нее силовое воздействие. Световое давление проявляется в том, что на освещаемую поверхность тела в направлении распространения света действует распределенная сила, пропорциональная плотности световой энергии и зависящая от оптических свойств поверхности.

В итоге применения к оптическим измерениям Лебедева законов механики получено чрезвычайно важное соотношение, показавшее, что энергия всегда эквивалентна массе. Впервые Эйнштейн указал, что уравнение mc 2 = E универсально и должно быть справедливым для любых видов энергии.

Объяснить это явление можно с позиций как волновых, так и корпускулярных представлений о природе света. В первом случае это результат взаимодействия электрического тока, наведенного в теле электрическим полем световой волны, с ее магнитным полем по закону Ампера. Периодически меняющиеся в пространстве и во времени электрическое и магнитное поля световой волны при взаимодействии с поверхностью вещества оказывают силовое воздействие на электроны атомов вещества. Электрическое поле волны заставляет электроны совершать колебания. Сила Лоренца со стороны магнитного поля волны направлена вдоль направления распространения волны и представляет собой силу светового давления . Квантовая теория объясняет давление света тем, что фотоны обладают определенным импульсом и при взаимодействии с веществом они передают часть импульса частицам вещества, оказывая тем самым давление на его поверхность (можно провести аналогию с ударами молекул о стенку сосуда, при которых импульс, передаваемый стенке, определяет давление газа в сосуде).

При поглощении фотоны передают свой импульс телу, с которым взаимодействуют. Это и является причиной давления света.

Определим давление света на поверхность, используя квантовую теорию излучения.

Пусть перпендикулярно некоторой поверхности падает излучение с частотой ν (рис.5). Пусть это излучение, состоящие из N фотонов, падает на поверхность пло-

щади ∆ S в течение времени ∆ t. Поверхностью поглощается N 1 фотонов, а отражает-

ся N 2 , т.е. N = N 1 + N 2 .

Продолжение 48

Каждый поглощенный фотон (неупругий удар) передает поверхности импульс

А каждый от-

раженный фотон (упругий удар) передает ей импульс

Тогда все падающие фотоны переда-

дут импульс, равный

При этом свет будет действовать на поверхность с силой

т.е. оказывать давление

Умножим и разделим правую часть этого равенства на N, получим

Окончательно

где – энергия всех N фотонов, падающих на единицу площади в единицу времени, размер-

ность ; – коэффициент отражения.

Для черной поверхности ρ = 0 и давление будет равно .

Представляет собой объемную плотность энергии, размерность ее .

Тогда концентрация n фотонов в пучке, падающем на поверхность, будет

.

Подставляя в уравнение для давления света (2.2), получаем

Давление, производимое светом при падении на плоскую поверхность можно вычислить по формуле

где Ее - интенсивность облучения поверхности (или освещенность), с - скорость распространения электромагнитных волн в вакууме, α , - доля падающей энергии, поглощаемая телом (коэффициент поглоще-

ния), ρ - доля падающей энергии, отражаемая телом (коэффициент отражения), θ - угол между направлением излучения и нормалью к облучаемой поверхности. Если тело не является прозрачным, то есть, все

падающее излучение отражается и поглощается, то α +ρ =1.

49 Элементы квантовой оптики. Эффект Комптона. Корпускулярно-волновой дуализм света (излучения).

3) Корпускулярноволновой дуализм электромагнитного излучения

Итак, изучение теплового излучения, фотоэффекта, эффекта Комптона показало, что электромагнитное излучение (в частности, свет), обладает всеми свойствами частицы (корпускулы). Однако большая группа оптических явлений - интерференция, дифракция, поляризация свидетельствует о волновых свойствах электромагнитного излучения, в частности, света.

Что же представляет собой свет - непрерывные электромагнитные волны, излучаемые источником или поток дискретных фотонов, беспорядочно для электромагнитной волны, не исключают свойств дискретности, характерных для фотонов.

Свет (электромагнитное излучение) одновременно обладает свойствами непрерывных электромагнитных волн и свойствами дискретных фотонов. В этом заключается корпускулярно-волновой дуализм (двойственность) электромагнитного излучения.

2)ЭффектКомптона Заключается в увеличении длины волны рентгеновского излучения при его рассеянии веществом. Изменение длины волны

К (1-cos)=2 к sin2 (/2), (9) "

где к =h/(mc) - комптоновская длина волны, m - масса покоя элек-

трона. к =2.43*10 -12 м=0.0243 A (1 A=10-10 м).

Все особенности эффекта Комптона удалось объяснить, рассматривая рассеяние как процесс упругого столкновения рентгеновских фотонов со свободными электронами, при котором соблюдается закон сохранения энергии и закон сохранения импульса.

Согласно (9) изменение длины волны зависит только от угла рассеяния и не зависит ни от длины волны рентгеновского излучения, ни от вида вещества.

1) Элементы квантовой оптики. Фотоны, энергия, масса и импульс фотона

Чтобы объяснить распределение энергии в спектре теплового излучения Планк допустил, что электромагнитные волны испускаются порциями (квантами). Эйнштейн в 1905 г. пришел к выводу, что излучение не только испускается, но и распространяется и поглощается в виде квантов. Этот вывод позволил объяснить все экспериментальные факты (фотоэффект, эффект Комптона, и др.), которые не могла объяснить классическая электродинамика, исходившая из волновых представлений о свойствах излучения. Таким образом, распространение света следует рассматривать не как непрерывный волновой процесс, а как поток локализованных в пространстве дискретных частиц, движущихся со скоростью с распространения света в вакууме. Впоследствии (в 1926 г.) эти частицы получили название фотонов. Фотоны обладают всеми свойствами частицы (корпускулы).

1. Энергия фотона

тому постоянную Планка иногда называют квантом действия. Размерность , совпадает, например, с размерностью момента импульса (L=r mv).

Как следует из (1) энергия фотона увеличивается с ростом частоты (или с уменьшением длины волны),

2. Масса фотона определяется исходя из закона о взаимосвязи массы и энергии (Е=mc 2 )

3.Импульс фотона. Для любой релятивиской частицы энергия ее Поскольку у фотона m 0 =0 , то импульс фотона

т.е. длина волны обратно пропорциональна импульсу

50. Ядерная модель атома по Резерфорду. Спектр атома водорода. Обобщенная формула Бальмера. Спектральные серии атома водорода. Понятие терма.

1)Резерфорд предложил ядерную модель атома . Согласно этой модели атом состоит из положительного ядра, имеющего заряд Zе (Z - порядковый номер элемента в таблице Менделеева, е - элементарный заряд), размер 10 -5 -10 -4 А (1А= 10 -10 м) и массу практически равную массе атома. Вокруг ядра по замкнутым орбитам движутся электроны, образуя электронную оболочку атома. Так как атомы нейтральны, то вокруг ядра должно вращаться Z электронов, суммарный заряд которых - Zе. Размеры атома определяются размерами внешних орбит электронов и составляют порядка единиц А.

Масса электронов составляет очень малую долю массы ядра (для водорода 0,054%, для остальных элементов менее 0,03%). Понятие " размер электрона" не удается сформулировать непротиворечиво, хотя ro 10-3 А называют классическим радиусом электрона. Итак, ядро атома занимает ничтожную часть объема атома и в нем сосредоточена практически вся (99,95%) масса атома. Если бы ядра атомов располагались вплотную друг к другу, то земной шар имел бы радиус 200 м а не 6400 км (плотность вещества

атомных ядер 1,8

2) Линейчатый спектр атома водорода

Спектр излучения атомарного водорода состоит из отдельных спектральных линий, которые располагаются в определенном порядке. В 1885 г. Бальмер установил, что длины волн (или частоты) этих линий могут быть представлены формулой.

, (9)

где R =1,0974 7 м -1 - называется также постоянной Ридберга.

На рис. 1 изображена схема энергeтических уровней атома водорода, расчитанных согласно (6) при z=1.

При переходе электрона с более высоких энергетических уровней на уровень n = 1 возникает ультрофиолетовое излучение или излучение серии Лаймана (СЛ).

Когда электроны переходя на уровень n = 2 возникает видимое излучение или излучение серии Бальмера (СБ).

При переходе электронов с более высоких уровней на уровень n =

3 возникает инфракрасное излучение, или излучение серии Пашена (СП) и т.д.

Частоты или длины волн, возникающего при этом излучения, определяются по формулам (8) или (9) при m=1 - для серии Лаймана, при m=2 - для серии Бальмера и при m = 3 - для серии Пашена. Энергия фотонов определяется по формуле (7), которую с учетом (6) можно привести для водородоподобных атомов к виду:

эВ (10)

50 продолжение

4) Спектральные серии водорода - набор спектральных серий, составляющих спектр атома водорода. Поскольку водород - наиболее простой атом, его спектральные серии наиболее изучены. Они хорошо подчиняются формуле Ридберга:

,

где R = 109 677 см−1 - постоянная Ридберга для водорода, n′ - основной уровень серии. Спектральные линии, возникающие при переходах на основной энергетический уровень,

называютсярезонансными , все остальные - субординатными .

Серия Лаймана

Открыта Т. Лайманом в 1906 году. Все линии серии находятся в ультрафиолетовом диапазоне. Серия соответствует формуле Ридберга при n′ = 1 и n = 2, 3, 4,

Серия Бальмера

Открыта И. Я. Бальмером в 1885 году. Первые четыре линии серии находятся в видимом диапазоне. Серия соответствует формуле Ридберга при n′ = 2 и n = 3, 4, 5

5) Спектра́льный терм или электро́нный терм атома, молекулы или иона - конфигу-

рация (состояние) электронной подсистемы, определяющая энергетический уровень. Иногда под словом терм понимают собственно энергию данного уровня. Переходы между термами определяют спектры испускания и поглощения электромагнитного излучения.

Термы атома принято обозначать заглавными буквами S , P , D , F и т. д., соответствующими значению квантового числа орбитального углового момента L =0, 1, 2, 3 и т. д. Квантовое число полного углового момента J дается индексом справа внизу. Малой цифрой вверху слева обозначается кратность (мультиплетность ) терма. Например, ²P 3/2 - дублет Р. Иногда (как правило, для одноэлектронных атомов и ионов) впереди символа терма указывают главное квантовое число (например, 2²S 1/2 ).