Общие сведения. Электромагнитное поле

В результате изучения данной главы студент должен:

знать

  • эмпирические и теоретические основания теории электромагнитного поля;
  • историю создания теории электромагнитного поля, историю открытия давления света и электромагнитных волн;
  • физическую сущность уравнений Максвелла (в интегральной и дифференциальной формах);
  • основные этапы биографии Дж. К. Максвелла;
  • основные направления развития электродинамики после Дж. К. Максвелла;
  • достижения Дж. К. Максвелла в молекулярной физике и термодинамике;

уметь

  • оценивать роль Максвелла в развитии учения об электричестве и магнетизме, фундаментальное значение уравнений Максвелла, место книги «Трактат об электричестве и магнетизме» в истории науки, исторические опыты Г. Герца и П. Н. Лебедева;
  • обсуждать биографии крупнейших ученых, работавших в области электромагнетизма;

владеть

Навыками оперирования основными понятиями теории электромагнитного поля.

Ключевые термины: электромагнитное поле, уравнения Максвелла, электромагнитные волны, давление света.

Открытия Фарадея революционизировали науку об электричестве. С его легкой руки электричество начало завоевывать все новые позиции в технике. Заработал электромагнитный телеграф. В начале 70-х гг. XIX столетия он уже соединял Европу с США, Индией и Южной Америкой, появились первые генераторы электрического тока и электродвигатели, электричество начало широко использоваться в химии. Электромагнитные процессы все глубже вторгались в науку. Наступила эпоха, когда электромагнитная картина мира готова была сменить механическую. Нужен был гениальный человек, который смог бы, как в свое время Ньютон, объединить накопившиеся к этому времени факты и знания и на их основе создать новую теорию, описывающую основы нового мира. Таким человеком стал Дж. К. Максвелл.

Джеймс Клерк Максвелл (рис. 10.1) родился в 1831 г. Его отец-Джон Клерк Максвелл был человеком явно незаурядным. Адвокат по прорфессии, он, тем не менее, значительное время уделял другим, более интересным для него вещам: путешествовал, конструировал машины, ставил физические опыты, и даже опубликовал несколько научных статей. Когда Максвеллу исполнилось 10 лет, отец отправил его учиться в Эдинбургскую академию, где тот пробыл шесть лет - вплоть до поступления в университет. В возрасте 14 лет Максвелл написал первую научную работу, посвященную геометрии овальных кривых. Ее краткое изложение было опубликовано в «Трудах Эдинбургского королевского общества» за 1846 г.

В 1847 г. Максвелл поступил в Эдинбургский университет, где стал углубленно изучать математику. В это время еще две научные работы одаренного студента были опубликованы в «Трудах Эдинбургского королевского общества». С содержанием одной из них (о кривых качения) ознакомил общество профессор Келланд, другую (об упругих свойствах твердых тел) впервые представил сам автор.

В 1850 г. Максвелл продолжил образование в Питерхаусе - колледже Святого Петра Кембриджского университета, а оттуда перешел в колледж Святой Троицы - Тринити-колледж, давший миру И. Ньютона, а позже В. В. Набокова, Б. Рассела и др. В 1854 г. Максвелл выдерживает экзамен и получает степень бакалавра. Потом он был оставлен в Тринити-колледже в качестве преподавателя. Однако его больше волновали научные проблемы. В Кембридже Максвелл приступил к изучению цвета и цветного зрения. В 1852 г. он пришел к выводу, что смешение спектральных цветов не совпадает со смешением красок. Максвелл разрабатывает теорию цветового зрения, конструирует цветовой волчок (рис. 10.2).

Рис. 10.1.

Рис. 10.2.

Помимо его старых увлечений - геометрии и проблемы цветов, Максвелл заинтересовался электричеством. В 1854 г., 20 февраля, он пишет из Кембриджа письмо в Глазго У. Томсону. Вот начало этого знаменитого письма:

«Дорогой Томсон! Теперь, когда я вступил в нечестивое сословие бакалавров, я начал думать о чтении. Очень приятно иногда побыть среди заслуженно признанных книг, которые еще не читал, но должен прочитать. Но мы имеем сильное стремление вернуться к физическим предметам, и некоторые из нас здесь хотят атаковать электричество».

После окончания курса обучения Максвелл стал членом Тринити-колледжа Кембриджского университета, а в 1855 г. вошел в состав Эдинбургского королевского общества. Однако вскоре он покинул Кембридж и вернулся в родную Шотландию. Профессор Форбс известил его о том, что в Абердине, в Мари- шальском колледже открылась вакансия профессора физики, и у него имеются все шансы занять ее. Максвелл принял предложение и в апреле 1856 г. (в 24 года!) вступил в новую должность. В Абердине Максвелл продолжает трудиться над проблемами электродинамики. В 1857 г. он посылает М. Фарадею свою работу «О фарадеевских силовых линиях».

Из других трудов Максвелла в Абердине широкую известность получила его работа об устойчивости колец Сатурна. От изучения механики колец Сатурна совершенно естественным был переход к рассмотрению движений молекул газа. В 1859 г. Максвелл выступил на собрании Британской Ассоциации содействия развитию наук с докладом «О динамической теории газов». Этот доклад положил начало его плодотворным исследованиям в области кинетической теории газов и статистической физики.

В 1860 г. Максвелл принял приглашение Лондонского королевского колледжа и пять лет проработал там в звании профессора. Он не был блестящим лектором и не особенно любил читать лекции. Поэтому последовавший перерыв в преподавании был для него скорее желанным, чем досадным, и позволил полностью погрузиться в решение увлекательных проблем теоретической физики.

По мнению А. Эйнштейна, Фарадей и Максвелл сыграли в науке об электричестве те же роли, что Галилей и Ньютон в механике. Как Ньютон придал открытым Галилеем механическим эффектам математическую форму и физическое обоснование, так и Максвелл сделал это по отношению к фарадеевским открытиям. Максвелл придал идеям Фарадея строгую математическую форму, ввел термин «электромагнитное поле», сформулировал математические законы, описывающие это поле. Галилей и Ньютон заложили основы механической картины мира, Фарадей и Максвелл - электромагнитной.

Свои идеи об электромагнетизме Максвелл начал обдумывать с 1857 г., когда была написана уже упоминавшаяся статья «О фарадеевских силовых линиях». Здесь он широко использует гидродинамические и механические аналогии. Это позволило Максвеллу применить математический аппарат ирландского математика У. Гамильтона и выразить таким образом электродинамические соотношения математическим языком. В дальнейшем на смену гидродинамическим аналогиям приходят методы теории упругости: понятия деформации, давления, вихрей и т.п. Исходя из этого, Максвелл приходит к уравнениям поля, которые на этом этапе еще не были сведены к единой системе. Исследуя диэлектрики, Максвелл высказывает идею «тока смещения», а также, пока еще туманным образом, мысль о связи света и электромагнитного поля («электротонического состояния») в фарадеевской формулировке, которую Максвелл тогда использовал.

Эти идеи изложены в статьях «О физических линиях сил» (1861-1862). Они написаны в наиболее плодотворный лондонский период (1860-1865). Тогда же вышли знаменитые статьи Максвелла «Динамическая теория электромагнитного поля» (1864-1865), где были высказаны мысли о единой природе электромагнитных волн.

С 1866 по 1871 г. Максвелл прожил в своем родовом имении Миддлби, выезжая изредка в Кембридж на экзамены. Занимаясь хозяйственными делами, Максвелл не оставлял научных занятий. Он напряженно работал над главным трудом своей жизни «Трактатом об электричестве и магнетизме», написал книгу «Теория теплоты», ряд статей по кинетической теории газов.

В 1871 г. произошло важное событие. На средства потомков Г. Кавендиша в Кембридже была учреждена кафедра экспериментальной физики и начата постройка здания экспериментальной лаборатории, которая в истории физики известна как Кавендишская лаборатория (рис. 10.3). Максвелл был приглашен стать первым профессором кафедры и заведовать лабораторией. В октябре 1871 г. он прочел инаугурационную лекцию о направлениях и значении экспериментальных исследований в университетском образовании. Эта лекция стала программой обучения экспериментальной физике на долгие годы вперед. 16 июня 1874 г. Кавендишская лаборатория была открыта.

С тех пор лаборатория стала центром мировой физической науки на долгие десятилетия, такой же она является и сейчас. За сто с лишним лет через нее прошли тысячи ученых, среди которых множество тех, кто составил славу мировой физической науки. После Максвелла Кавендишской лабораторией заведовали многие выдающиеся ученые: Дж. Дж. Томсон, Э. Резерфорд, Л. Брэгг, Н. Ф. Мотт, А. Б. Пиппард и др.

Рис. 10.3.

После выхода «Трактата об электричестве и магнетизме», в котором была сформулирована теория электромагнитного поля, Максвелл решает в целях популяризации и распространения своих идей написать книгу «Электричество в элементарном изложении». Максвелл работал над книгой, но самочувствие его становилось все хуже. Он умер 5 ноября 1879 г., так и не став свидетелем триумфа своей теории.

Остановимся на творческом наследии ученого. Максвелл оставил глубокий след во всех областях физической науки. Недаром целый ряд физических теорий носят его имя. Он предложил термодинамический парадокс, много лет не дававший покоя физикам, - «демон Максвелла». В кинетическую теорию им были введены понятия, известные как: «распределение Максвелла» и «статистика Максвелла - Больцмана». Его перу также принадлежит изящное исследование устойчивости колец Сатурна. Кроме того, Максвелл создал множество небольших научных шедевров в самых разнообразных областях - от осуществления первой в мире цветной фотографии до разработки способа радикального выведения жировых пятен с одежды.

Перейдем к обсуждению теории электромагнитного поля - квинтэссенции научного творчества Максвелла.

Примечательно, что Джеймс Клерк Максвелл родился в тот самый год, когда Майкл Фарадей открыл явление электромагнитной индукции. На Максвелла особое впечатление произвела книга Фарадея «Экспериментальные исследования по электричеству».

Во времена Максвелла существовали две альтернативные теории электричества: теория «силовых линий» Фарадея и теория, разработанная французскими учеными Кулоном, Ампером, Био, Саваром, Араго и Лапласом. Исходное положение последней - представление о дальнодействии - мгновенной передачи взаимодействия от одного тела к другому без помощи какой-либо промежуточной среды. Реалистически мыслящий Фарадей не мог примириться с такой теорией. Он был абсолютно убежден в том, что «материя не может действовать там, где ее нет». Среду, через которую передается воздействие, Фарадей назвал «полем». Поле, считал он, пронизано магнитными и электрическими «силовыми линиями».

В 1857 г. в «Трудах Кембриджского философского общества» появилась статья Максвелла - «О фарадеевских силовых линиях». В ней была заложена вся программа исследований по электричеству. Отметим, что в этой статье уравнения Максвелла были уже написаны, но пока без тока смещения. Статья «О фарадеевских силовых линиях» требовала продолжения. Электрогидравлические аналогии дали многое. С их помощью были записаны полезные дифференциальные уравнения. Но не все удалось подчинить электрогидравлическим аналогиям. Никак не укладывался в их рамки важнейший закон электромагнитной индукции. Нужно было придумать новый вспомогательный механизм, облегчающий понимание процесса, отражающий одновременно и поступательное движение токов, и вращательный, вихревой характер магнитного поля.

Максвелл предложил особую среду, вихри в которой так малы, что умещаются внутри молекул. Вращающиеся «молекулярные вихри» производят магнитное поле. Направление осей вихрей молекул совпадает с их силовыми линиями, а сами они могут быть представлены как тонкие вращающиеся цилиндрики. Но внешние, соприкасающиеся части вихрей должны двигаться в противоположных направлениях, т.е. препятствовать взаимному движению. Как можно обеспечить вращение двух рядом расположенных шестеренок в одну сторону? Максвелл предположил, что между рядами молекулярных вихрей помещен слой мельчайших шарообразных частичек («холостых колес»), способных к вращению. Теперь вихри могли вращаться в одном направлении и взаимодействовать между собой.

Максвелл начал изучать также поведение своей механической модели в случае проводников и диэлектриков и пришел к выводу, что электрические явления могут происходить и в среде, препятствующей прохождению тока, - в диэлектрике. Пусть «холостые колеса» не могли в этих средах под действием электрического поля двигаться поступательно, но они при наложении и снятии электрического поля смещаются со своих положений. Большая научная смелость потребовалась Максвеллу, чтобы отождествить это смещение связанных зарядов с электрическим током. Ведь этого тока - тока смещения - никто еще не наблюдал. После этого Максвелл неизбежно должен был сделать следующий шаг - признать за этим током способность к созданию собственного магнитного поля.

Таким образом, механическая модель Максвелла позволяла сделать следующий вывод: изменение электрического поля приводит к появлению магнитного поля, т.е. к явлению, обратному фарадеевскому, когда изменение магнитного поля приводит к появлению поля электрического.

Следующая статья Максвелла, посвященная электричеству и магнетизму, - «О физических силовых линиях». Электрические явления потребовали для своего объяснения твердого, как сталь, эфира. Максвелл неожиданно оказался в роли О. Френеля, вынужденного «изобрести» для объяснения поляризационных явлений свой «оптический» эфир, твердый, как сталь, и проницаемый, как воздух. Максвелл отмечает сходство двух сред: «светоносной» и «электрической». Он постепенно приближается к своему великому открытию «единой природы» световых и электромагнитных волн.

В следующей статье - «Динамическая теория электромагнитного поля» - Максвелл впервые использовал термин «электромагнитное поле». «Теория, которую я предлагаю, может быть названа теорией электромагнитного поля, потому что она имеет дело с пространством, окружающим электрические или магнитные тела, и она может быть названа также динамической теорией, поскольку она допускает, что в этом пространстве имеется материя, находящаяся в движении, посредством которой и производятся наблюдаемые электромагнитные явления».

Когда Максвелл вывел в «Динамической теории электромагнитного поля» свои уравнения, одно из них свидетельствовало, казалось, именно о том, о чем говорил еще Фарадей: магнитные воздействия действительно распространялись в виде поперечных волн. Максвелл не заметил тогда еще, что из его уравнений следует больше: наряду с магнитным воздействием во все стороны распространяется электрическое возмущение. Электромагнитная волна в полном смысле этого слова, включающая одновременно и электрическое, и магнитное возмущения, появилась у Максвелла позже, уже в Миддлби, в 1868 г., в статье «О методе прямого сравнения электростатической силы с электромагнитной с замечанием по поводу электромагнитной теории света».

В Миддлби Максвелл завершал основной труд жизни - «Трактат об электричестве и магнетизме», впервые вышедший в свет в 1873 г. и впоследствии несколько раз переиздававшийся. Содержанием этой книги, конечно, были прежде всего статьи по электромагнетизму. В «Трактате» систематически даются основы векторного исчисления. Затем следуют четыре части: электростатика, электрокинематика, магнетизм, электромагнетизм.

Отметим, что метод исследования Максвелла резко отличается от методов других исследователей. Не только каждая математическая величина, но и каждая математическая операция наделяются глубоким физическим смыслом. В то же время каждой физической величине соответствует четкая математическая характеристика. Одна из глав «Трактата» называется «Основные уравнения электромагнитного поля». Здесь приведены основные уравнения электромагнитного поля из этого Трактата. Таким образом, с помощью векторного исчисления Максвелл более просто сделал то, что раньше проделал с помощью механических моделей, - вывел уравнения электромагнитного поля.

Рассмотрим физический смысл уравнений Максвелла. Первое уравнение говорит о том, что источниками магнитного поля являются токи и изменяющееся со временем электрическое поле. Гениальной догадкой Максвелла было введение им принципиально нового понятия - тока смещения - в качестве отдельного слагаемого в обобщенный закон Ампера - Максвелла:

где Н - вектор напряженности магнитного поля; j - вектор плотности электрического тока, в который Максвеллом добавлен ток смещения; D - вектор электрической индукции; с - некоторая постоянная.

Это уравнение выражает магнитоэлектрическую индукцию, открытую Максвеллом и основанную на представлениях о токах смещения.

Другой сразу завоевавшей признание Максвелла идеей стало представление Фарадея о природе электромагнитной индукции - возникновение индукционного тока в контуре, число магнитных силовых линий в котором изменяется или вследствие относительного движения контура и магнита, или вследствие изменения магнитного поля. Максвелл записал следующее уравнение:

где Ё - вектор напряженности электрического поля; В - век-

тор напряженности магнитного поля и, соответсвенно: - -

изменение магнитного поля во времени, с - некоторая постоянная.

Это уравнение отражает закон электромагнитной индукции Фарадея.

Необходимо учесть еще одно важное свойство векторов электрической и магнитной индукций Ё и В. В то время как электрические силовые линии начинаются и заканчиваются на зарядах, являющихся источниками поля, силовые линии магнитного поля замкнуты сами на себя.

В математике для обозначения характеристик векторного поля применяется оператор «дивергенции» (дифференцирования потока поля) - div. Пользуясь этим, Максвелл добавляет к двум имеющимся уравнениям еще два:

где р - плотность электрических зарядов.

Третье уравнение Максвелла выражает закон сохранения количества электричества, четвертое - вихревой характер магнитного поля (или отсутствие в природе магнитных зарядов).

Входящие в рассмотренные уравнения векторы электрической и магнитной индукции и векторы напряженностей электрического и магнитного полей связаны простыми соотношениями и могут быть записаны в виде следующих уравнений:

где е - диэлектрическая постоянная; р - магнитная проницаемость среды.

Кроме того, можно записать еще одно соотношение, связывающее вектор напряженности Ё и удельную проводимость у:

Для представления полной системы уравнений Максвелла необходимо записать еще граничные условия. Этим условиям должно удовлетворять электромагнитное поле на границе раздела двух сред.

где о - поверхностная плотность электрических зарядов; i - поверхностная плотность тока проводимости на рассматриваемой границе раздела. В частном случае, когда поверхностных токов нет, последнее условие переходит в:

Таким образом, Дж. Максвелл приходит к определению электромагнитного поля как вида материи, выражая все его проявления в виде системы уравнений. Отметим, что Максвелл не использовал векторных обозначений и записывал свои уравнения в достаточно громоздком компонентном виде. Современная форма уравнений Максвелла появилась около 1884 г. после работ О. Хевисайда и Г. Герца.

Уравнения Максвелла - одно из величайших достижений не только физики, но и цивилизации вообще. Они сочетают в себе строгую логичность, характерную для естественных наук, красоту и соразмерность, которой отличаются искусство и гуманитарные науки. Уравнения с максимально возможной точностью отражают сущность природных явлений. Потенциал уравнений Максвелла далеко не исчерпан, на их основе появляются все новые работы, объяснения новейших открытий в различных областях физики - от сверхпроводимости до астрофизики. Система уравнений Максвелла является основой современной физики, и до сих пор нет ни одного опытного факта, который бы противоречил этим уравнениям. Знание уравнений Максвелла, по крайней мере их физической сущности, - обязательно для любого образованного человека, не только физика.

Уравнения Максвелла явились предтечей новой неклассической физики. Хотя сам Максвелл по своим научным убеждениям был человеком «классическим» до мозга костей, написанные им уравнения принадлежали уже другой науке, отличной от той, которая была известна и близка ученому. Об этом свидетельствует хотя бы тот факт, что уравнения Максвелла неинвариантны относительно преобразований Галилея, однако они инвариантны относительно преобразований Лоренца, которые, в свою очередь, лежат в основе релятивистской физики.

На основании полученных уравнений Максвелл решил конкретные задачи: определил коэффициенты электрической проницаемости целого ряда диэлектриков, рассчитал коэффициенты самоиндукции, взаимоиндукции катушек и т.д.

Уравнения Максвелла позволяют сделать целый ряд важнейших выводов. Может быть главный из них - существование поперечных электромагнитных волн, распространяющихся со скоростью с.

Максвелл нашел, что неизвестное число с оказалось примерно равно отношению электромагнитной и электростатической единиц заряда, что составляет примерно 300 000 километров в секунду. Убежденный в универсальности своих уравнений, он показывает, что «свет есть электромагнитное возмущение». Признание конечной, хотя и очень большой, скорости распространения электромагнитного поля камня на камне не оставляло от теорий сторонников «мгновенного дальнодействия».

Важнейшим следствием электромагнитной теории света было предсказанное Максвеллом давление света. Ему удалось подсчитать, что в случае, когда в ясную погоду солнечный свет, поглощаемый плоскостью в один квадратный метр, дает 123,1 килограммометра энергии в секунду. Это означает, что он давит на эту поверхность в направлении своего падения с силой 0,41 миллиграмма. Таким образом, теория Максвелла укреплялась или рушилась в зависимости от результатов еще не осуществленных экспериментов. Существуют ли в природе электромагнитные волны со свойствами, подобными свету? Существует ли световое давление? Уже после смерти Максвелла на первый вопрос ответил Генрих Герц, на второй - Петр Николаевич Лебедев.

Дж. К. Максвелл - гигантская фигура в физической науке и как личность. В памяти людей Максвелл будет жить столько, сколько будет существовать человечество. Имя Максвелла увековечено в названии кратера на Луне. Самые высокие на Венере горы названы в честь великого ученого (горы Максвелла). Они поднимаются на 11,5 км над средним уровнем поверхности. Также его имя носит крупнейший в мире телескоп, который может работать в субмиллиметровом диапазоне (0,3-2 мм) -телескоп им. Дж. К. Максвелла (JCMT). Он расположен на Гавайских островах (США), на высокогорной местности Мауна Кеа (4200 м). Главное 15-метровое зеркало телескопа JCMT изготовлено из 276 отдельных алюминиевых фрагментов, плотно стыкованных вместе. Телескоп Максвелла используется для изучения Солнечной системы, межзвездной пыли и газа, а также далеких галактик.

После Максвелла электродинамика стала принципиально иной. Как же она развивалась? Отметим важнейшее направление развития - экспериментальное подтверждение основных положений теории. Но сама теория также требовала определенной интерпретации. В этом отношении необходимо отметить заслуги русского ученого Николая Алексеевича Умова, который заведовал кафедрой физики Московского университета с 1896 по 1911 г.

Николай Алексеевич Умов (1846-1915) - русский физик, родился в г. Симбирске (ныне Ульяновск), окончил Московский университет. Преподавал в Новороссийском университете (г. Одесса), а затем в Московском, где с 1896 г. после смерти А. Г. Столетова возглавлял кафедру физики.

Работы Умова посвящены различным проблемам физики. Главной из них было создание учения о движении энергии (вектор Умова), которое он изложил в 1874 г. в своей докторской диссертации. Умов бьи наделен высокой гражданской ответственностью. Вместе с другими профессорами (В. И. Вернадским, К. А. Тимирязевым,

Н. Д. Зелинским, П. Н. Лебедевым) он в 1911 г. покинул Московский университет в знак протеста против действий реакционно настроенного министра просвещения Л. А. Кассо.

Умов был активным пропагандистом науки, популяризатором научных знаний. Практически первым из ученых-физиков он понял необходимость серьезных и целенаправленных исследований методики преподавания физики. Большинство ученых-методистов старшего поколения - его ученики и последователи.

Основная заслуга Умова - разработка учения о движении энергии. В 1874 г. он получил общее выражение для вектора плотности потока энергии применительно к упругим средам и вязким жидкостям (вектор Умова). Через 11 лет английский ученый Джон Генри Пойнтинг (1852-1914) сделал то же самое для потока электромагнитной энергии. Так в теории электромагнетизма появился известный вектор Умова - Пойнтинга.

Пойнтинг был одним из тех ученых, кто сразу принял теорию Максвелла. Нельзя сказать, что таких ученых было достаточно много, что понимал и сам Максвелл. Теория Максвелла не сразу была понята даже в созданной им Кавендишской лаборатории. Тем не менее с появлением теории электромагнетизма познание природы поднялось на качественно иной уровень, который, как это всегда бывает, все сильнее удаляет нас от непосредственных чувственных представлений. Это - нормальный закономерный процесс, сопровождающий все развитие физики. История физики дает множество подобных примеров. Достаточно вспомнить положения квантовой механики, специальной теории относительности, других современных теорий. Так и электромагнитное поле во времена Максвелла едва ли было доступно пониманию людей, в том числе научной среды, и тем более не доступно для их чувственного восприятия. Тем не менее после экспериментальных работ Герца возникли идеи о создании беспроволочной связи при помощи электромагнитных волн, завершившиеся изобретением радио. Таким образом, возникновение и развитие техники радиосвязи превратило электромагнитное поле в известное и привычное для всех понятие.

Решающую роль в победе теории электромагнитного поля Максвелла сыграл немецкий физик Генрих Рудольф Герц. Интерес Герца к электродинамике был стимулирован Г. Л. Гельмгольцем, который, считая необходимым «упорядочить» эту область физики, предложил Герцу заняться процессами в незамкнутых электрических цепях. Сначала Герц отказался от темы, но затем, работая в Карлсруэ, обнаружил там устройства, которые можно было использовать для подобных исследований. Это и предопределило его выбор, тем более что сам Герц, хорошо зная теорию Максвелла, был полностью подготовлен к подобным исследованиям.

Генрих Рудольф Герц (1857-1894) - немецкий физик, родился в 1857 г. в Гамбурге в семье адвоката. Учился в Мюнхенском университете, а затем - в Берлинском у Г. Гельмгольца. С 1885 г. Герц работает в Высшей технической школе в Карлсруэ, где начинаются его исследования, приведшие к открытию электромагнитных волн. Они были продолжены в 1890 г. в Бонне, куда Герц переехал, сменив на посту профессора экспериментальной физики Р. Клаузиуса. Здесь он продолжает заниматься электродинамикой, однако постепенно его интересы смещаются к механике. Умер Герц 1 января 1894 г. в расцвете таланта в возрасте 36 лет.

К началу работ Герца электрические колебания были уже довольно подробно изучены. Уильямом Томсоном (лордом Кельвином) было получено выражение, которое теперь известно каждому школьнику:

где Т - период электрических колебаний; А - индуктивность, которую Томсон называл «электродинамической емкостью» проводника; С - емкость конденсатора. Формула получила подтверждение в экспериментах Беренда Вильгельма Феддерсена (1832-1918), который изучал колебания искрового разряда лейденской банки.

В статье «О весьма быстрых электрических колебаниях» (1887) Герц приводит описание своих опытов. Их суть поясняет рисунок 10.4. В окончательном виде используемый Герцем колебательный контур представлял собой два проводника СиС", расположенные на расстоянии около 3 м друг от друга и соединенные медной проволокой, в середине которой находился разрядник В индукционной катушки. Приемник представлял собой контур acdb с размерами 80 х 120 см, с искровым промежутком М в одной из коротких сторон. Детектирование определялось по наличию слабой искры в разряднике М. Проводники, с которыми экспериментировал Герц, это, говоря современным языком, антенна с детектором. Они теперь носят названия вибратора и резонатора Герца.


Рис. 10.4.

Суть полученных результатов состояла в том, что электрическая искра в разряднике В вызывала искру в разряднике М. Сначала Герц, объясняя опыты, не говорит о максвелловских волнах. Он говорит лишь о «взаимодействии проводников» и пытается искать объяснение в теории дальнодействия. Проводя эксперименты, Герц обнаружил, что на малых расстояниях характер распространения «электрической силы» аналогичен полю диполя, а далее она убывает медленнее и имеет угловую зависимость. Мы бы сейчас сказали, что разрядник обладает анизотропной диаграммой направленности. Это, конечно, в корне противоречит теории дальнодействия.

Проанализировав результаты экспериментов и проведя собственные теоретические исследования, Герц принимает теорию Максвелла. Он приходит к выводу о существовании электромагнитных волн, распространяющихся с конечной скоростью. Теперь уравнения Максвелла - это уже не абстрактная математическая система и их следует привести к такому виду, чтобы ими было удобно пользоваться.

Герц получил экспериментально предсказанные теорией Максвелла электромагнитные волны и, что не менее важно, доказал их тождество со светом. Для этого нужно было доказать, что с помощью электромагнитных волн можно наблюдать известные эффекты оптики: преломление и отражение, поляризацию и т.д. Герц выполнил эти исследования, потребовавшие виртуозного экспериментального мастерства: он провел эксперименты по распространению, отражению, преломлению, поляризации открытых им электромагнитных волн. Он построил зеркала для опытов с этими волнами (зеркала Герца), призму из асфальта и т.п. Зеркала Герца показаны на рис. 10.5. Опыты показали полную тождественность наблюдавшихся эффектов с теми, что были хорошо известны для световых волн.

Рис. 10.5.

В 1887 г. в работе «О влиянии ультрафиолетового света на электрический разряд» Герц описывает явление, которое затем стали называть внешним фотоэффектом. Он обнаружил, что при облучении ультрафиолетовыми лучами электродов, находящихся под высоким напряжением, разряд возникает на большем расстоянии между электродами, чем без облучения.

Данный эффект затем всесторонне исследовал русский ученый Александр Григорьевич Столетов (1839-1896).

В 1889 г. на съезде немецких естествоиспытателей и врачей Герц прочел доклад «О соотношении между светом и электричеством», в котором выразил мнение относительно огромной важности теории Максвелла, теперь уже подтвержденной опытами.

Опыты Герца произвели фурор в научном мире. Их многократно повторяли и варьировали. Одним из тех, кто это делал, был Петр Николаевич Лебедев. Он получил самые короткие на тот момент электромагнитные волны и в 1895 г. проделал с ними опыты по двойному лучепреломлению. В своей работе Лебедев поставил задачу постепенного уменьшения длины волны электромагнитного излучения с тем, чтобы в конце концов сомкнуть их с длинными инфракрасными волнами. Самому Лебедеву этого сделать не удалось, однако это осуществили в 20-х годах XX столетия русские ученые Александра Андреевна Глаголева-Аркадьева (1884-1945) и Мария Афанасьевна Левицкая (1883-1963).

Петр Николаевич Лебедев (1866-1912) - русский физик, родился в 1866 г. в Москве, закончил Страсбургский университет и в 1891 г. начал работать в Московском университете. Лебедев остался в истории физики как экспериментатор-виртуоз, автор исследований, выполненных скромными средствами на грани технических возможностей того времени, а также как основатель общепризнанной научной школы в Москве, откуда вышли известные русские ученые П. П. Лазарев, С. И. Вавилов, А. Р. Колли и др.

Лебедев умер в 1912 г. вскоре после того, как он вместе с другими профессорами покинул Московский университет в знак протеста против действий реакционно настроенного министра просвещения Л. А. Кассо.

Однако главная заслуга Лебедева перед физикой - в том, что он экспериментально измерил предсказанное теорией Максвелла световое давление. Изучению этого эффекта Лебедев посвятил всю жизнь: в 1899 г. был поставлен эксперимент, доказавший наличие давления света на твердые тела (рис. 10.6), а в 1907 г. - на газы. Работы Лебедева по световому давлению стали классическими, они являются одной из вершин эксперимента конца XIX - начала XX в.

Опыты Лебедева по световому давлению принесли ему мировую славу. По этому поводу У. Томсон говорил «Я всю жизнь воевал с Максвеллом, не признавая его светового движения, а вот... Лебедев заставил меня сдаться перед его опытами».

Рис. 10.6.

Опыты Герца и Лебедева окончательно утвердили приоритет теории Максвелла. Что же касается практики, т.е. практического применения законов электромагнетизма, то к началу XX в. человечество уже жило в мире, в котором электричество стало играть огромную роль. Этому способствовала бурная изобретательская деятельность в области применения открытых физиками электрических и магнитных явлений. Отметим некоторые из таких изобретений.

Одним из первых применений электромагнетизм нашел в технике связи. Телеграф существовал уже с 1831 г. В 1876 г. американский физик, изобретатель и предприниматель Александр Белл (1847-1922) изобрел телефон, который затем был усовершенствован знаменитым американским изобретателем Томасом Алва Эдисоном (1847-1931).

В 1892 г. английский физик Уильям Крукс (1832-1912) сформулировал принципы радиосвязи. Русский физик Александр Степанович Попов (1859-1906) и итальянский ученый Гулъелъмо Маркони (1874-1937) фактически одновременно применили их на практике. Обычно возникает вопрос о приоритете данного изобретения. Попов несколько раньше продемонстрировал возможности созданного им устройства, но не запатентовал его, как это сделал Маркони. Последнее и определило бытующую на Западе традицию считать Маркони «отцом» радио. Этому способствовало присуждение ему Нобелевской премии в 1909 г. Попов, по всей видимости, также был бы среди лауреатов, однако его к тому времени уже не было в живых, а Нобелевская премия присуждается только здравствующим ученым. Подробнее об истории изобретения радио будет рассказано в части VI книги.

Электрические явления пытались использовать для освещения еще в XVIII в. (вольтова дуга), в дальнейшем этот прибор был усовершенствован Павлом Николаевичем Яблочковым (1847-1894), который в 1876 г. изобрел первый пригодный для практического применения электрический источник света (свечу Яблочкова) . Она, однако, не нашла широкого применения, в первую очередь потому, что в 1879 г. Т. Эдисоном была создана лампа накаливания достаточно долговечной конструкции и удобная для промышленного изготовления. Отметим, что изобретена лампа накаливания был еще в 1872 г. русским электротехником Александром Николаевичем Лодыгиным (1847- 1923).

Контрольные вопросы

  • 1. Какие исследования выполнил Максвелл, работая в Маришальском колледже? Какую роль сыграл Максвелл в развитии учения об электричестве и магнетизме?
  • 2. Когда была организована Кавендишская лаборатория? Кто стал ее первым директором?
  • 3. Какой закон не удавалось описать с помощью электрогидравли- ческих аналогий?
  • 4. С помощью какой модели Максвелл пришел к выводу о существовании тока смещения и явления магнитоэлектрической индукции?
  • 5. В какой статье Максвелл впервые использовал термин «электромагнитное поле»?
  • 6. Как записывается система уравнений, составленная Максвеллом?
  • 7. Почему уравнения Максвелла считаются одним из триумфальных достижений человеческой цивилизации?
  • 8. Какие выводы сделал Максвелл из теории электромагнитного поля?
  • 9. Как развивалась электродинамика после Максвелла?
  • 10. Как Герц пришел к выводу о существовании электромагнитных волн?
  • 11. В чем состоит главная заслуга Лебедева перед физикой?
  • 12. Как теория электромагнитного поля используется в технике?

Задания для самостоятельной работы

  • 1. Дж. К. Максвелл. Биография и научные достижения в электродинамике и других областях физики.
  • 2. Эмпирические и теоретические основания теории электромагнитного поля Максвелла.
  • 3. История создания уравнений Максвелла.
  • 4. Физическая сущность уравнений Максвелла.
  • 5. Дж. К. Максвелл - первый директор Кавендишской лаборатории.
  • 6. Как записывается в настоящее время система уравнений Максвелла: а) в интегральной форме; б) в дифференциальной форме?
  • 7. Г. Герц. Биография и научные достижения.
  • 8. История обнаружения электромагнитных волн и их идентификации со светом.
  • 9. Опыты П. Н. Лебедева по обнаружению светового давления: схема, задачи, трудности и значение.
  • 10. Работы А. А. Глаголевой-Аркадьевой и М. А. Левицкой по генерации коротких электромагнитных волн.
  • 11. История открытия и исследования фотоэффекта.
  • 12. Развитие электромагнитной теории Максвелла. Работы Дж. Г. Пойн- тинга, Н. А. Умова, О. Хевисайда.
  • 13. Как был изобретен и усовершенствован электрический телеграф?
  • 14. Исторические этапы развития электро- и радиотехники.
  • 15. История создания осветительных приборов.
  • 1. Кудрявцев, П. С. Курс истории физики. - 2-е изд. - М. : Просвещение, 1982.
  • 2. Кудрявцев, П. С. История физики: в 3 т. - М. : Просвещение, 1956-1971.
  • 3. Спасский, Б. И. История физики: в 2 т. - М.: Высшая школа, 1977.
  • 4. Дорфман, Я. Г. Всемирная история физики: в 2 т. - М. : Наука, 1974-1979.
  • 5. Голин, Г. М. Классики физической науки (с древнейших времен до начала XX в.) / Г. М. Голин, С. Р. Филонович. - М. : Высшая школа, 1989.
  • 6. Храмов, Ю. А. Физики: биографический справочник. - М.: Наука, 1983.
  • 7. Виргинский, В. С. Очерки истории науки и техники в 1870-1917 гг. / В. С. Виргинский, В. Ф. Хотеенков. - М.: Просвещение, 1988.
  • 8. Витковски, Н. Сентиментальная история науки. - М.: КоЛибри, 2007.
  • 9. Максвелл, Дж. К. Избранные сочинения по теории электромагнитного поля. - М.: ГИТТЛ, 1952.
  • 10. Кузнецова, О. В. Максвелл и развитие физики XIX-XX веков: сб. статей / отв. ред. Л. С. Полак. - М.: Наука, 1985.
  • 11. Максвелл, Дж. К. Трактат об электричестве и магнетизме: в 2 т. - М.: Наука, 1989.
  • 12. Карцев, В. П. Максвелл. - М.: Молодая гвардия, 1974.
  • 13. Нивен, У. Жизнь и научная деятельность Дж. К. Максвелла: краткий очерк (1890) // Дж. К. Максвелл. Материя и движение. - М.: Ижевск: РХД, 2001.
  • 14. Harman, Р. М. The natural philosophy of James Clerk Maxwell. - Cambridge: University Press, 2001.
  • 15. Болотовский, Б. M. Оливер Хевисайд. - M.: Наука, 1985.
  • 16. Горохов, В. Г. Становление радиотехнической теории: от теории к практике на примере технических следствий из открытия Г. Герца // ВИЕТ. - 2006. - № 2.
  • 17. Книжные серии «ЖЗЛ»: «Люди науки», «Творцы науки и техники».
О чем рассказывает свет Суворов Сергей Георгиевич

Теория электромагнитного поля Максвелла

Заслуга Максвелла состоит в том, что он нашел математическую форму уравнений, в которых связаны воедино значения электрической и магнитной напряженностей, которые создают электромагнитные волны, со скоростью распространения их в средах, обладающих определенными электрическими и магнитными характеристиками. Короче говоря, заслуга Максвелла состоит в создании теории электромагнитного поля.

Создание этой теории позволило Максвеллу высказать еще одну замечательную идею.

В конкретном случае взаимодействия токов и зарядов он измерил электрические и магнитные напряжения, учел величины, характеризующие электрические и магнитные свойства пространства, лишенного вещественной среды («пустоты»). Подставив все эти данные в свои уравнения, он вычислил скорость распространения электромагнитной волны. По его подсчетам, она оказалась равной 300 тысячам километров в секунду, т. е. равной скорости света! А ведь в свое время скорость света определяли чисто оптически: расстояние, пройденное световым сигналом от источника до приемника, делили на время его движения; никто при этом и думать не мог ни об электрических и магнитных напряженностях, ни об электрических и магнитных свойствах среды.

Случайно ли такое совпадение скоростей?

Максвелл сделал смелое предположение: скорость света и скорость электромагнитных волн одинаковы потому, что свет имеет ту же природу - электромагнитную.

Из книги Приключения Мистера Томпкинса автора Гамов Георгий

Глава 9 Демон Максвелла Участвуя на протяжении многих месяцев в невероятных приключениях, в ходе которых профессор не упускал удобного случая посвятить мистера Томпкинса в тайны физики, мистер Томпкинс все более проникался очарованием мисс Мод. Наконец, настал день,

Из книги Медицинская физика автора Подколзина Вера Александровна

42. Понятие о теории Максвелла. Ток смещения Дж. Максвелл создал в рамках классической физики теорию электромагнитного поля. В основе теории Дж. Максвелла лежат два положения.1. Всякое перемещенное электрическое поле порождает вихревое магнитное поле. Переменное

Из книги Теория относительности - мистификация ХХ века автора Секерин Владимир Ильич

6.4. Об инвариантности уравнений Максвелла Требование инвариантности (неизменности) уравнений Максвелла при описании распространения электромагнитного излучения в системе, относительно которой источник движется с некоторой скоростью, является математической формой

Из книги Курс истории физики автора Степанович Кудрявцев Павел

Из книги История лазера автора Бертолотти Марио

Возникновение и развитие теории электромагнитного поля Гипотеза поперечных световых волн Френеля поставила перед физикой ряд трудных проблем, касающихся природы эфира, т. е. той гипотетической среды, в которой распространяются световые колебания. Перед этими

Из книги История эфира автора Терентьев Михаил Васильевич

Теория электромагнетизма Максвелла Столетием позже, в 1864 г., Дж. К. Максвелл (1831-1879) открыл электромагнитную, а не упругую природу световых колебаний, обобщив это в знаменитых уравнениях, которые носят его имя и описывают различающиеся электрические и магнитные явления

Из книги Кто изобрел современную физику? От маятника Галилея до квантовой гравитации автора Горелик Геннадий Ефимович

Глава 4 Возникновение концепции электромагнитного поля. М. Фарадей, Дж. К. Максвелл 4.1. Англия в XIX веке Невозможно найти прямую связь между такими событиями как открытие Фарадеем самоиндукции (1831), введением Максвеллом тока смещения (1867) и, скажем, парламентской реформой

Из книги Гиперпространство автора Каку Мичио

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

Из книги автора

Глава 5 Первая и единая теория поля

Из книги автора

От силовых линий Фарадея до поля Максвелла Талантливому человеку сделать великое открытие иногда помогает даже недостаток образования. Сын кузнеца, ученик переплетчика, Фарадей был самоучкой, но своим интересом к науке и способностями обратил на себя внимание видного

Из книги автора

Теория поля - язык физики Понятие полей впервые ввел выдающийся британский ученый XIX в. Майкл Фарадей. Сын небогатого кузнеца, Фарадей был гением-самоучкой, ставившим сложные опыты с электричеством и магнетизмом. Он представлял силовые линии, которые, подобно длинным

Из книги автора

Теория гравитационного поля Эйнштейну, который сформулировал свой физический принцип, не зная о трудах Римана, недоставало математического языка и способностей, необходимых для выражения этого принципа. Три долгих, обескураживающих года (1912–1915) он провел в

Из книги автора

Струнная теория поля Со времен новаторского труда Фарадея все физические теории записывались в виде полей. На теории поля основана максвелловская теория света, как и теория Эйнштейна. По сути дела, вся физика частиц опирается на теорию поля. Не основана на ней только

Физическое поле - это особая форма материи, существующая в каждой точке пространства, проявляющаяся воздействием на вещество, обладающее свойством, родственным с тем, которое создало это поле.

тело + заряд поле тело + заряд

Например, в случае излучения одиночного радиоимпульса при значительном расстоянии между передающей и приемной антеннами в какой-то момент времени окажется, что сигнал уже излучен передающей антенной, но еще не принят приемной. Следовательно, в данный момент времени энергия сигнала будет локализована в пространстве. В этом случае очевидно, что носитель энергии не является привычной материальной средой, а представляет собой иную физическую реальность, которая называется полем .

Существует принципиальная разница в поведении вещества и поля.

Основное отличие - это плавность. Вещество всегда имеет резкую границу того объема, который оно занимает, а поле принципиально не может иметь резкой границы (макроскопический подход ), оно изменяется плавно от точки к точке. В одной точке пространства может существовать бесконечное количество физических полей, не влияющих друг на друга, чего нельзя сказать о веществе. Поле и вещество могут взаимно проникать друг в друга.

ЭМП и электрический заряд представляют собой основные понятия, относящиеся к физическим явлениям электромагнетизма.

ЭМП – это особая форма материи, посредством которой осуществляется взаимодействие между электрическими зарядами, отличающаясянепрерывным распределением в пространстве (ЭМВ, ЭМП заряженных частиц) и обнаруживающаядискретность структуры (фотоны), характеризующаяся способностью распространяться в вакууме со скоростью, близкой кс , оказывающая на заряженные частицы силовое воздействие, зависящее от их скорости .

ЭМП может быть полностью описано с помощью скалярного и векторного потенциалов, составляющих согласно теории относительности единый четырехмерный вектор в пространстве-времени, компоненты которого преобразуются при переходе из одной инерциальной системы отсчета в другую в соответствии с преобразованиями Г. Лоренца .

Электрический заряд – свойство частиц вещества или тел, характеризующее их взаимосвязь с собственным ЭМП и их взаимодействие с внешним ЭМП; имеет два вида, известные как положительный заряд (заряд протона) и отрицательный (заряд электрона) заряд; количественно определяется по силовому взаимодействию тел, обладающих электрическими зарядами .

Для анализа ЭМП удобна идеализация «точечный заряд» – заряд, сосредоточенный в точке. Наименьшим зарядом в природе считается заряд электронаe эл =1,60210 -19 Кл, поэтому заряды тел должны быть кратныe эл .

Однако часто удобно считать заряд непрерывно распределенным (макроскопический подход). Существует понятие объемной (, Кл/м 3), поверхностной (
, Кл/м 2) и линейной (, Кл/м) плотности заряда.

. (1.1)

. (1.2)

. (1.3)

ЭМП неподвижных электрических зарядов неразрывно связано с частицами, порождающими его, но ЭМП заряженной частицы, движущейся ускоренно, может существовать независимо от вещества в виде ЭМВ .

ЭМВ – ЭМ колебания, распространяющиеся в пространстве с течением времени с конечной скоростью.

При исследовании ЭМП обнаруживаются две формы его проявления – электрическое и магнитное поля, которым можно дать следующие определения.

Электрическое поле – одно из проявлений ЭМП, обусловленное электрическими зарядами и изменением магнитного поля, оказывающее силовое воздействие на заряженные частицы и тела, выявляемое по силовому воздействию нанеподвижные заряженные тела и частицы.

Магнитное поле – одно из проявлений ЭМП, обусловленное электрическими зарядамидвижущихся заряженных частиц (и тел) и изменением электрического поля, оказывающее силовое воздействие надвижущиеся заряженные частицы, выявляемое по силовому воздействию, направленному нормально к направлению движения этих частиц и пропорциональному их скорости .

Разделение ЭМП на электрическое и магнитное поля имеет относительный характер, поскольку зависит от выбора инерциальной системы отсчета, в которой исследуется ЭМП. Например, если некоторая система состоит из покоящихся электрических зарядов, то при исследовании ЭМП в данной системе будет установлено наличие электрического поля и отсутствие магнитного. Однако если другая система координат будет двигаться относительно данной системы, то во второй системе будет обнаружено и магнитное поле .

Основными характеристиками ЭМП считаются(напряженность электрической составляющей поля ) и(магнитная индукция ), которые описывают проявление механических сил в ЭМП и могут быть непосредственно измерены. Напряженность электрического поля можно определить как силу, действующую на точечный заряд известной величины (силу Ш. Кулона ):

. (1.4)

Магнитная индукция определяется через силу, действующую на точечный зарядq известной величины,движущийся в магнитном поле со скоростью, (силу Г. Лоренца )
:

. (1.5)

Вспомогательными характеристиками ЭМП являются (электрическая индукция илиэлектрическое смещение ) и(напряженность магнитной составляющей ЭМП ). Названия характеристик ЭМП не бесспорны, но они сложились исторически. Единицы измерения основных характеристик ЭМП приведены на стр. 3. Мы будем пользоватьсяМеждународной системой единиц СИ , наиболее удобной дляпрактических применений.

Связь между и основными и вспомогательными характеристиками осуществляется с помощью материальных уравнений :

. (1.6)

. (1.7)

В большинстве сред векторы и, как ии,коллинеарны (Приложение 1). Но в случае гироэлектрических (сегнетоэлектрики) и гиромагнитных (ферромагнетики) сред и становятсятензорными величинами, и указанные в парах векторы могут утратить коллинеарность.

Величина
называетсямагнитным потоком .

Величина -удельная проводимость среды. С учетом этой величины можно связатьплотность тока проводимости (j пр ) и напряженность поля:

. (1.8)

Уравнение (1.8) представляет собой дифференциальную форму закона Г. Ома для участка цепи.

Поля разделяются на скалярные , векторные и тензорные .

Скалярное поле – это непрерывно распределенная в каждой точке пространства некая скалярная функция с областью определения (рис. 1.1). Скалярное поле характеризуется поверхностью уровня (например, на рис. 1.1 – эквипотенциальными линиями), которую задает уравнение:
.

Векторное поле – это заданное в каждой точке пространства непрерывная векторная величина с областью определения (рис. 1.2) Основной характеристикой этого поля являетсявекторная линия , в каждой точке которойвектор поля направлен по касательной. Физическая записьсиловых линий :
.

Тензорное поле – это распределенная в пространстве непрерывная тензорная величина. Например, для анизотропного диэлектрика его относительная диэлектрическая проницаемость становится тензорной величиной:
.

Шмелев В.Е., Сбитнев С.А.

"ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ"

"ТЕОРИЯ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ"

Глава 1. Основные понятия теории электромагнитного поля

§ 1.1. Определение электромагнитного поля и его физических величин.
Математический аппарат теории электромагнитного поля

Электромагнитным полем (ЭМП) называется вид материи, оказывающий на заряженные частицы силовое воздействие и определяемый во всех точках двумя парами векторных величин, которые характеризуют две его стороны - электрическое и магнитное поля.

Электрическое поле - это составляющая ЭМП, которая характеризуется воздействием на электрически заряженную частицу с силой, пропорциональной заряду частицы и не зависящей от ее скорости.

Магнитное поле - это составляющая ЭМП, которая характеризуется воздействием на движущуюся частицу с силой, пропорциональной заряду частицы и ее скорости.

Изучаемые в курсе теоретических основ электротехники основные свойства и методы расчета ЭМП предполагают качественное и количественное исследование ЭМП, встречающихся в электротехнических, радиоэлектронных и биомедицинских устройствах. Для этого наиболее пригодны уравнения электродинамики в интегральной и дифференциальной формах.

Математический аппарат теории электромагнитного поля (ТЭМП) базируется на теории скалярного поля, векторном и тензорном анализе, а также дифференциальном и интегральном исчислении.

Контрольные вопросы

1. Что такое электромагнитное поле?

2. Что называют электрическим и магнитным полем?

3. На чём базируется математический аппарат теории электромагнитного поля?

§ 1.2. Физические величины, характеризующие ЭМП

Вектором напряженности электрического поля в точке Q называется вектор силы, действующей на электрически заряженную неподвижную частицу, помещенную в точку Q , если эта частица имеет единичный положительный заряд.

В соответствии с этим определением электрическая сила, действующая на точечный заряд q равна:

где E измеряется в В/м.

Магнитное поле характеризуется вектором магнитной индукции . Магнитная индукция в некоторой точке наблюдения Q - это векторная величина, модуль которой равен магнитной силе, действующей на заряженную частицу, находящуюся в точке Q , имеющую единичный заряд и движущуюся с единичной скоростью, причем векторы силы, скорости, магнитной индукции, а также заряд частицы удовлетворяют условию

.

Магнитная сила, действующая на криволинейный проводник с током может быть определена по формуле

.

На прямолинейный проводник, если он находится в однородном поле, действует следующая магнитная сила

.

Во всех последних формулах B - магнитная индукция, которая измеряется в теслах (Тл).

1 Тл - это такая магнитная индукция, при которой на прямолинейный проводник с током 1А действует магнитная сила, равная 1Н, если линии магнитной индукции направлены перпендикулярно проводнику с током, и если длина проводника равна 1м.

Кроме напряженности электрического поля и магнитной индукции в теории электромагнитного поля рассматриваются следующие векторные величины:

1) электрическая индукция D (электрическое смещение), которая измеряется в Кл/м 2 ,

Векторы ЭМП являются функциями пространства и времени:

где Q - точка наблюдения, t - момент времени.

Если точка наблюдения Q находится в вакууме, то между соответствующими парами векторных величин имеют место следующие соотношения

где - абсолютная диэлектрическая проницаемость вакуума (основная электрическая постоянная), =8,85419*10 -12 ;

Абсолютная магнитная проницаемость вакуума (основная магнитная постоянная); = 4π*10 -7 .

Контрольные вопросы

1. Что такое напряжённость электрического поля?

2. Что называют магнитной индукцией?

3. Чему равна магнитная сила, действующая на движущуюся заряженную частицу?

4. Чему равна магнитная сила, действующая на проводник с током?

5. Какими векторными величинами характеризуется электрическое поле?

6. Какими векторными величинами характеризуется магнитное поле?

§ 1.3. Источники электромагнитного поля

Источниками ЭМП являются электрические заряды, электрические диполи, движущиеся электрические заряды, электрические токи, магнитные диполи.

Понятия электрического заряда и электрического тока даны в курсе физики. Электрические токи бывают трех типов:

1. Токи проводимости.

2. Токи смещения.

3. Токи переноса.

Ток проводимости - скорость прохождения подвижных зарядов электропроводящего тела через некоторую поверхность.

Ток смещения - скорость изменения потока вектора электрического смещения через некоторую поверхность.

.

Ток переноса характеризуется следующим выражением

где v - скорость переноса тел через поверхность S ; n - вектор единичной нормали к поверхности; - линейная плотность заряда тел, пролетающих через поверхность, в направлении нормали; ρ - объемная плотность электрического заряда; ρv - плотность тока переноса.

Электрическим диполем называется пара точечных зарядов +q и - q , находящихся на расстоянии l друг от друга (рис. 1).

Точечный электрический диполь характеризуется вектором электрического дипольного момента:

Магнитным диполем называется плоский контур с электрическим током I. Магнитный диполь характеризуется вектором магнитного дипольного момента

где S - вектор площади плоской поверхности, натянутой на контур с током. Вектор S направлен перпендикулярно этой плоской поверхности, причем, если смотреть из конца вектора S , то движение по контуру в направлении, совпадающим с направлением тока, будет происходить против часовой стрелки. Это означает, что направление вектора дипольного магнитного момента связано с направлением тока по правилу правого винта.

Атомы и молекулы вещества представляют собой электрические и магнитные диполи, поэтому каждую точку вещественного типа в ЭМП можно характеризовать объемной плотностью электрического и магнитного дипольного момента:

P - электрическая поляризованность вещества:

M - намагниченность вещества:

Электрическая поляризованность вещества - это векторная величина, равная объемной плотности электрического дипольного момента в некоторой точке вещественного тела.

Намагниченность вещества - это векторная величина, равная объемной плотности магнитного дипольного момента в некоторой точке вещественного тела.

Электрическое смещение - это векторная величина, которая для любой точки наблюдения вне зависимости от того, находится ли она в вакууме или в веществе, определяется из соотношения:

(для вакуума или вещества),

(только для вакуума).

Напряженность магнитного поля - векторная величина, которая для любой точки наблюдения вне зависимости от того находится ли она в вакууме или в веществе определяется из соотношения:

,

где напряженность магнитного поля измеряется в А/м.

Кроме поляризованности и намагниченности существуют другие объемно-распределенные источники ЭМП:

- объемная плотность электрического заряда ; ,

где объемная плотность электрического заряда измеряется в Кл/м 3 ;

- вектор плотности электрического тока , нормальная составляющая которого равна

В более общем случае ток, протекающий через незамкнутую поверхность S , равен потоку вектора плотности тока через эту поверхность:

где вектор плотности электрического тока измеряется в А/м 2 .

Контрольные вопросы

1. Что является источниками электромагнитного поля?

2. Что такое ток проводимости?

3. Что такое ток смещения?

4. Что такое ток переноса?

5. Что такое электрический диполь и электрический дипольный момент?

6. Что такое магнитный диполь и магнитный дипольный момент?

7. Что называют электрической поляризованностью и намагниченностью вещества?

8. Что называется электрическим смещением?

9. Что называется напряжённостью магнитного поля?

10. Что такое объёмная плотность электрического заряда и плотность тока?

Пример применения MATLAB

Задача .

Дано : Контур с электрическим током I в пространстве представляет собой периметр треугольника, декартовы координаты вершин которого заданы: x 1 , x 2 , x 3 , y 1 , y 2 , y 3 , z 1 , z 2 , z 3 . Здесь нижние индексы - номера вершин. Вершины пронумерованы в направлении протекания электрического тока.

Требуется составить функцию MATLAB, вычисляющую вектор дипольного магнитного момента контура. При составлении m-файла можно предполагать, что пространственные координаты измеряются в метрах, а ток - в амперах. Допускается произвольная организация входных и выходных параметров.

Решение

% m_dip_moment - вычисление магнитного дипольного момента треугольного контура с током в пространстве

% pm = m_dip_moment(tok,nodes)

% ВХОДНЫЕ ПАРАМЕТРЫ

% tok - ток в контуре;

% nodes - квадратная матрица вида ." , в каждой строке которой записаны координаты соответствующей вершины.

% ВЫХОДНОЙ ПАРАМЕТР

% pm - матрица-строка декартовых компонентов вектора магнитного дипольного момента.

function pm = m_dip_moment(tok,nodes);

pm=tok*)]) det()]) det()])]/2;

% В последнем операторе вектор площади треугольника умножается на ток

>> nodes=10*rand(3)

9.5013 4.8598 4.5647

2.3114 8.913 0.18504

6.0684 7.621 8.2141

>> pm=m_dip_moment(1,nodes)

13.442 20.637 -2.9692

В данном случае получилось P M = (13.442*1 x + 20.637*1 y - 2.9692*1 z ) А*м 2 , если ток в контуре равен 1 А.

§ 1.4. Пространственные дифференциальные операторы в теории электромагнитного поля

Градиентом скалярного поля Φ(Q ) = Φ(x, y, z ) называется векторное поле, определяемое формулой:

,

где V 1 - область, содержащая точку Q ; S 1 - замкнутая поверхность, ограничивающая область V 1 , Q 1 - точка, принадлежащая поверхности S 1 ; δ - наибольшее расстояние от точки Q до точек на поверхности S 1 (max| Q Q 1 |).

Дивергенцией векторного поля F (Q )=F (x, y, z ) называется скалярное поле, определяемое по формуле:

Ротором (вихрем) векторного поля F (Q )=F (x, y, z ) называется векторное поле, определяемое по формуле:

rot F =

Оператор набла - это векторный дифференциальный оператор, который в декартовых координатах определяется формулой:

Представим grad, div и rot через оператор набла:

Запишем эти операторы в декартовых координатах:

; ;

Оператор Лапласа в декартовых координатах определяется формулой:

Дифференциальные операторы второго порядка:

Интегральные теоремы

Теорема о градиенте ;

Теорема о дивергенции

Теорема о роторе

В теории ЭМП применяется также ещё одна из интегральных теорем:

.

Контрольные вопросы

1. Что называется градиентом скалярного поля?

2. Что называется дивергенцией векторного поля?

3. Что называется ротором векторного поля?

4. Что такое оператор набла и как через него выражаются дифференциальные операторы первого порядка?

5. Какие интегральные теоремы справедливы для скалярных и векторных полей?

Пример применения MATLAB

Задача .

Дано : В объёме тетраэдра скалярное и векторное поля изменяются по линейному закону. Координаты вершин тетраэдра заданы матрицей вида [x 1 , y 1 , z 1 ; x 2 , y 2 , z 2 ; x 3 , y 3 , z 3 ; x 4 , y 4 , z 4 ]. Значения скалярного поля в вершинах заданы матрицей [Ф 1 ; Ф 2 ; Ф 3 ; Ф 4 ]. Декартовы компоненты векторного поля в вершинах заданы матрицей [F 1 x , F 1y , F 1z ; F 2x , F 2y , F 2z ; F 3x , F 3y , F 3z ; F 4x , F 4y , F 4z ].

Определить в объёме тетраэдра градиент скалярного поля, а также дивергенцию и ротор векторного поля. Составить для этого функцию MATLAB.

Решение . Ниже приведён текст m-функции.

% grad_div_rot - Вычисление градиента, дивергенции и ротора... в объёме тетраэдра

% =grad_div_rot(nodes,scalar,vector)

% ВХОДНЫЕ ПАРАМЕТРЫ

% nodes - матрица координат вершин тетраэдра:

% строкам соответствуют вершины, столбцам - координаты;

% scalar - столбцовая матрица значений скалярного поля в вершинах;

% vector - матрица компонентов векторного поля в вершинах:

% ВЫХОДНЫЕ ПАРАМЕТРЫ

% grad - матрица-строка декартовых компонентов градиента скалярного поля;

% div - значение дивергенции векторного поля в объёме тетраэдра;

% rot - матрица-строка декартовых компонентов ротора векторного поля.

% При вычислениях предполагается, что в объёме тетраэдра

% векторное и скалярное поля изменяются в пространстве по линейному закону.

function =grad_div_rot(nodes,scalar,vector);

a=inv(); % Матрица коэффициентов линейной интерполяции

grad=(a(2:end,:)*scalar)."; % Компоненты градиента скалярного поля

div=*vector(:); % Дивергенция векторного поля

rot=sum(cross(a(2:end,:),vector."),2).";

Пример запуска разработанной m-функции:

>> nodes=10*rand(4,3)

3.5287 2.0277 1.9881

8.1317 1.9872 0.15274

0.098613 6.0379 7.4679

1.3889 2.7219 4.451

>> scalar=rand(4,1)

>> vector=rand(4,3)

0.52515 0.01964 0.50281

0.20265 0.68128 0.70947

0.67214 0.37948 0.42889

0.83812 0.8318 0.30462

>> =grad_div_rot(nodes,scalar,vector)

0.16983 -0.03922 -0.17125

0.91808 0.20057 0.78844

Если предположить, что пространственные координаты измеряются в метрах, а векторное и скалярное поля - безразмерные, то в данном примере получилось:

grad Ф = (-0.16983*1 x - 0.03922*1 y - 0.17125*1 z ) м -1 ;

div F = -1.0112 м -1 ;

rot F = (-0.91808*1 x + 0.20057*1 y + 0.78844*1 z ) м -1 .

§ 1.5. Основные законы теории электромагнитного поля

Уравнения ЭМП в интегральной форме

Закон полного тока:

или

Циркуляция вектора напряженности магнитного поля вдоль контура l равна полному электрическому току, протекающему через поверхность S , натянутую на контур l , если направление тока образуют с направлением обхода контура правовинтовую систему.

Закон электромагнитной индукции:

,

где E c - напряженность стороннего электрического поля.

ЭДС электромагнитной индукции e и в контуре l равна скорости изменения магнитного потока через поверхность S , натянутую на контур l , причем направление скорости изменения магнитного потока образует с направлением e и левовинтовую систему.

Теорема Гаусса в интегральной форме:

Поток вектора электрического смещения через замкнутую поверхность S равен сумме свободных электрических зарядов в объёме, ограниченном поверхностью S .

Закон непрерывности линий магнитной индукции:

Магнитный поток через любую замкнутую поверхность равен нулю.

Непосредственное применение уравнений в интегральной форме позволяет производить расчет простейших электромагнитных полей. Для расчета электромагнитных полей более сложной формы применяют уравнения в дифференциальной форме. Эти уравнения называются уравнениями Максвелла.

Уравнения Максвелла для неподвижных сред

Эти уравнения непосредственно следуют из соответствующих уравнений в интегральной форме и из математических определений пространственных дифференциальных операторов.

Закон полного тока в дифференциальной форме:

,

Плотность полного электрического тока,

Плотность стороннего электрического тока,

Плотность тока проводимости,

Плотность тока смещения: ,

Плотность тока переноса: .

Это означает, что электрический ток является вихревым источником векторного поля напряженности магнитного поля.

Закон электромагнитной индукции в дифференциальной форме:

Это означает, что переменное магнитное поле является вихревым источником для пространственного распределения вектора напряженности электрического поля.

Уравнение непрерывности линий магнитной индукции:

Это означает, что поле вектора магнитной индукции не имеет истоков, т.е. в природе не существует магнитных зарядов (магнитных монополей).

Теорема Гаусса в дифференциальной форме:

Это означает, что истоками векторного поля электрического смещения являются электрические заряды.

Для обеспечения единственности решения задачи анализа ЭМП необходимо дополнить уравнения Максвелла уравнениями материальной связи между векторами E и D , а также B и H .

Соотношения между векторами поля и электрофизическими свойствами среды

Известно, что

(1)

Все диэлектрики поляризуются под действием электрического поля. Все магнетики намагничиваются под действием магнитного поля. Статические диэлектрические свойства вещества могут быть полностью описаны функциональной зависимостью вектора поляризованности P от вектора напряженности электрического поля E (P =P (E )). Статические магнитные свойства вещества могут быть полностью описаны функциональной зависимостью вектора намагниченности M от вектора напряженности магнитного поля H (M =M (H )). В общем случае такие зависимости носят неоднозначный (гистерезисный) характер. Это означает, что вектор поляризованности или намагниченности в точке Q определяется не только значением вектора E или H в этой точке, но и предысторией изменения вектора E или H в этой точке. Экспериментально исследовать и моделировать эти зависимости чрезвычайно сложно. Поэтому на практике часто предполагают, что векторы P и E , а также M и H коллинеарны, и электрофизические свойства вещества описывают скалярными гистерезисными функциями (|P |=|P |(|E |), |M |=|M |(|H |). Если гистерезисными характеристиками вышеназванных функций можно пренебречь, то электрофизические свойства описывают однозначными функциями P =P (E ), M =M (H ).

Во многих случаях эти функции приближенно можно считать линейными, т.е.

Тогда с учетом соотношения (1) можно записать следующее

, (4)

Соответственно относительная диэлектрическая и магнитная проницаемости вещества:

Абсолютная диэлектрическая проницаемость вещества:

Абсолютная магнитная проницаемость вещества:

Соотношения (2), (3), (4) характеризуют диэлектрические и магнитные свойства вещества. Электропроводящие свойства вещества могут быть описаны законом Ома в дифференциальной форме

где - удельная электрическая проводимость вещества, измеряемая в См/м.

В более общем случае зависимость между плотностью тока проводимости и вектором напряженности электрического поля носит нелинейный векторно-гистерезисный характер.

Энергия электромагнитного поля

Объемная плотность энергии электрического поля равна

,

где W э измеряется в Дж/м 3 .

Объемная плотность энергии магнитного поля равна

,

где W м измеряется в Дж/м 3 .

Объемная плотность энергии электромагнитного поля равна

В случае линейных электрических и магнитных свойств вещества объемная плотность энергии ЭМП равна

Это выражение справедливо для мгновенных значений удельной энергии и векторов ЭМП.

Удельная мощность тепловых потерь от токов проводимости

Удельная мощность сторонних источников

Контрольные вопросы

1. Как формулируется закон полного тока в интегральной форме?

2. Как формулируется закон электромагнитной индукции в интегральной форме?

3. Как формулируется теорема Гаусса и закон непрерывности магнитного потока в интегральной форме?

4. Как формулируется закон полного тока в дифференциальной форме?

5. Как формулируется закон электромагнитной индукции в дифференциальной форме?

6. Как формулируется теорема Гаусса и закон непрерывности линий магнитной индукции в интегральной форме?

7. Какими соотношениями описываются электрофизические свойства вещества?

8. Как выражается энергия электромагнитного поля через векторные величины, его определяющие?

9. Как определяется удельная мощность тепловых потерь и удельная мощность сторонних источников?

Примеры применения MATLAB

Задача 1 .

Дано : Внутри объёма тетраэдра магнитная индукция и намагниченность вещества изменяются по линейному закону. Координаты вершин тетраэдра заданы, значения векторов магнитной индукции и намагниченности вещества в вершинах также заданы.

Вычислить плотность электрического тока в объёме тетраэдра, используя m-функцию, составленную при решении задачи в предыдущем параграфе. Вычисление выполнить в командном окне MATLAB, предполагая, что пространственные координаты измеряются в миллиметрах, магнитная индукция - в теслах, напряжённость магнитного поля и намагниченность - в кА/м.

Решение .

Зададим исходные данные в формате, совместимом с m-функцией grad_div_rot:

>> nodes=5*rand(4,3)

0.94827 2.7084 4.3001

0.96716 0.75436 4.2683

3.4111 3.4895 2.9678

1.5138 1.8919 2.4828

>> B=rand(4,3)*2.6-1.3

1.0394 0.41659 0.088605

0.83624 -0.41088 0.59049

0.37677 -0.54671 -0.49585

0.82673 -0.4129 0.88009

>> mu0=4e-4*pi % абcолютная магнитная проницаемоcть вакуума, мкГн/мм

>> M=rand(4,3)*1800-900

122.53 -99.216 822.32

233.26 350.22 40.663

364.93 218.36 684.26

83.828 530.68 -588.68

>> =grad_div_rot(nodes,ones(4,1),B/mu0-M)

0 -3.0358e-017 0

914.2 527.76 -340.67

В данном примере вектор полной плотности тока в рассматриваемом объёме получился равным (-914.2*1 x + 527.76*1 y - 340.67*1 z ) А/мм 2 . Чтобы определить модуль плотности тока, выполним следующий оператор:

>> cur_d=sqrt(cur_dens*cur_dens.")

Вычисленное значение плотности тока не может быть получено в сильно намагниченных средах в реальных технических устройствах. Данный пример - чисто учебный. А теперь проверим корректность задания распределения магнитной индукции в объёме тетраэдра. Для этого выполним следующий оператор:

>> =grad_div_rot(nodes,ones(4,1),B)

0 -3.0358e-017 0

0.38115 0.37114 -0.55567

Здесь мы получили значение div B = -0.34415 Тл/мм, чего не может быть в соответствии с законом непрерывности линий магнитной индукции в дифференциальной форме. Из этого следует, что распределение магнитной индукции в объёме тетраэдра задано некорректно.

Задача 2 .

Пусть тетраэдр, координаты вершин которого заданы, находится в воздухе (единицы измерения - метры). Пусть заданы значения вектора напряжённости электрического поля в его вершинах (единицы измерения - кВ/м).

Требуется вычислить объёмную плотность электрического заряда внутри тетраэдра.

Решение можно выполнить аналогично:

>> nodes=3*rand(4,3)

2.9392 2.2119 0.59741

0.81434 0.40956 0.89617

0.75699 0.03527 1.9843

2.6272 2.6817 0.85323

>> eps0=8.854e-3 % абсолютная диэлектрическая проницаемость вакуума, нФ/м

>> E=20*rand(4,3)

9.3845 8.4699 4.519

1.2956 10.31 11.596

19.767 6.679 15.207

11.656 8.6581 10.596

>> =grad_div_rot(nodes,ones(4,1),E*eps0)

0.076467 0.21709 -0.015323

В данном примере объёмная плотность заряда получилась равной 0.10685 мкКл/м 3 .

§ 1.6. Граничные условия для векторов ЭМП.
Закон сохранения заряда. Теорема Умова-Пойнтинга

или

Здесь обозначено: H 1 - вектор напряжённости магнитного поля на поверхности раздела сред в среде №1; H 2 - то же в среде №2; H 1t - тангенциальная (касательная) составляющая вектора напряжённости магнитного поля на поверхности раздела сред в среде №1; H 2t - то же в среде №2; E 1 вектор полной напряжённости электрического поля на поверхности раздела сред в среде №1; E 2 - то же в среде №2; E 1 c - сторонняя составляющая вектора напряжённости электрического поля на поверхности раздела сред в среде №1; E 2с - то же в среде №2; E 1t - тангенциальная составляющая вектора напряжённости электрического поля на поверхности раздела сред в среде №1; E 2t - то же в среде №2; E t - тангенциальная сторонняя составляющая вектора напряжённости электрического поля на поверхности раздела сред в среде №1; E 2t - то же в среде №2; B 1 - вектор магнитной индукции на поверхности раздела сред в среде №1; B 2 - то же в среде №2; B 1n - нормальная составляющая вектора магнитной индукции на поверхности раздела сред в среде №1; B 2n - то же в среде №2; D 1 - вектор электрического смещения на поверхности раздела сред в среде №1; D 2 - то же в среде №2; D 1n - нормальная составляющая вектора электрического смещения на поверхности раздела сред в среде №1; D 2n - то же в среде №2; σ - поверхностная плотность электрического заряда на границе раздела сред, измеряемая в Кл/м 2 .

Закон сохранения заряда

Если отсутствуют сторонние источники тока, то

,

а в общем случае , т. е. вектор плотности полного тока не имеет истоков, т. е. линии полного тока всегда замкнуты

Теорема Умова-Пойнтинга

Объёмная плотность мощности, потребляемой материальной точкой в ЭМП, равна

В соответствии с тождеством (1)

Это и есть уравнение баланса мощностей для объема V . В общем случае в соответствии с равенством (3) электромагнитная мощность, генерируемая источниками внутри объема V , идет на тепловые потери, на накопление энергии ЭМП и на излучение в окружающее пространство через замкнутую поверхность, ограничивающую этот объем.

Подынтегральное выражение в интеграле (2) называется вектором Пойнтинга:

,

где П измеряется в Вт/м 2 .

Этот вектор равен плотности потока электромагнитной мощности в некоторой точке наблюдения. Равенство (3) - есть математическое выражение теоремы Умова-Пойнтинга.

Электромагнитная мощность, излучаемая областью V в окружающее пространство равна потоку вектора Пойнтинга через замкнутую поверхность S , ограничивающую область V .

Контрольные вопросы

1. Какими выражениями описываются граничные условия для векторов электромагнитного поля на поверхностях раздела сред?

2. Как формулируется закон сохранения заряда в дифференциальной форме?

3. Как формулируется закон сохранения заряда в интегральной форме?

4. Какими выражениями описываются граничные условия для плотности тока на поверхностях раздела сред?

5. Чему равна объемная плотность мощности, потребляемой материальной точкой в электромагнитном поле?

6. Как записывается уравнение баланса электромагнитной мощности для некоторого объёма?

7. Что такое вектор Пойнтинга?

8. Как формулируется теорема Умова-Пойнтинга?

Пример применения MATLAB

Задача .

Дано : Имеется треугольная поверхность в пространстве. Координаты вершин заданы. Значения векторов напряжённости электрического и магнитного поля в вершинах также заданы. Сторонняя составляющая напряжённости электрического поля равна нулю.

Требуется вычислить электромагнитную мощность, проходящую через эту треугольную поверхность. Составить функцию MATLAB, выполняющую это вычисление. При вычислениях считать, что вектор положительной нормали направлен так, что если смотреть из его конца, то движение в порядке возрастания номеров вершин будет происходить против часовой стрелки.

Решение . Ниже приведён текст m-функции.

% em_power_tri - вычисление электромагнитной мощности, проходящей через

% треугольную поверхность в пространстве

% P=em_power_tri(nodes,E,H)

% ВХОДНЫЕ ПАРАМЕТРЫ

% nodes - квадратная матрица вида ." ,

% в каждой строке которой записаны координаты соответствующей вершины.

% E - матрица компонентов вектора напряжённости электрического поля в вершинах:

% строкам соответствуют вершины, столбцам - декартовы компоненты.

% H - матрица компонентов вектора напряжённости магнитного поля в вершинах.

% ВЫХОДНОЙ ПАРАМЕТР

% P - электромагнитная мощность, проходящая через треугольник

% При вычислениях предполагается, что на треугольнике

% векторы напряжённости поля изменяются в пространстве по линейному закону.

function P=em_power_tri(nodes,E,H);

% Вычисляем вектор двойной площади треугольника

S=)]) det()]) det()])];

P=sum(cross(E,(ones(3,3)+eye(3))*H,2))*S."/24;

Пример запуска разработанной m-функции:

>> nodes=2*rand(3,3)

0.90151 0.5462 0.4647

1.4318 0.50954 1.6097

1.7857 1.7312 1.8168

>> E=2*rand(3,3)

0.46379 0.15677 1.6877

0.47863 1.2816 0.3478

0.099509 0.38177 0.34159

>> H=2*rand(3,3)

1.9886 0.62843 1.1831

0.87958 0.73016 0.23949

0.6801 0.78648 0.076258

>> P=em_power_tri(nodes,E,H)

Если предположить, что пространственные координаты измеряются в метрах, вектор напряжённости электрического поля - в вольтах на метр, вектор напряжённости магнитного поля - в амперах на метр, то в данном примере электромагнитная мощность, проходящая через треугольник, получилась равной 0.18221 Вт.

На практике при характеристике электромагнитной обстановки используют термины "электрическое поле", "магнитное поле", "электромагнитное поле". Коротко поясним, что это означает и какая связь существует между ними.

Электрическое поле создается зарядами. Например, во всем известных школьных опытах по электризации эбонита присутствует как раз электрическое поле.

Магнитное поле создается при движении электрических зарядов по проводнику.

Для характеристики величины электрического поля используется понятие напряженность электрического поля, обозначение Е, единица измерения В/м (Вольт-на-метр). Величина магнитного поля характеризуется напряженностью магнитного поля Н, единица А/м (Ампер-на-метр). При измерении сверхнизких и крайне низких частот часто также используется понятие магнитная индукция В, единица Тл(Тесла), одна миллионная часть Тл соответствует 1,25 А/м.

По определению, электромагнитное поле - это особая форма материи, посредством которой осуществляется воздействие между электрическими заряженными частицами. Физические причины существования электромагнитного поля связаны с тем, что изменяющееся во времени электрическое поле Е порождает магнитное поле Н, а изменяющееся Н - вихревое электрическое поле: обе компоненты Е и Н, непрерывно изменяясь, возбуждают друг друга. ЭМП неподвижных или равномерно движущихся заряженных частиц неразрывно связано с этими частицами. При ускоренном движении заряженных частиц, ЭМП "отрывается" от них и существует независимо в форме электромагнитных волн, не исчезая с устранением источника (например, радиоволны не исчезают и при отсутствии тока в излучившей их антенне).

Электромагнитные волны характеризуются длиной волны. Источник, генерирующий излучение, а по сути создающий электромагнитные колебания, характеризуются частотой.

Жизнь на Земле возникла, развивалась и долгое время протекала в условиях относительно слабых электромагнитных полей (ЭМП), создаваемых естественными источниками. К ним относятся электрическое и магнитное поле Земли, космические источники радиоволн (Солнце и другие звезды), процессы, происходящие в атмосфере Земли, например, разряды молнии, колебания в ионосфере. Человек тоже источник слабого ЭМП. Являясь постоянно действующим экологическим фактором, эти поля имеют определенное значение в жизнедеятельности всех организмов, в том числе и человека.

Однако, за последние 50-60 лет возник и сформировался новый значимый фактор окружающей среды - электромагнитные поля антропогенного происхождения. Их создают 2 большие группы искусственных источников:

Изделия, которые специально создавались для излучения электромагнитной энергии: радио- и телевизионные вещательные станции, радиолокационные установки, физиотерапевтические аппараты, различные системы радиосвязи, технологические установки в промышленности;

Излучаемые этими устройствами электромагнитные поля вместе с естественными полями Земли и Космоса создают сложную и изменчивую электромагнитную обстановку. В результате суммарная напряженность ЭМП в различных точках земной поверхности увеличилась по сравнению с естественным фоном в 100-10000 раз. Особенно резко она возросла вблизи ЛЭП, радио- и телевизионных станций, средств радиолокации и радиосвязи, различных энергетических и энергоемких установок, городского электротранспорта. В масштабах эволюционного прогресса этот колоссальный рост напряженности ЭМП можно рассматривать как одномоментный скачок с плохо предсказуемыми биологическими последствиями.

Вещество и поле - фундаментальные физические понятия, обозначающие два основных вида материи на макроскопическом уровне:

Вещество - совокупность дискретных образований, обладающих массой покоя (атомы, молекулы и то, что из них построено);

поле - вид материи, характеризующейся непрерывностью и имеющей нулевую массу покоя (электромагнитное поле и поле тяготения - гравитационное). Открытие поля как вида материи имело огромное философское значение, т. к. обнаружило несостоятельность метафизического отождествления материи с веществом. Разработка Лениным диалектико-материалистического определения материи во многом опиралась на философское обобщение развития учения о поле. На субатомном уровне (т. е. на уровне элементарных частиц) различие вещества и поля становится относительным. Поле (электромагнитное и гравитационное) утрачивают чисто непрерывный характер: им необходимо соответствуют дискретные образования - кванты (фотоны и гравитоны). А элементарные частицы, из которых состоит вещество - протоны, нейтроны, электроны, мезоны и т. д. - выступают как кванты соответствующих нуклонных, мезонных и др. полей и утрачивают свой чисто дискретный характер. Неправомерно на субатомном уровне различать вещество и поле и по наличию или отсутствию массы покоя, т. к. нуклонные, мезонные и т. д. поля обладают массой покоя. В современной физике поля и частицы выступают как две неразрывно связанные стороны микромира, как выражение единства корпускулярных (дискретных) и волновых (континуальных, непрерывных) свойств микрообъектов. Представления о поле выступают также как основа для объяснения процессов взаимодействия, воплощая принцип близкодействия.

Основные характеристики вещества и поля

1. Вещество и поле различаются по массе покоя

Частицы вещества обладают массой покоя, электромагнитное и гравитационное поля - нет. Однако в микромире каждому полю сопоставляется частица (квант этого поля) и каждая частица рассматривается как квант соответствующего поля. Для ядерных полей (мезонного, нуклонного и т.д.) это различие уже неверно - кванты этих полей обладают конечной массой покоя.

2. Вещество и поле различаются по закономерностям движения

Скорость распространения электромагнитного и гравитационного полей всегда равна скорости света в пустоте (с), а скорость движения частиц вещества всегда меньше с. Однако наличие ядерных полей ликвидирует и эту границу. Для квантов этих полей как раз характерна невозможность движения со скоростью, равной с.

3. Вещество и поле различаются по степени проницаемости

Вещество мало проницаемо, электромагнитное и гравитационное поля - наоборот.

На уровне микромира и эта граница исчезнет. Для таких частиц, как нейтрино, вещество оказывается весьма проницаемым, с другой стороны, ядерные поля могут обладать очень малой проницаемостью.

4. Вещество и поле различаются по степени концентрации массы и энергии

Очень большая - у частиц вещества и очень малая - у электромагнитного и гравитационного полей. В микромире и это различие стирается. Ядерные поля обладают огромной концентрацией массы и энергии, и даже кванты электромагнитного поля могут достигать концентраций энергии, значительно превосходящих таковую у частиц вещества.

5. Вещество и поле различаются как корпускулярная и волновая сущности

Это различие исчезает на уровне микропроцессов. Частицы вещества обладают волновыми свойствами, а непрерывное в макроскопических процессах электромагнитное поле обнаруживает на уровне микромира свой корпускулярный аспект.

Общий вывод:

Различие вещества и поля верно характеризует реальный мир в макроскопическом приближении. Это различие не является абсолютным и при переходе к микрообъектам ярко обнаруживается его относительность. В микромире понятия «частицы» (вещество) и «волны» (поля) выступают как дополнительные характеристики, выражающие внутренне противоречивую сущность микрообъектов.