Суммарное уравнение фотосинтеза. Общее и парциальные уравнения фотосинтеза

Фотосинтез - биологический процесс, осуществляющий перенос электронов по электронтранспортной цепи от одной окислительно-восстановительной системы к другой.

При фотосинтезе растений из углекислого газа и воды образуются углеводы:

(суммарная реакция фотосинтеза).

Роль донора электронов или атомов водорода для последующего восстановления СОг в процессе фотосинтеза у растений играет вода. Поэтому уравнение, описывающее фотосинтез, можно переписать в виде

При сравнительном изучении фотосинтеза было обнаружено, что в фотосинтезирующих клетках в роли акцептора электронов

(или атомов водорода), кроме С0 2 , в некоторых случаях выступают нитрат-ион, молекулярный азот или даже ионы водорода. В роли же доноров электронов или атомов водорода, кроме воды, могут выступать сероводород, изопропиловый спирт и любой другой возможный донор в зависимости от вида фотосинтезирующих клеток.

Для осуществления суммарной реакции фотосинтеза необходимо затратить энергию 2872 кДж/моль. Иными словами, необходимо иметь восстанавливающий агент с достаточно низким редокс- потенциалом. При фотосинтезе растений таким восстановителем служит NADPH + .

Реакции фотосинтеза протекают в хлоропласта* клеток зеленых растений - внутриклеточных органеллах, аналогичных митохондриям и также имеющим собственную ДНК. Внутренние мембранные структуры у хлоропластов - тилакоиды - содержат хлорофилл (пигмент, улавливающий свет), а также все переносчики электронов. Свободное от тилакоидов пространство внутри хлоропласта называют стромой.

В светозависимой части фотосинтеза, «световой реакции», происходит расщепление молекул Н 2 0 с образованием протонов, электронов и атома кислорода. Электроны, «возбужденные» энергией света, достигают уровня энергии, достаточного для восстановления NADP + . Образующийся NADP + Н + , в противоположность Н 2 0, является подходящим восстановителем для перевода диоксида углерода в органическое соединение. Если в системе присутствуют NADPH + Н + , АТР и соответствующие ферменты, фиксация С0 2 может протекать также в темноте; такой процесс называется темповой реакцией.

В тилакоидной мембране находится три типа комплексов (рис. 16.2). Первые два связываются диффундирующим переносчиком электронов - пластохиноном (Q), похожим по структуре на убихинон, а третий - небольшим водорастворимым белком - пластоцианином (Рс ), также участвующим в переносе электронов. Он содержит атом меди, который служит то донором, то акцептором электронов (поочередно находится в состоянии Си + или Си 2+). Эти три типа комплексов называются соответственно фотосистемой II (ФС II), комплексом цитохрома Ы/ (цит b/f), состоящим из двух цитохромов и железосерного центра и осуществляющим перенос электронов от восстановленного пластохинона к пластоцианину, и фотосистемой I (ФС I). Нумерация фотосистем отражает очередность их открытия, а не порядок вступления в цепь переноса.


Рис. 16.2.

Функция всего этого аппарата заключается в осуществлении суммарной реакции

Реакция сопровождается большим увеличением энергии Гиббса, поступающей в систему в виде солнечного света: на образование каждой молекулы NADPH расходуется энергия двух поглощенных квантов.

Энергия фотонов прямо пропорциональна частоте падающего света и может быть рассчитана по формуле Эйнштейна, определяющей энергию Е одного «моля» квантов света, равного 6,023-10 23 квантов (1 Эйнштейн):

Здесь N - число Авогадро (6,023-10 23 1/моль); h - постоянная Планка (6,626-10 34 Дж/с); v - частота падающего света, численно равная отношению с/Х, где с - скорость света в вакууме (3,0-10 8 м/сек); X - длина волны света, м; Е - энергия, Дж.

При поглощении фотона атом или молекула переходят в возбужденное состояние с большей энергией. Возбудить атом или молекулу могут только фотоны с определенной длиной волны, поскольку процесс возбуждения носит дискретный (квантовый) характер. Возбужденное состояние крайне неустойчиво, возврат в основное состояние сопровождается потерей энергии.

В растениях рецептором, поглощающим свет, служит молекула хлорофилла а, химическая структура которого приведена ниже.


Хлорофилл - это тетрапиррол, напоминающий по строению гем. В отличие от гема центральный атом хлорофилла - магний, а одна из боковых цепей содержит длинную гидрофобную углеводородную цепь, «якорем» удерживающую хлорофилл в липидном бислое мембраны тилакоида. Как и гем, хлорофилл имеет систему сопряженных двойных связей, определяющих появление интенсивной окраски. В зеленых растениях молекулы хлорофилла упакованы в фотосистемы, состоящие из молекул хлорофилла, улавливающих свет, реакционного центра и цепи переноса электронов.

Хлорофилл в составе ФС II обозначают Р 680 , а в ФС I - Р 7 оо (от англ, pigment - пигмент; число соответствует длине волны максимума поглощения света в нм). Молекулы хлорофилла, закачивающие энергию в такие центры, называют антенными. Сочетание поглощения молекулами хлорофилла света этих двух длин волн дает более высокую скорость фотосинтеза, чем при поглощении света каждой из этих длин волн по отдельности. Фотосинтез в хлоропластах описывается так называемой Z-схемой (от фр. zigzag).

Хлорофилл Р 6 8о в реакционных центрах ФС II в темноте находится в основном состоянии, не проявляя никаких восстановительных свойств. Когда Р 680 получает энергию фотона от антенного хлорофилла, он переходит в возбужденное состояние и стремится отдать электрон, оказавшийся на верхнем энергетическом уровне. В результате этот электрон приобретает переносчик электронов ФС II - феофитин (Ph) - пигмент, по своему строению похожий на хлорофилл, но не содержащий Mg 2+ .

Две восстановленные молекулы феофитина последовательно отдают полученные электроны на восстановление пластохинона - растворимого в липидах переносчика электронов от ФС II к комплексу цитохромов b/f.

В реакционном центре ФС I на хлорофилл Р700 также стекает энергия фотона, уловленная антенным хлорофиллом. При этом Р700 становится мощным восстанавливающим агентом. Электрон с возбужденного хлорофилла Р 7 оо передается по короткой цепочке на ферредоксин (Fd) - водорастворимый белок стромы, содержащий электроноакцепторный кластер атомов железа. Ферредоксин с помощью FAD-зависимого фермента ферредок- син-NADP*-редуктазы восстанавливает NADP + до NADPH.

Для возвращения в исходное (основное) состояние Р 7 оо приобретает электрон у восстановленного пластоцианина:

В ФС II Рб80 + возвращается в исходное состояние, получая электрон от воды, так как его сродство к электрону выше, чем у кислорода.

Фотосинтез отличается от других биохимических процессов тем, что восстановление NADP + и синтез АТР происходят за счет энергии света. Все дальнейшие химические превращения, в ходе которых образуется глюкоза и другие углеводы, ничем принципиально не отличаются от ферментативных реакций.

Ключевым метаболитом является 3-фосфоглицерат, из которого далее синтезируются углеводы так же, как и в печени, с той лишь разницей, что восстановителем в этих процессах служит NADPH, а не NADH.

Синтез 3-фосфоглицерата из диоксида углерода осуществляется с помощью фермента - рибулозодифосфат-карбоксилазы/окси- геназы :


Карбоксилаза расщепляет рибулозо-1,5-дифосфат на две молекулы 3-фосфоглицерата и при этом присоединяет одну молекулу диоксида углерода.

Присоединение (фиксация) диоксида углерода происходит в циклическом процессе, именуемом циклом Кальвина.

Суммарная реакция цикла:

При катаболизме эта реакция идет в обратном направлении (см. гл. 12).

Последовательность реакций цикла Кальвина можно представить следующим образом:

На 15-й стадии цикл завершается и 6 рибулозо-1,5-дифосфат вступает в 1 -ю стадию.

Итак, при фотосинтезе у растений диоксид углерода входит в углеродный скелет глюкозы в результате темновой реакции с ри- булозо-1,5-фосфатом с образованием 3-фосфоглицерата (1-я стадия цикла).

В растительном мире углеводы накапливаются в больших количествах в качестве запасного питательного материала (крахмала). Полисахарид крахмал образуется в результате полимеризации глюкозы, полученной в 8-й стадии.

Химическое уравнение процесса фотосинтеза в общем можно представить в следующем виде:

6СО 2 + 6Н 2 О + Qсвета → С 6 Н 12 О 6 + 6О 2 .

Фотосинтез – процесс, при котором происходит поглощение электромагнитной энергии солнца хлорофиллом и вспомогательными пигментами и превращение её в химическую энергию, поглощение углекислого газа из атмосферы, восстановление его в органические соединения и возвращение кислорода в атмосферу.

В процессе фотосинтеза из простых неорганических соединений (СО 2 , Н 2 О) строятся различные органические соединения. В результате происходит перестройка химических связей: вместо связей С – О и Н – О возникают связи C – C и C – H, в которых электроны занимают более высокий энергетический уровень. Таким образом, богатые энергией органические вещества, которыми питаются и за счет которых получают энергию (в процессе дыхания) животные и человек, первоначально создаются в зеленом листе. Можно сказать, что практически вся живая материя на Земле является результатом фотосинтетической деятельности.

Датой открытия процесса фотосинтеза можно считать 1771 г. Английский ученый Дж. Пристли обратил внимание на изменение состава воздуха вследствие жизнедеятельности животных. В присутствии зеленых растений воздух вновь становился пригодным как для дыхания, так и для горения. В дальнейшем работами ряда ученых (Я. Ингенгауз, Ж. Сенебье, Т. Соссюр, Ж.Б. Буссенго) было установлено, что зеленые растения из воздуха поглощают С0 2 , из которого при участии воды на свету образуется органическое вещество. Именно этот процесс в 1877 г. немецкий ученый В. Пфеффер назвал фотосинтезом. Большое значение для раскрытия сущности фотосинтеза имел закон сохранения энергии, сформулированный Р. Майером. В 1845 г. Р. Майер выдвинул предположение, что энергия, используемая растениями, - это энергия Солнца, которую растения в процессе фотосинтеза превращают в химическую энергию. Это положение было развито и экспериментально подтверждено в исследованиях замечательного русского ученого К.А. Тимирязева.

Фотосинтез включает как световые, так и темновые реакции. Был проведен ряд экспериментов, доказывающих, что в процессе фотосинтеза происходят не только реакции, идущие с использованием энергии света, но и темновые, не требующие непосредственного участия энергии света. Можно привести следующие доказательства существования темновых реакций в процессе фотосинтеза:

1) фотосинтез ускоряется с повышением температуры. Отсюда прямо следует, что какие-то этапы этого процесса непосредственно не связаны с использованием энергии света. Особенно резко зависимость фотосинтеза от температуры проявляется при высоких интенсивностях света. По-видимому, в этом случае скорость фотосинтеза лимитируется именно темновыми реакциями;

2) эффективность использования энергии света в процессе фотосинтеза оказалась выше при прерывистом освещении. При этом для более эффективного использования энергии света длительность темновых промежутков должна значительно превышать длительность световых.

Пигменты фотосинтеза

Для того чтобы свет мог оказывать влияние на растительный организм и, в частности, быть использованным в процессе фотосинтеза, необходимо его поглощение фоторецепторами-пигментами. Пигменты - это окрашенные вещества. Пигменты поглощают свет определенной длины волны. Непоглощенные участки солнечного спектра отражаются, что и обусловливает окраску пигментов. Так, зеленый пигмент хлорофилл поглощает красные и синие лучи, тогда как зеленые лучи в основном отражаются. Видимая часть солнечного спектра включает длины волн от 400 до 700 нм. Вещества, поглощающие весь видимый участок спектра, кажутся черными.

Пигменты, сконцентрированные в пластидах, можно разделить на три группы: хлорофиллы, каротиноиды, фикобилины .

К группе хлорофиллов относят органические соединения, которые содержат 4 пиррольных кольца, соединённых атомами магния и имеющие зелёную окраску.

В настоящее время известно около десяти хлорофиллов. Они отличаются по химическому строению, окраске, распространению среди живых организмов. У всех высших растений содержатся хлорофиллы а и b. Хлорофилл с обнаружен в диатомовых водорослях, хлорофилл d - в красных водорослях.

Основными пигментами, без которых фотосинтез не идет, являются хлорофилл а для зеленых растений и бактериохлорофиллы для бактерий. Впервые точное представление о пигментах зеленого листа высших растений было получено благодаря работам крупнейшего русского ботаника М.С. Цвета (1872-1919). Он разработал новый хроматографический метод разделения веществ и выделил пигменты листа в чистом виде.

Хроматографический метод разделения веществ основан на их различной способности к адсорбции. Метод этот получил широкое применение. М.С. Цвет пропускал вытяжку из листа через стеклянную трубку, заполненную порошком - мелом или сахарозой (хроматографическую колонку). Отдельные компоненты смеси пигментов различались по степени адсорбируемости и передвигались с разной скоростью, в результате чего они концентрировались в разных зонах колонки. Разделяя колонку на отдельные части (зоны) и используя соответствующую систему растворителей, можно было выделить каждый пигмент. Оказалось, что листья высших растений содержат хлорофилл а и хлорофилл b, а также каротиноиды (каротин, ксантофилл и др.). Хлорофиллы, так же как и каротиноиды, нерастворимы в воде, но хорошо растворимы в органических растворителях. Хлорофиллы а и b различаются по цвету: хлорофилл а имеет сине-зеленый оттенок, а хлорофилл b - желто-зеленый. Содержание хлорофилла а в листе примерно в три раза больше по сравнению с хлорофиллом b.

Каротиноиды - это желтые и оранжевые пигменты алифатического строения, производные изопрена. Каротиноиды содержатся во всех высших растениях и у многих микроорганизмов. Это самые распространенные пигменты с разнообразными функциями. Каротинойды, содержащие кислород, получили название ксантофиллы. Основными представителями каротиноидов у высших растений являются два пигмента - каротин (оранжевый) и ксантофилл (желтый). В отличие от хлорофиллов каротиноиды не поглощают красные лучи, а также не обладают способностью к флуоресценции. Подобно хлорофиллу каротиноиды в хлоропластах и хроматофорах находятся в виде нерастворимых в воде комплексов с белками. Каротиноиды, поглощая определенные участки солнечного спектра, передают энергию этих лучей на молекулы хлорофилла. Тем самым они способствуют использованию лучей, которые хлорофиллом не поглощаются.

Фикобилины - красные и синие пигменты, содержащиеся у цианобактерий и некоторых водорослей. Исследования показали, что красные водоросли и цианобактерий наряду с хлорофиллом а содержат фикобилины. В основе химического строения фикобилинов лежат четыре пиррольные группировки.

Фикобилины представлены пигментами: фикоцианином, фикоэритрином и аллофикоцианином. Фикоэритрин - это окисленный фикоцианин. Фикобилины образуют прочные соединения с белками (фикобилинпротеиды). Связь между фикобилинами и белками разрушается только кислотой.

Фикобилины поглощают лучи в зеленой и желтой частях солнечного спектра. Это та часть спектра, которая находится между двумя основными линиями поглощения хлорофилла. Фикоэритрин поглощает лучи с длиной волны 495- 565 нм, а фикоцианин - 550- 615 нм. Сравнение спектров поглощения фикобилинов со спектральным составом света, в котором проходит фотосинтез у цианобактерий и красных водорослей, показывает, что они очень близки. Это позволяет считать, что фикобилины поглощают энергию света и, подобно каротиноидам, передают ее на молекулу хлорофилла, после чего она используется в процессе фотосинтеза. Наличие фикобилинов у водорослей является примером приспособления организмов в процессе эволюции к использованию участков солнечного спектра, которые проникают сквозь толщу морской воды (хроматическая адаптация). Как известно, красные лучи, соответствующие основной линии поглощения хлорофилла, поглощаются, проходя через толщу воды. Наиболее глубоко проникают зеленые лучи, которые поглощаются не хлорофиллом, а фикобилинами.

Свойства хлорофилла

Все хлорофиллы являются магниевыми солями пиррола. В центре молекулы хлорофилла находятся магний и четыре пиррольных кольца, соединенные друг с другом метановыми мостиками.

По химическому строению хлорофиллы - сложные эфиры дикарбоновой органической кислоты - хлорофиллина и двух остатков спиртов - фитола и метилового.

Важнейшей частью молекулы хлорофилла является центральное ядро. Оно состоит из четырех пиррольных пятичленных колец, соединенных между собой углеродными мостиками и образующих большое порфириновое ядро с атомами азота посередине, связанными с атомом магния. В молекуле хлорофилла есть дополнительное циклопентаноновое кольцо, которое содержит карбонильную, а также карбоксильную группы, связанные эфирной связью с метиловым спиртом. Наличие в порфириновом ядре конъюгированной по кругу системы десяти двойных связей и магния обусловливает характерный для хлорофилла зеленый цвет.

Хлорофилл в отличается от хлорофилла а только тем, что вместо метальной группы во втором пиррольном кольце имеет альдегидную группу СОН. Хлорофилла имеет сине-зеленую окраску, а хлорофилл в -- светло-зеленую. Адсорбируются они в разных слоях хроматограммы, что свидетельствует о разных химических и физических свойствах. По современным представлениям, биосинтез хлорофилла в идет через хлорофилл а.

Флуоресценция - это свойство многих тел под влиянием падающего света, в свою очередь, излучать свет: при этом длина волны излучаемого света обычно больше длины - волны возбуждающего света. Одним из важнейших свойств хлорофиллов является их ярко выраженная способность к флуоресценции, которая интенсивна в растворе и угнетена в хлорофилле, содержащемся в тканях листьев, в пластидах. Если смотреть на раствор хлорофилла в лучах света, проходящего через него, то он кажется изумрудно-зеленым, если же рассматривать его в лучах отраженного света, то он приобретает красную окраску - это явление флуоресценции.

Хлорофиллы различаются по спектрам поглощения, при этом у хлорофилла b по сравнению с хлорофиллом а полоса поглощения в красной области спектра несколько смещена в сторону коротковолновых лучей, а в сине-фиолетовой области максимум поглощения смещен в сторону длинноволновых (красных) лучей.

Фотосинтез - это преобразование энергии света в энергию химических связей органических соединений.

Фотосинтез характерен для растений, в том числе всех водорослей, ряда прокариот, в том числе цианобактерий, некоторых одноклеточных эукариот.

В большинстве случаев при фотосинтезе в качестве побочного продукта образуется кислород (O 2). Однако это не всегда так, поскольку существует несколько разных путей фотосинтеза. В случае выделения кислорода его источником является вода, от которой на нужды фотосинтеза отщепляются атомы водорода.

Фотосинтез состоит из множества реакций, в которых участвуют различные пигменты, ферменты, коферменты и др. Основными пигментами являются хлорофиллы, кроме них - каротиноиды и фикобилины.

В природе распространены два пути фотосинтеза растений: C 3 и С 4 . У других организмов есть своя специфика реакций. Все, что объединяет эти разные процессы под термином «фотосинтез», – во всех них в общей сложности происходит преобразование энергии фотонов в химическую связь. Для сравнения: при хемосинтезе происходит преобразование энергии химической связи одних соединений (неорганических) в другие - органические.

Выделяют две фазы фотосинтеза - световую и темновую. Первая зависит от светового излучения (hν), которое необходимо для протекания реакций. Темновая фаза является светонезависимой.

У растений фотосинтез протекает в хлоропластах. В результате всех реакций образуются первичные органические вещества, из которых потом синтезируются углеводы, аминокислоты, жирные кислоты и др. Обычно суммарную реакцию фотосинтеза пишут в отношении глюкозы - наиболее распространенного продукта фотосинтеза :

6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2

Атомы кислорода, входящие в молекулу O 2 , берутся не из углекислого газа, а из воды. Углекислый газ – источник углерода , что более важно. Благодаря его связыванию у растений появляется возможность синтеза органики.

Представленная выше химическая реакция есть обобщенная и суммарная. Она далека от сути процесса. Так глюкоза не образуется из шести отдельных молекул углекислоты. Связывание CO 2 происходит по одной молекуле, которая сначала присоединяется к уже существующему пятиуглеродному сахару.

Для прокариот характерны свои особенности фотосинтеза. Так у бактерий главный пигмент - бактериохлорофилл, и не выделяется кислород, так как водород берется не из воды, а часто из сероводорода или других веществ. У сине-зеленых водорослей основным пигментом является хлорофилл, и при фотосинтезе выделяется кислород.

Световая фаза фотосинтеза

В световой фазе фотосинтеза происходит синтез АТФ и НАДФ·H 2 за счет лучистой энергии. Это происходит на тилакоидах хлоропластов , где пигменты и ферменты образуют сложные комплексы для функционирования электрохимических цепей, по которым передаются электроны и отчасти протоны водорода.

Электроны в конечном итоге оказываются у кофермента НАДФ, который, заряжаясь отрицательно, притягивает к себе часть протонов и превращается в НАДФ·H 2 . Также накопление протонов по одну сторону тилакоидной мембраны и электронов по другую создает электрохимический градиент, потенциал которого используется ферментом АТФ-синтетазой для синтеза АТФ из АДФ и фосфорной кислоты.

Главными пигментами фотосинтеза являются различные хлорофиллы. Их молекулы улавливают излучение определенных, отчасти разных спектров света. При этом некоторые электроны молекул хлорофилла переходят на более высокий энергетический уровень. Это неустойчивое состояние, и по-идее электроны путем того же излучения должны отдать в пространство полученную из вне энергию и вернуться на прежний уровень. Однако в фотосинтезирующих клетках возбужденные электроны захватываются акцепторами и с постепенным уменьшением своей энергии передаются по цепи переносчиков.

На мембранах тилакоидов существуют два типа фотосистем, испускающих электроны при действия света. Фотосистемы представляют собой сложный комплекс большей частью хлорофильных пигментов с реакционным центром, от которого и отрываются электроны. В фотосистеме солнечный свет ловит множество молекул, но вся энергия собирается в реакционном центре.

Электроны фотосистемы I, пройдя по цепи переносчиков, восстанавливают НАДФ.

Энергия электронов, оторвавшихся от фотосистемы II, используется для синтеза АТФ. А сами электроны фотосистемы II заполняют электронные дырки фотосистемы I.

Дырки второй фотосистемы заполняются электронами, образующимися в результате фотолиза воды . Фотолиз также происходит при участии света и заключается в разложении H 2 O на протоны, электроны и кислород. Именно в результате фотолиза воды образуется свободный кислород. Протоны участвуют в создании электрохимического градиента и восстановлении НАДФ. Электроны получает хлорофилл фотосистемы II.

Примерное суммарное уравнение световой фазы фотосинтеза:

H 2 O + НАДФ + 2АДФ + 2Ф → ½O 2 + НАДФ · H 2 + 2АТФ

Циклический транспорт электронов

Выше описана так называемый нецикличная световая фаза фотосинтеза . Есть еще циклический транспорт электронов, когда восстановления НАДФ не происходит . При этом электроны от фотосистемы I уходят на цепь переносчиков, где идет синтез АТФ. То есть эта электрон-транспортная цепь получает электроны из фотосистемы I, а не II. Первая фотосистема как бы реализует цикл: в нее возвращаются ей же испускаемые электроны. По дороге они тратят часть своей энергии на синтез АТФ.

Фотофосфорилирование и окислительное фосфорилирование

Световую фазу фотосинтеза можно сравнить с этапом клеточного дыхания - окислительным фосфорилированием, которое протекает на кристах митохондрий. Там тоже происходит синтез АТФ за счет передачи электронов и протонов по цепи переносчиков. Однако в случае фотосинтеза энергия запасается в АТФ не для нужд клетки, а в основном для потребностей темновой фазы фотосинтеза. И если при дыхании первоначальным источником энергии служат органические вещества, то при фотосинтезе – солнечный свет. Синтез АТФ при фотосинтезе называется фотофосфорилированием , а не окислительным фосфорилированием.

Темновая фаза фотосинтеза

Впервые темновую фазу фотосинтеза подробно изучили Кальвин, Бенсон, Бэссем. Открытый ими цикл реакций в последствии был назван циклом Кальвина, или C 3 -фотосинтезом. У определенных групп растений наблюдается видоизмененный путь фотосинтеза – C 4 , также называемый циклом Хэтча-Слэка.

В темновых реакциях фотосинтеза происходит фиксация CO 2 . Темновая фаза протекает в строме хлоропласта.

Восстановление CO 2 происходит за счет энергии АТФ и восстановительной силы НАДФ·H 2 , образующихся в световых реакциях. Без них фиксации углерода не происходит. Поэтому хотя темновая фаза напрямую не зависит от света, но обычно также протекает на свету.

Цикл Кальвина

Первая реакция темновой фазы – присоединение CO 2 (карбоксилировани е ) к 1,5-рибулезобифосфату (рибулезо-1,5-дифосфат ) – РиБФ . Последний представляет собой дважды фосфорилированную рибозу. Данную реакцию катализирует фермент рибулезо-1,5-дифосфаткарбоксилаза, также называемый рубиско .

В результате карбоксилирования образуется неустойчивое шестиуглеродное соединение, которое в результате гидролиза распадается на две трехуглеродные молекулы фосфоглицериновой кислоты (ФГК) – первый продукт фотосинтеза. ФГК также называют фосфоглицератом.

РиБФ + CO 2 + H 2 O → 2ФГК

ФГК содержит три атома углерода, один из которых входит в состав кислотной карбоксильной группы (-COOH):

Из ФГК образуется трехуглеродный сахар (глицеральдегидфосфат) триозофосфат (ТФ) , включающий уже альдегидную группу (-CHO):

ФГК (3-кислота) → ТФ (3-сахар)

На данную реакцию затрачивается энергия АТФ и восстановительная сила НАДФ · H 2 . ТФ - первый углевод фотосинтеза.

После этого большая часть триозофосфата затрачивается на регенерацию рибулозобифосфата (РиБФ), который снова используется для связывания CO 2 . Регенерация включает в себя ряд идущих с затратой АТФ реакций, в которых участвуют сахарофосфаты с количеством атомов углерода от 3 до 7.

В таком круговороте РиБФ и заключается цикл Кальвина.

Из цикла Кальвина выходит меньшая часть образовавшегося в нем ТФ. В перерасчете на 6 связанных молекул углекислого газа выход составляет 2 молекулы триозофосфата. Суммарная реакция цикла с входными и выходными продуктами:

6CO 2 + 6H 2 O → 2ТФ

При этом в связывании участвую 6 молекул РиБФ и образуется 12 молекул ФГК, которые превращаются в 12 ТФ, из которых 10 молекул остаются в цикле и преобразуются в 6 молекул РиБФ. Поскольку ТФ - это трехуглеродный сахар, а РиБФ - пятиуглеродный, то в отношении атомов углерода имеем: 10 * 3 = 6 * 5. Количество атомов углерода, обеспечивающих цикл не изменяется, весь необходимый РиБФ регенерируется. А шесть вошедших в цикл молекул углекислоты затрачиваются на образование двух выходящих из цикла молекул триозофосфата.

На цикл Кальвина в расчете на 6 связанных молекул CO 2 затрачивается 18 молекул АТФ и 12 молекул НАДФ · H 2 , которые были синтезированы в реакциях световой фазы фотосинтеза.

Расчет ведется на две выходящие из цикла молекулы триозофосфата, так как образующаяся в последствии молекула глюкозы, включает 6 атомов углерода.

Триозофосфат (ТФ) - конечный продукт цикла Кальвина, но его сложно назвать конечным продуктом фотосинтеза, так как он почти не накапливается, а, вступая в реакции с другими веществами, превращается в глюкозу, сахарозу, крахмал, жиры, жирные кислоты, аминокислоты. Кроме ТФ важную роль играет ФГК. Однако подобные реакции происходят не только у фотосинтезирующих организмов. В этом смысле темновая фаза фотосинтеза – это то же самое, что цикл Кальвина.

Из ФГК путем ступенчатого ферментативного катализа образуется шестиуглеродный сахар фруктозо-6-фосфат , который превращается в глюкозу . В растениях глюкоза может полимеризоваться в крахмал и целлюлозу. Синтез углеводов похож на процесс обратный гликолизу.

Фотодыхание

Кислород подавляет фотосинтез. Чем больше O 2 в окружающей среде, тем менее эффективен процесс связывания CO 2 . Дело в том, что фермент рибулозобифосфат-карбоксилаза (рубиско) может реагировать не только с углекислым газом, но и кислородом. В этом случае темновые реакции несколько иные.

Фосфогликолат - это фосфогликолевая кислота. От нее сразу отщепляется фосфатная группа, и она превращается в гликолевую кислоту (гликолат). Для его «утилизации» снова нужен кислород. Поэтому чем больше в атмосфере кислорода, тем больше он будет стимулировать фотодыхание и тем больше растению будет требоваться кислорода, чтобы избавиться от продуктов реакции.

Фотодыхание - это зависимое от света потребление кислорода и выделение углекислого газа. То есть обмен газов происходит как при дыхании, но протекает в хлоропластах и зависит от светового излучения. От света фотодыхание зависит лишь потому, что рибулозобифосфат образуется только при фотосинтезе.

При фотодыхании происходит возврат атомов углерода из гликолата в цикл Кальвина в виде фосфоглицериновой кислоты (фосфоглицерата).

2 Гликолат (С 2) → 2 Глиоксилат (С 2) →2 Глицин (C 2) - CO 2 → Серин (C 3) →Гидроксипируват (C 3) → Глицерат (C 3) → ФГК (C 3)

Как видно, возврат происходит не полный, так как один атом углерода теряется при превращении двух молекул глицина в одну молекулу аминокислоты серина, при этом выделяется углекислый газ.

Кислород необходим на стадиях превращения гликолата в глиоксилат и глицина в серин.

Превращения гликолата в глиоксилат, а затем в глицин происходят в пероксисомах, синтез серина в митохондриях. Серин снова поступает в пероксисомы, где из него сначала получается гидрооксипируват, а затем глицерат. Глицерат уже поступает в хлоропласты, где из него синтезируется ФГК.

Фотодыхание характерно в основном для растений с C 3 -типом фотосинтеза. Его можно считать вредным, так как энергия бесполезно тратится на превращения гликолата в ФГК. Видимо фотодыхание возникло из-за того, что древние растения были не готовы к большому количеству кислорода в атмосфере. Изначально их эволюция шла в атмосфере богатой углекислым газом, и именно он в основном захватывал реакционный центр фермента рубиско.

C 4 -фотосинтез, или цикл Хэтча-Слэка

Если при C 3 -фотосинтезе первым продуктом темновой фазы является фосфоглицериновая кислота, включающая три атома углерода, то при C 4 -пути первыми продуктами являются кислоты, содержащие четыре атома углерода: яблочная, щавелевоуксусная, аспарагиновая.

С 4 -фотосинтез наблюдается у многих тропических растений, например, сахарного тростника, кукурузы.

С 4 -растения эффективнее поглощают оксид углерода, у них почти не выражено фотодыхание.

Растения, в которых темновая фаза фотосинтеза протекает по C 4 -пути, имеют особое строение листа. В нем проводящие пучки окружены двойным слоем клеток. Внутренний слой - обкладка проводящего пучка. Наружный слой - клетки мезофилла. Хлоропласты клеток слоев отличаются друг от друга.

Для мезофильных хлоропласт характерны крупные граны, высокая активность фотосистем, отсутствие фермента РиБФ-карбоксилазы (рубиско) и крахмала. То есть хлоропласты этих клеток адаптированы преимущественно для световой фазы фотосинтеза.

В хлоропластах клеток проводящего пучка граны почти не развиты, зато высока концентрация РиБФ-карбоксилазы. Эти хлоропласты адаптированы для темновой фазы фотосинтеза.

Углекислый газ сначала попадает в клетки мезофилла, связывается с органическими кислотами, в таком виде транспортируется в клетки обкладки, освобождается и далее связывается также, как у C 3 -растений. То есть C 4 -путь дополняет, а не заменяет C 3 .

В мезофилле CO 2 присоединяется к фосфоенолпирувату (ФЕП) с образованием оксалоацетата (кислота), включающего четыре атома углерода:

Реакция происходит при участии фермента ФЕП-карбоксилазы, обладающего более высоким сродством к CO 2 , чем рубиско. К тому же ФЕП-карбоксилаза не взаимодействует с кислородом, а значит не затрачивается на фотодыхание. Таким образом, преимущество C 4 -фотосинтеза заключается в более эффективной фиксации углекислоты, увеличению ее концентрации в клетках обкладки и следовательно более эффективной работе РиБФ-карбоксилазы, которая почти не расходуется на фотодыхание.

Оксалоацетат превращается в 4-х углеродную дикарбоновую кислоту (малат или аспартат), которая транспортируется в хлоропласты клеток обкладки проводящих пучков. Здесь кислота декарбоксилируется (отнятие CO 2), окисляется (отнятие водорода) и превращается в пируват. Водород восстанавливает НАДФ. Пируват возвращается в мезофилл, где из него регенерируется ФЕП с затратой АТФ.

Оторванный CO 2 в хлоропластах клеток обкладки уходит на обычный C 3 -путь темновой фазы фотосинтеза, т. е. в цикл Кальвина.

Фотосинтез по пути Хэтча-Слэка требует больше энергозатрат.

Считается, что C 4 -путь возник в эволюции позже C 3 и во многом является приспособлением против фотодыхания.

Общее уравнение фотосинтеза :6CO 2 + 6 H 2 O ––– (свет, хлоропласты)–––> C 6 H 12 O 6 + 6 O 2 . В ходе этого процесса из веществ, бедных энергией – углекислого газа и воды – образуется углевод глюкоза (C 6 H 12 O 6) – богатое энергией вещество, кроме того образуется также молекулярный кислород. Очень образно описал это явление русский ученый, физиолог растений – К.А. Тимирязев.

Уравнению фотосинтеза соответствуют две парциальные реакции:

1)световая реакция или превращение энергии -процесс локализации в тилакойдах хлоропласта. ]

2)темновая реакция или превращение веществ -процесс локализации в строме хлоропласта.

3.Лист как орган фотосинтеза. Лист-орган фотосинтеза, который поглощает и запасает солнечную энергию и осуществляет газообмен с атмосферой. В среднем лист поглощает 80-85% фотосинтетически активной радиации (ФАР) и 25%энергии инфракрасных лучей. На фотосинтез расходуется 1.5-2% поглощенной ФАР, остальная энергия расходуется на испарение воды- транспирацию. Лист отличается плоской структурой и небольшой толщиной. Большое значение для эффективного улавливания света имеет архитектоника растений - пространственное расположение органов, те листья располагаются на растении не заслоняя друг друга. Особенности обеспечивающие эффективность фотосинтеза:1)наличие покровной ткани-эпидермиса, защищающего лист от излишней потери воды. Клетки нижнего и верхнего эпидермиса лишены хлоропластов и имеют крупные вакуоли. как линзы фокусируют свет на расположенную глубже хлорофильную ткань. Нижний и верхний эпидермис имеют устьица, через которые происходит диффузия СО2 внутрь листа.2)наличие специализированной фотосинтетической ткани-хлоренхимы. Основная хлорофилоносная ткань - палисадная паренхима, которая расположена на освещаемой части листа. В каждой клетке палисадной паренхимы находится 30-40 хлоропластов.3)наличие сильно развитой системы жилок проводящих путей, что обеспечивает быстрый отток ассимилятов и снабжение фотосинтезирующих клеток водой и необходимыми минеральными веществами. В зависимости от внешних условий при кот происходит формирование и функционирование листьев анатомическое строение их может меняться.



4.Структура и функции хлоропластов. Хлоропласты - пластиды высших растений, в которых идет процесс фотосинтеза, т. е. использование энергии световых лучей для образования из неорганических веществ (углекислого газа и воды) органических веществ с одновременным выделением в атмосферу кислорода. Хлоропласты имеют форму двояковыпуклой линзы, размер их около 4-6 мкм. Находятся они в паренхимных клетках листьев и других зеленых частей высших растений. Число их в клетке варьирует в пределах 25-50.

Снаружи хлоропласт покрыт оболочкой, состоящей из двух липопротеиновых мембран, внешней и внутренней. Обе мембраны имеют толщину около 7нм, они отделены друг от друга межмембранным пространством около 20-30нм. Внутренняя мембрана хлоропластов, как и других пластид образует складчатые впячивания внутрь матрикса или стромы. В зрелом хлоропласте высших растений видны два типа внутренних мембран. Это- мембраны, образующие плоские, протяженные ламеллы стромы, и мембраны тилакоидов, плоских дисковидных вакуолей или мешков.

Основная функция хлоропластов, состоит в улавливании и преобразовании световой энергии.

В состав мембран, образующих граны, входит зеленый пигмент - хлорофилл. Именно здесь происходят световые реакции фотосинтеза - поглощение хлорофиллом световых лучей и превращение энергии света в энергию возбужденных электронов. Электроны, возбужденные светом, т. е. обладающие избыточной энергией, отдают свою энергию на разложение воды и синтез АТФ. При разложении воды образуются кислород и водород. Кислород выделяется в атмосферу, а водород связывается белком ферредоксином.



Хлоропласты обладают известной автономией в системе клетки. В них имеются собственные рибосомы и набор веществ, определяющих синтез ряда собственных белков хлоропласта. Имеются также ферменты, работа которых приводит к образованию липидов, входящих в состав ламелл, и хлорофилла. Благодаря всему этому хлоропласты способны самостоятельно строить собственные структуры. Еще одной очень важной функцией является, усвоение углекислоты в хлоропласте или, как принято говорить, фиксация углекислоты, то есть включение ее углерода в состав органических соединений

5.Пигменты фотосинтетического аппарата (общ.характеристика) Способность растений осуществлять фотосинтез связана с наличием у них пигментов. Главнейшим из них является магнийсодержащий порфириновый пигмент - хлорофилл.

В природе встречается пять разных типов хлорофилла, которые незначительно различаются по своей молекулярной структуре. Хлорофилл а присутствует у всех водорослей и высших растений; хлорофилл b - у зеленых, харовых и эвглеповых и у высших растений; хлорофилл с - у бурых водорослей, золотистых, диатомей и динофлагеллат; хлорофилл d - у красных водорослей; хлорофилл е обнаружен лишь однажды, по-видимому, это хлорофилл с; наконец, различные виды бактериохлорофилла - у фотосинтезирующих бактерий. Для синезеленых и красных водорослей характерно наличие билипротеинов: фикоцианина и фикоэритрина. Наиболее хорошо изучен хлорофилл а. Молекула его состоит из четырех пиррольных колец, с азотом которых связан атом магния, а к одному из колец присоединен одноатомный ненасыщенный спирт фитол.

Молекула хлорофилла встроена в мембрану - погружена гидрофобной фитольной цепью в ее липидную часть. Чистый раствор хлорофилла а имеет максимум поглощения при 663 нм. В интактной, неповрежденной, нормально функционирующей клетке хлорофилл характеризуется еще максимумами поглощения при 672 и 683 нм. Высокая эффективность поглощения света хлорофиллами обусловлена наличием в их молекуле большого числа сопряженных двойных связей.

Фотосинтез

Фотосинез – это процесс
трансформации
поглощенной организмом
энергии света в
химическую энергию
органических
(неорганических)
соединений.
Главная роль восстановление СО2 до
уровня углеводов с
использованием энергии
света.

Развитие учения о фотосинтезе

Климе́нт Арка́дьевич Тимиря́зев
(22 мая (3 июня) 1843, Петербург- 28
апреля 1920, Москва) Научные труды
Тимирязева, посвящены вопросу о
разложении атмосферной углекислоты
зелёными растениями под влиянием
солнечной энергии. Изучение состава и
оптических свойств зелёного пигмента
растений (хлорофилла), его генезиса,
физических и химических условий
разложения углекислоты, определение
составных частей солнечного луча,
принимающих участие в этом явлении,
изучение количественного отношения
между поглощенной энергией и
произведённой работой.

Джозеф Пристли (13 марта
1733-6 февраля 1804) -
британский священникдиссентер, естествоиспытатель,
философ, общественный деятель.
Вошёл в историю прежде всего
как выдающийся химик,
открывший кислород и
углекислый газ

Пьер Жозеф Пельтье - (22 марта 1788 - 19 июля
1842) - французский химик и фармацевт, один из
основателей химии алкалоидов.
В 1817 году, вместе с Жозеф Бьенеме Каванту, он
выделил зелёный пигмент из листьев растений, который
они назвали хлорофиллом.

Алексей Николаевич Бах
(5 (17) марта 1857 - 13 мая,
1946) - советский биохимик и
физиолог растений. Высказал
мысль о том, что ассимиляция СО2
при фотосинтезе является
сопряженным окислительновосстановительным процессом,
происходящим за счет водорода и
гидроксила воды, причем кислород
выделяется из воды через
промежуточные перекисные
соединения.

Общее уравнение фотосинтеза

6 СО2 + 12 Н2О
С6Н12О6 + 6 О2 + 6 Н2О

У высших растений фотосинтез осуществляется в
специализированных клетках органоидов листьев –
хлоропластах.
Хлоропласты – это округлые, или дискообразные
тельца длиной 1-10 мкм, толщиной до 3 мкм. Содержание
их в клетках от 20 до 100.
Химический состав (% на сухую массу):
Белок - 35-55
Липиды – 20-30
Углеводы – 10
РНК – 2-3
ДНК – до 0,5
Хлорофилл – 9
Каротиноиды – 4,5

Строение Хлоропласта

10. Происхождение хлоропластов

Виды формирования хлоропластов:
Деление
Почкование
Ядерный путь
темнота
ядро
инициальная
частица
свет
проламиллярное
тело
пропластида
хлоропласт
схема ядерного пути

11. Онтогенез хлоропластов

12.

Хлоропласты - зелёные пластиды, которые
встречаются в клетках растений и водорослей.
Ультраструктура хлоропласта:
1. наружняя мембрана
2. межмембранное
пространство
3. внутренняя мембрана
(1+2+3: оболочка)
4. строма (жидкость)
5. тилакоид с просветом
6. мембрана тилакоида
7. грана (стопка тилакоидов)
8. тилакоид (ламела)
9. зерно крахмала
10. рибосома
11. пластидная ДНК
12. плстоглобула (капля жира)

13. Пигменты фотосинтезирующих растений

хлорофиллы
фикобилины
Фикобилины
каротиноиды
флавоноидные
пигменты

14. Хлорофиллы

Хлорофи́лл -
зелёный пигмент,
обусловливающий
окраску хлоропластов
растений в зелёный
цвет. По химическому
строению
хлорофиллы -
магниевые комплексы
различных
тетрапирролов.
Хлорофиллы имеют
порфириновое
строение.

15.

Хлорофиллы
Хлорофилл «а»
(сине-зеленые
бактерии)
Хлорофилл «c»
(бурые водоросли)
Хлорофилл «b»
(высшие растения,
зеленые, харовые
водоросли)
Хлорофилл «d»
(красные водоросли)

16. Фикобилины

Фикобилины – это
пигменты,
представляющие собой
вспомогательные
фотосинтетические
пигменты, которые могут
передавать энергию
поглощенных квантов
света на хлорофилл,
расширяя спектр действия
фотосинтеза.
Открытые тетрапиррольные
структуры.
Встречаются у водорослей.

17. Каротиноиды

Структурная формула

18.

Каротиноиды – это
жирорастворимые
пигменты желтого,
красного и оранжевого
цвета. Придают
окраску большинству
оранжевых овощей и
фруктов.

19. Группы каротиноидов:

Каротины - жёлтооранжевый пигмент,
непредельный углеводород
из группы каротиноидов.
Формула С40H56. Нерастворим
в воде, но растворяется в
органических растворителях.
Содержится в листьях всех растений, а также в
корне моркови, плодах шиповника и др. Является
провитамином витамина А.
2.
Ксантофиллы - растительный пигмент,
кристаллизуется в призматических кристаллах
жёлтого цвета.
1.

20. Флавоноидные пигменты

Флавоноиды -это группа
водорастворимых природных
фенольных соединений.
Представляют собой
гетероциклические
кислородсодержащие
соединения преимущественно
желтого, оранжевого, красного
цвета. Они принадлежат к
соединениям С6-С3-С6 ряда -
в их молекулах имеются два
бензольных ядра, соединенных
друг с другом трехуглеродным
фрагментом.
Структура флавонов

21. Флавоноидные пигменты:

Антоцианы - природные вещества, красящие растения;
относятся к гликозидам.
Флавоны и флавонолы. Играют роль поглотителей УФлучей тем самым предохраняют хлорофилл и цитоплазму
от разрушения.

22. Стадии фотосинтеза

световая
Осуществляется в
гранах хлоропластов.
Протекает при наличии
света Быстрые < 10 (-5)
сек
темновая
Осуществляется в
бесцветной белковой строме
хлоропластов.
Для протекания свет
необязателен
Медленные ~ 10 (-2) сек

23.

24.

25. Световая стадия фотосинтеза

В ходе световой стадии фотосинтеза образуются
высокоэнергетические продукты: АТФ, служащий в
клетке источником энергии, и НАДФН, использующийся
как восстановитель. В качестве побочного продукта
выделяется кислород.
Общее уравнение:
АДФ + Н3РО4 + Н2О + НАДФ
АТФ + НАДФН + 1/2О2

26.

Спектры поглощения
ФАР: 380 – 710 нм
Каротиноиды: 400550 нм главный
максимум: 480 нм
Хлорофиллы:
в красной области спектра
640-700 нм
в синей - 400-450 нм

27. Уровни возбуждения хлорофилла

1 уровень. Связан с переходом на более высокий
энергетический уровень электронов в системе
сопряжения двух связей
2 уровень. Связан с возбуждением неспаренных электронов
четырех атомов азота и кислорода в порфириновом
кольце.

28. Пигментные системы

Фотосистема I
Состоит из 200 молекул
хлорофилла «а»,50
молекул кароиноидов и 1
молекулы пигмента
(Р700)
Фотосистема II
Состоит из 200 молекул
хлорофилла «а670», 200
молекул хлорофилла «b» и
одной молекулы пигмента
(Р680)

29. Локализация электрон и протон транспортных реакций в тилакоидной мембране

30. Нециклическое фотосинтетическое фосфорилирование (Z – схема, или схема Говинджи)

x
е
Фg е
Фф е
НАДФ
Пх
е
FeS
е
АДФ
Цит b6
е
II ФС
НАДФН
АТФ
е
I ФС
Цит f
е
е
Пц
е
Р680
hV
О2
е
Н2 О
Р700
hV
Фф – феофетин
Пx – пластохинон
FeS – железосерный белок
Цит b6 – цитохром
Пц – пластоционин
Фg – феродоксин
х – неизвестное прир.
соединение

31. Фотосинтетическое фосфорилирование

Фотосинтетическое фосфорилирование – это процесс
образования энергии АТФ и НАДФН при фотосинтезе с
использованием квантов света.
Виды:
нециклическое (Z-схема).Принимают участие две
пигментные системы.
циклическое. Принимает участие фотосистема I.
псевдоциклическое. Идет по типу нециклического, но не
наблюдается видимого выделения кислорода.

32. Циклическое фотосинтетическое фосфорилирование

е
АДФ
Фg
е
АТФ
Цитb6
е
e
Цитf
е
P700
hV
е
АДФ
АТФ
Цит b6 – цитохром
Фg – феродоксин

33. Циклический и нециклический транспорт электронов в хлоропластах

34.

Химизм фотосинтеза
Фотосинтез
осуществляется
путем
последовательного чередования двух фаз:
световой,
протекающей
с
большой
скоростью и не зависящей от температуры;
темновой, названной так потому, что для
происходящих в этой фазе реакций
световая энергия не требуется.

35. Темновая стадия фотосинтеза

В темновой стадии с участием АТФ и НАДФН
происходит восстановление CO2 до глюкозы (C6H12O6).
Хотя свет не требуется для осуществления данного
процесса, он участвует в его регуляции.

36. С3-фотосинтез, цикл Кальвина

Цикл Кальвина или восстановительный
пентозофосфатный цикл состоит из трёх стадий:
Карбоксилирования РДФ.
Восстановления. Происходит восстановление 3-ФГК до
3-ФГА.
Регенерация акцептора РДФ. Осуществляются в серии
реакций взаимопревращений фосфорилируемых сахаров с
различным числом углеродных атомов (триоз, тетроз,
пентоз, гексоз, и т.д.)

37. Общее уравнение цикла Кальвина

Н2СО (Р)
С=О
НО-С-Н + * СО2
Н-С-ОН
Н2СО (Р)
РДФ
Н2*СО (Р)
2 НСОН
СООН
3-ФГК
Н2*СО (Р)
2НСОН
СОО (Р)
1,3-ФГК
Н2*СО (Р)
2НСОН
С=О
Н
3-ФГА
Н2*СО (Р)
2С=О
НСОН
3-ФДА
конденсация, или
полимеризация
Н
Н2СО (Р)
Н2СО (Р)
С=О
С=О
С=О
НСОН
НОСН
НОСН
НОСН
Н*СОН
НСОН
Н*СОН
НСОН
НСОН
НСОН
Н2СО (Р)
Н2СОН
Н2СО (Р)
1,6-дифосфат- фруктозо-6глюкоза-6фруктоза
фосфат
фосфат
Н
С=О
НСОН
НОСН
Н*СОН
НСОН
Н2СОН
глюкоза

38. С4-фотосинтез (путь Хэтча – Слэка – Карпилова)

Осуществляется у растений с двумя типами хлоропласта.
Акцептором СО2 помимо РДФ может быть трех
углеродное соединение – фосфоэнол ПВК (ФЕП)
C4 –путь был впервые обнаружен
у тропических злаков. В работах
Ю.С.Карпилова, М.Хэтча, К.Слэка с
использованием меченого углерода
было показано, что первыми
продуктами фотосинтеза у этих
растений являются органические
кислоты.

39.

40. Фотосинтез по типу толстянковых

Характерно для растений
суккуленотов.В ночное время
фиксируют углерод в
органические кислоты по
преимуществу в яблочные. Это
происходит под действием
ферментов
пируваткарбокислазы. Это
позволяет в течении дня
держать устьица закрытыми и
таким образом сокращать
транспирацию. Этот тип
получил название САМфотосинтез.

41. САМ фотосинтез

При CAM фотосинтезе происходит разделение
ассимиляции CO2 и цикла Кальвина не в
пространстве как у С4, а во времени. Ночью в
вакуолях клеток по аналогичному
вышеописанному механизму при открытых
устьицах накапливается малат, днём при
закрытых устьицах идёт цикл Кальвина. Этот
механизм позволяет максимально экономить
воду, однако уступает в эффективности и С4, и
С3.

42.

43.

Фотодыхание

44. Влияние внутренних и внешних факторов на фотосинтез

Фотосинтез
значительно
изменяется из-за
влияния на него
комплекса часто
взаимодействующих
внешних и внутренних
факторов.

45. Факторы, влияющие на фотосинтез

1.
Онтогенетическое
состояние растения.
Максимальная
интенсивность
фотосинтеза наблюдается
во время перехода
растений от вегетации в
репродуктивную фазу. У
стареющих листьев
интенсивность
фотосинтеза значительно
падает.

46. Факторы, влияющие на фотосинтез

2. Свет. В темноте фотосинтез не происходит, так как
образующийся при дыхании углекислый газ выделяется из
листьев; с увеличением интенсивности света достигается
компенсационная точка при которой поглощение
углекислого газа при фотосинтезе и ее освобождение при
дыхании уравновешивают друг друга.

47. Факторы, влияющие на фотосинтез

3. Спектральный
состав света.
Спектральный
состав солнечного
света испытывает
некоторые
изменения в
течении суток и в
течении года.

48. Факторы, влияющие на фотосинтез

4. СО2.
Является основным
субстратом фотосинтеза и от
его содержания зависит
интенсивность этого процесса.
В атмосфере содержится
0,03% по объему; увеличение
объема углекислого газа от 0,1
до 0,4% увеличивает
интенсивность фотосинтеза до
определенного предела, а
затем сменяется
углекислотным насыщением.

49. Факторы, влияющие на фотосинтез

5.Температура.
У растений умеренной
зоны оптимальная
температура для
фотосинтеза
является 20-25; у
тропических – 2035.

50. Факторы, влияющие на фотосинтез

6. Содержание воды.
Снижение обезвоженности тканей более чем на 20%
приводит к уменьшению интенсивности фотосинтеза и к
его дальнейшему прекращению, если потеря воды будет
более 50%.

51. Факторы, влияющие на фотосинтез

7. Микроэлементы.
Недостаток Fe
вызывает хлороз и
влияет на активность
ферментов. Mn
необходим для
освобождения
кислорода и для
усвоения углекислого
газа. Недостаток Cu и
Zn снижает фотосинтез
на 30%

52. Факторы, влияющие на фотосинтез

8.Загрязняющие
вещества и
химические
препараты.
Вызывают
снижение
фотосинтеза.
Наиболее
опасные
вещества: NO2,
SO2, взвешенные
частицы.

53. Суточный ход фотосинтеза

При умеренной дневной температуре и достаточной
влажности дневной ход фотосинтеза примерно
соответствует изменению интенсивности солнечной
инсоляции. Фотосинтез, начинаясь утром с восходом
солнца, достигает максимума в полуденные часы,
постепенно снижается к вечеру и прекращается с заходом
солнца. При повышенной температуре и уменьшении
влажности максимум фотосинтеза сдвигается на ранние
часы.

54. Вывод

Таким образом фотосинтез – единственный процесс на
Земле, идущий в грандиозных масштабах, связанный с
превращением энергии солнечного света в энергию химических
связей. Эта энергия, запасенная зелеными растениями,
составляет основу для жизнедеятельности всех других
гетеротрофных организмов на Земле от бактерий до человека.