Приращение функции y x 2. Open Library - открытая библиотека учебной информации

1. приращение аргумента и приращение функции.

Пусть дана функция . Возьмём два значения аргумента: начальное и изменённое, которое принято обозначать
, где - величина на которую изменяется аргумент при переходе от первого значения ко второму, оно называется приращением аргумента.

Значения аргумента и соответствуют определённым значениям функции: начальное и изменённое
, величину , на которую изменяется значение функции при изменении аргумента на величину , называется приращением функции.

2. понятие предела функции в точке.

Число называется пределом функции
при, стремящемся к , если для любого числа
найдётся такое число
, что при всех
, удовлетворяющих неравенству
, будет выполняться неравенство
.

Второе определение: Число называется пределом функции при, стремящемся к , если для любого числа существует такая окрестность точки , что для любого из этой окрестности . Обозначается
.

3. бесконечно большие и бесконечно малые функции в точке. Бесконечно малая функция в точке – функция, предел которой, когда она стремится к данной точке равен нулю. Бесконечно большая функция в точке – функция предел которой когда она стремится к к данной точке равен бесконечности.

4. основные теоремы о пределах и следствия из них (без доказательства).





следствие: постоянный множитель можно вынести за знак предела:

Если последовательности и сходятся и предел последовательности отличен от нуля, то






следствие: постоянный множитель можно вынести за знак предела.

11. если при существуют пределы функций
и
и предел функции отличен от нуля,

то существуют также и предел их отношения, равный отношению пределов функций и :

.

12. если
, то
, справедлива и обратная.

13. теорема о пределе промежуточной последовательности. Если последовательности
сходящиеся, и
и
то

5. предел функции на бесконечности.

Число а называется пределом функции на бесконечности, (при х стремящемся к бесконечности) если для любой последовательности стремящемся к бесконечности
соответствует последовательность значений стремящихся к числу а .

6. gределы числовой последовательности.

Число а называется пределом числовой последовательности , если для любого положительного числа найдётся натуральное число N, такое, что при всех n > N выполняется неравенство
.

Символически это определяется так:
справедливо .

Тот факт, что число а является пределом последовательности , обозначается следующим образом:

.

7.число « е ». натуральные логарифмы.

Число « е » представляет собой предел числовой последовательности, n - й член которой
, т. е.

.

Натуральный логарифм – логарифм с основанием е. натуральные логарифмы обозначаются
без указания основания.

Число
позволяет переходить от десятичного логарифма к натуральному и обратно.

, его называют модулем перехода от натуральных логарифмов к десятичным.

8. замечательные пределы
,


.

Первый замечательный предел:



таким образом при

по теореме о пределе промежуточной последовательности

второй замечательный предел:

.

Для доказательства существования предела
используют лемму: для любого действительного числа
и
справедливо неравенство
(2) (при
или
неравенство обращается в равенство.)


Последовательность (1) можно записать так:

.

Теперь рассмотрим вспомогательную последовательность с общим членом
убедимся, что она убывает и ограничена снизу:
если
, то последовательность убывает. Если
, то последовательность ограничена снизу. Покажем это:

в силу равенства (2)

т. е.
или
. Т. е. последовательность убывает, а т. к. то последовательность ограничена снизу. Если последовательность убывает и ограничена снизу, то она имеет предел. Тогда

имеет предел и последовательность (1), т. к.

и
.

Л. Эйлер назвал этот предел .

9. односторонние пределы, разрыв функции.

число А левый предел, если для любой последовательности выполняется следующее: .

число А правый предел, если для любой последовательности выполняется следующее: .

Если в точке а принадлежащей области определения функции или её границе, нарушается условие непрерывности функции, то точка а называется точкой разрыва или разрывом функции.если при стремлении точки

12. сумма членов бесконечной убывающей геометрической прогрессии. Геометрическая прогрессия – последовательность, в которой отношение между последующим и предыдущим членами остаётся неизменным, это отношение называется знаменателем прогрессии. Сумма первых n членов геометрической прогрессии выражается формулой
данную формулу удобно использовать для убывающей геометрической прогрессии – прогрессии у которой абсолютная величина её знаменателя меньше нуля.- первый член; - знаменатель прогрессии; - номер взятого члена последовательности. Сумма бесконечной убывающей прогрессии – число, к которому неограничено приближается сумма первых членов убывающей прогрессиии при неограниченном возростании числа .
т. о. Сумма членов бесконечно убывающей геометрической прогрессии равна .

Пусть х – аргумент (независимая переменная); y=y(x) – функция.

Возьмем фиксированное значение аргументах=х 0 и вычислим значение функции y 0 =y(x 0 ) . Теперь произвольным образом зададим приращение (изменение) аргумента и обозначим его х ( х может быть любого знака).

Аргумент с приращением – это точка х 0 + х . Допустим, в ней также существует значение функции y=y(x 0 + х) (см. рисунок).

Таким образом, при произвольном изменении значения аргумента получено изменение функции, которое называется приращением значения функции:

и не является произвольным, а зависит от вида функции и величины
.

Приращения аргумента и функции могут быть конечными , т.е. выражаться постоянными числами, в этом случае их иногда называют конечными разностями.

В экономике конечные приращения рассматриваются весьма часто. Например, в таблице приведены данные о длине железнодорожной сети некоторого государства. Очевидно, приращение длины сети вычисляется путем вычитания предыдущего значения из последующего.

Будем рассматривать длину ж/д сети как функцию, аргументом которой будет время (годы).

Длина ж/д на 31.12, тыс.км.

Приращение

Среднегодовой прирост

Само по себе приращение функции (в данном случае длины ж/д) сети) плохо характеризует изменение функции. В нашем примере из того, что 2,5>0,9 нельзя заключить, что сеть росла быстрее в 2000-2003 годах, чем в 2004 г., потому что приращение 2,5 относится к трехлетнему периоду, а 0,9 – всего к одному году. Поэтому вполне естественно, что приращение функции приводят к единице изменения аргумента. Приращение аргумента здесь – периоды: 1996-1993=3; 2000-1996=4; 2003-2000=3; 2004-2003=1 .

Получим то, что в экономической литературе называют среднегодовым приростом .

Можно избежать операции приведения приращения к единице изменения аргумента, если взять значения функции для значений аргумента, отличающихся на единицу, что не всегда возможно.

В математическом анализе, в частности, в дифференциальном исчислении, рассматривают бесконечно малые (БМ) приращения аргумента и функции.

Дифференцирование функции одной переменной (производная и дифференциал) Производная функции

Приращения аргумента и функции в точке х 0 можно рассматривать как сравнимые бесконечно малые величины (см. тему 4, сравнение БМ), т.е. БМ одного порядка.

Тогда их отношение будет иметь конечный предел, который определяется как производная функции в т х 0 .

    Предел отношения приращения функции к БМ приращению аргумента в точке х=х 0 называется производной функции в данной точке.

Символическое обозначение производной штрихом (а, вернее, римской цифрой I) введено Ньютоном. Можно использовать еще нижний индекс, который показывает, по какой переменной вычисляется производная, например, . Широко используется также другое обозначение, предложенное основоположником исчисления производных, немецким математиком Лейбницем:
. С происхождением этого обозначения вы подробнее познакомитесь в разделеДифференциал функции и дифференциал аргумента.


Данное число оценивает скорость изменения функции, проходящей через точку
.

Установим геометрический смысл производной функции в точке. С этой целью построим график функции y=y(x) и отметим на нем точки, определяющие изменение y(x) в промежутке

Касательной к графику функции в точке М 0
будем считать предельное положение секущейМ 0 М при условии
(точкаМ скользит по графику функции к точкеМ 0 ).

Рассмотрим
. Очевидно,
.

Если точку М устремить вдоль графика функции по направлению к точке М 0 , то значение
будет стремиться к некоторому пределу, который обозначим
. При этом.

Предельный угол совпадает с углом наклона касательной, проведенной к графику функции в т. М 0 , поэтому производная
численно равнаугловому коэффициенту касательной в указанной точке.

-

геометрический смысл производной функции в точке .

Таким образом, можно записать уравнения касательной и нормали (нормаль – это прямая, перпендикулярная касательной) к графику функции в некоторой точке х 0 :

Касательная - .

Нормаль -
.

Представляют интерес случаи, когда эти прямые расположены горизонтально или вертикально (см. тему 3, частные случаи положения прямой на плоскости). Тогда,

если
;

если
.

Определение производной называется дифференцированием функции.

 Если функция в точке х 0 имеет конечную производную, то она называется дифференцируемой в этой точке. Функция, дифференцируемая во всех точках некоторого интервала, называется дифференцируемой на этом интервале.

Теорема . Если функция y=y(x) дифференцируема в т. х 0 , то она в этой точке непрерывна.

Таким образом, непрерывность – необходимое (но не достаточное) условие дифференцируемости функции.

Запомнить очень легко.

Ну и не будем далеко ходить, сразу же рассмотрим обратную функцию. Какая функция является обратной для показательной функции? Логарифм:

В нашем случае основанием служит число:

Такой логарифм (то есть логарифм с основанием) называется «натуральным», и для него используем особое обозначение: вместо пишем.

Чему равен? Конечно же, .

Производная от натурального логарифма тоже очень простая:

Примеры:

  1. Найди производную функции.
  2. Чему равна производная функции?

Ответы: Экспонента и натуральный логарифм - функции уникально простые с точки зрения производной. Показательные и логарифмические функции с любым другим основанием будут иметь другую производную, которую мы с тобой разберем позже, после того как пройдем правила дифференцирования.

Правила дифференцирования

Правила чего? Опять новый термин, опять?!...

Дифференцирование - это процесс нахождения производной.

Только и всего. А как еще назвать этот процесс одним словом? Не производнование же... Дифференциалом математики называют то самое приращение функции при. Происходит этот термин от латинского differentia — разность. Вот.

При выводе всех этих правил будем использовать две функции, например, и. Нам понадобятся также формулы их приращений:

Всего имеется 5 правил.

Константа выносится за знак производной.

Если - какое-то постоянное число (константа), тогда.

Очевидно, это правило работает и для разности: .

Докажем. Пусть, или проще.

Примеры.

Найдите производные функций:

  1. в точке;
  2. в точке;
  3. в точке;
  4. в точке.

Решения:

  1. (производная одинакова во всех точках, так как это линейная функция, помнишь?);

Производная произведения

Здесь все аналогично: введем новую функцию и найдем ее приращение:

Производная:

Примеры:

  1. Найдите производные функций и;
  2. Найдите производную функции в точке.

Решения:

Производная показательной функции

Теперь твоих знаний достаточно, чтобы научиться находить производную любой показательной функции, а не только экспоненты (не забыл еще, что это такое?).

Итак, где - это какое-то число.

Мы уже знаем производную функции, поэтому давай попробуем привести нашу функцию к новому основанию:

Для этого воспользуемся простым правилом: . Тогда:

Ну вот, получилось. Теперь попробуй найти производную, и не забудь, что эта функция - сложная.

Получилось?

Вот, проверь себя:

Формула получилась очень похожая на производную экспоненты: как было, так и осталось, появился только множитель, который является просто числом, но не переменной.

Примеры:
Найди производные функций:

Ответы:

Это просто число, которое невозможно посчитать без калькулятора, то есть никак не записать в более простом виде. Поэтому в ответе его в таком виде и оставляем.

    Заметим, что здесь частное двух функций, поэтому применим соответствующее правило дифференцирования:

    В этом примере произведение двух функций:

Производная логарифмической функции

Здесь аналогично: ты уже знаешь производную от натурального логарифма:

Поэтому, чтобы найти произвольную от логарифма с другим основанием, например, :

Нужно привести этот логарифм к основанию. А как поменять основание логарифма? Надеюсь, ты помнишь эту формулу:

Только теперь вместо будем писать:

В знаменателе получилась просто константа (постоянное число, без переменной). Производная получается очень просто:

Производные показательной и логарифмической функций почти не встречаются в ЕГЭ, но не будет лишним знать их.

Производная сложной функции.

Что такое «сложная функция»? Нет, это не логарифм, и не арктангенс. Данные функции может быть сложны для понимания (хотя, если логарифм тебе кажется сложным, прочти тему «Логарифмы» и все пройдет), но с точки зрения математики слово «сложная» не означает «трудная».

Представь себе маленький конвейер: сидят два человека и проделывают какие-то действия с какими-то предметами. Например, первый заворачивает шоколадку в обертку, а второй обвязывает ее ленточкой. Получается такой составной объект: шоколадка, обернутая и обвязанная ленточкой. Чтобы съесть шоколадку, тебе нужно проделать обратные действия в обратном порядке.

Давай создадим подобный математический конвейер: сперва будем находить косинус числа, а затем полученное число возводить в квадрат. Итак, нам дают число (шоколадка), я нахожу его косинус (обертка), а ты затем возводишь то, что у меня получилось, в квадрат (обвязываешь ленточкой). Что получилось? Функция. Это и есть пример сложной функции: когда для нахождения ее значения мы проделываем первое действие непосредственно с переменной, а потом еще второе действие с тем, что получилось в результате первого.

Другими словами, сложная функция - это функция, аргументом которой является другая функция : .

Для нашего примера, .

Мы вполне можем проделывать те же действия и в обратном порядке: сначала ты возводишь в квадрат, а я затем ищу косинус полученного числа: . Несложно догадаться, что результат будет почти всегда разный. Важная особенность сложных функций: при изменении порядка действий функция меняется.

Второй пример: (то же самое). .

Действие, которое делаем последним будем называть «внешней» функцией , а действие, совершаемое первым - соответственно «внутренней» функцией (это неформальные названия, я их употребляю только для того, чтобы объяснить материал простым языком).

Попробуй определить сам, какая функция является внешней, а какая внутренней:

Ответы: Разделение внутренней и внешней функций очень похоже на замену переменных: например, в функции

  1. Первым будем выполнять какое действие? Сперва посчитаем синус, а только потом возведем в куб. Значит, внутренняя функция, а внешняя.
    А исходная функция является их композицией: .
  2. Внутренняя: ; внешняя: .
    Проверка: .
  3. Внутренняя: ; внешняя: .
    Проверка: .
  4. Внутренняя: ; внешняя: .
    Проверка: .
  5. Внутренняя: ; внешняя: .
    Проверка: .

производим замену переменных и получаем функцию.

Ну что ж, теперь будем извлекать нашу шоколадку - искать производную. Порядок действий всегда обратный: сначала ищем производную внешней функции, затем умножаем результат на производную внутренней функции. Применительно к исходному примеру это выглядит так:

Другой пример:

Итак, сформулируем, наконец, официальное правило:

Алгоритм нахождения производной сложной функции:

Вроде бы всё просто, да?

Проверим на примерах:

Решения:

1) Внутренняя: ;

Внешняя: ;

2) Внутренняя: ;

(только не вздумай теперь сократить на! Из под косинуса ничего не выносится, помнишь?)

3) Внутренняя: ;

Внешняя: ;

Сразу видно, что здесь трёхуровневая сложная функция: ведь - это уже сама по себе сложная функция, а из нее еще извлекаем корень, то есть выполняем третье действие (шоколадку в обертке и с ленточкой кладем в портфель). Но пугаться нет причин: все-равно «распаковывать» эту функцию будем в том же порядке, что и обычно: с конца.

То есть сперва продифференцируем корень, затем косинус, и только потом выражение в скобках. А потом все это перемножим.

В таких случаях удобно пронумеровать действия. То есть, представим, что нам известен. В каком порядке будем совершать действия, чтобы вычислить значение этого выражения? Разберем на примере:

Чем позже совершается действие, тем более «внешней» будет соответствующая функция. Последовательность действий - как и раньше:

Здесь вложенность вообще 4-уровневая. Давай определим порядок действий.

1. Подкоренное выражение. .

2. Корень. .

3. Синус. .

4. Квадрат. .

5. Собираем все в кучу:

ПРОИЗВОДНАЯ. КОРОТКО О ГЛАВНОМ

Производная функции - отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента:

Базовые производные:

Правила дифференцирования:

Константа выносится за знак производной:

Производная суммы:

Производная произведения:

Производная частного:

Производная сложной функции:

Алгоритм нахождения производной от сложной функции:

  1. Определяем «внутреннюю» функцию, находим ее производную.
  2. Определяем «внешнюю» функцию, находим ее производную.
  3. Умножаем результаты первого и второго пунктов.

Определение 1

Если для каждой пары $(x,y)$ значений двух независимых переменных из некоторой области ставится в соответствие определенное значение $z$, то говорят, что $z$ является функцией двух переменных $(x,y)$. Обозначение: $z=f(x,y)$.

В отношении функции $z=f(x,y)$ рассмотрим понятия общего (полного) и частного приращений функции.

Пусть дана функция $z=f(x,y)$двух независимых переменных $(x,y)$.

Замечание 1

Так как переменные $(x,y)$ являются независимыми, то одна из них может изменяться, а другая при этом сохранять постоянное значение.

Дадим переменной $x$ приращение $\Delta x$, при этом сохраним значение переменной $y$ неизменным.

Тогда функция $z=f(x,y)$ получит приращение, которое будет называться частным приращением функции $z=f(x,y)$ по переменной $x$. Обозначение:

Аналогично дадим переменной $y$ приращение $\Delta y$, при этом сохраним значение переменной $x$ неизменным.

Тогда функция $z=f(x,y)$ получит приращение, которое будет называться частным приращением функции $z=f(x,y)$ по переменной $y$. Обозначение:

Если же аргументу $x$ дать приращение $\Delta x$, а аргументу $y$ - приращение $\Delta y$, то получается полное приращение заданной функции $z=f(x,y)$. Обозначение:

Таким образом, имеем:

    $\Delta _{x} z=f(x+\Delta x,y)-f(x,y)$ - частное приращение функции $z=f(x,y)$ по $x$;

    $\Delta _{y} z=f(x,y+\Delta y)-f(x,y)$ - частное приращение функции $z=f(x,y)$ по $y$;

    $\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)$ - полное приращение функции $z=f(x,y)$.

Пример 1

Решение:

$\Delta _{x} z=x+\Delta x+y$ - частное приращение функции $z=f(x,y)$ по $x$;

$\Delta _{y} z=x+y+\Delta y$ - частное приращение функции $z=f(x,y)$ по $y$.

$\Delta z=x+\Delta x+y+\Delta y$ - полное приращение функции $z=f(x,y)$.

Пример 2

Вычислить частные и полное приращение функции $z=xy$ в точке $(1;2)$ при $\Delta x=0,1;\, \, \Delta y=0,1$.

Решение:

По определению частного приращения найдем:

$\Delta _{x} z=(x+\Delta x)\cdot y$ - частное приращение функции $z=f(x,y)$ по $x$

$\Delta _{y} z=x\cdot (y+\Delta y)$ - частное приращение функции $z=f(x,y)$ по $y$;

По определению полного приращения найдем:

$\Delta z=(x+\Delta x)\cdot (y+\Delta y)$ - полное приращение функции $z=f(x,y)$.

Следовательно,

\[\Delta _{x} z=(1+0,1)\cdot 2=2,2\] \[\Delta _{y} z=1\cdot (2+0,1)=2,1\] \[\Delta z=(1+0,1)\cdot (2+0,1)=1,1\cdot 2,1=2,31.\]

Замечание 2

Полное приращение заданной функции $z=f(x,y)$ не равно сумме ее частных приращений $\Delta _{x} z$ и $\Delta _{y} z$. Математическая запись: $\Delta z\ne \Delta _{x} z+\Delta _{y} z$.

Пример 3

Проверить утверждение замечания для функции

Решение:

$\Delta _{x} z=x+\Delta x+y$; $\Delta _{y} z=x+y+\Delta y$; $\Delta z=x+\Delta x+y+\Delta y$ (получены в примере 1)

Найдем сумму частных приращений заданной функции $z=f(x,y)$

\[\Delta _{x} z+\Delta _{y} z=x+\Delta x+y+(x+y+\Delta y)=2\cdot (x+y)+\Delta x+\Delta y.\]

\[\Delta _{x} z+\Delta _{y} z\ne \Delta z.\]

Определение 2

Если для каждой тройки $(x,y,z)$ значений трех независимых переменных из некоторой области ставится в соответствие определенное значение $w$, то говорят, что $w$ является функцией трех переменных $(x,y,z)$ в данной области.

Обозначение: $w=f(x,y,z)$.

Определение 3

Если для каждой совокупности $(x,y,z,...,t)$ значений независимых переменных из некоторой области ставится в соответствие определенное значение $w$, то говорят, что $w$ является функцией переменных $(x,y,z,...,t)$ в данной области.

Обозначение: $w=f(x,y,z,...,t)$.

Для функции от трех и более переменных, аналогично как для функции двух переменных определяются частные приращения по каждой из переменных:

    $\Delta _{z} w=f(x,y,z+\Delta z)-f(x,y,z)$ - частное приращение функции $w=f(x,y,z,...,t)$ по $z$;

    $\Delta _{t} w=f(x,y,z,...,t+\Delta t)-f(x,y,z,...,t)$ - частное приращение функции $w=f(x,y,z,...,t)$ по $t$.

Пример 4

Записать частные и полное приращение функции

Решение:

По определению частного приращения найдем:

$\Delta _{x} w=((x+\Delta x)+y)\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $x$

$\Delta _{y} w=(x+(y+\Delta y))\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $y$;

$\Delta _{z} w=(x+y)\cdot (z+\Delta z)$ - частное приращение функции $w=f(x,y,z)$ по $z$;

По определению полного приращения найдем:

$\Delta w=((x+\Delta x)+(y+\Delta y))\cdot (z+\Delta z)$ - полное приращение функции $w=f(x,y,z)$.

Пример 5

Вычислить частные и полное приращение функции $w=xyz$ в точке $(1;2;1)$ при $\Delta x=0,1;\, \, \Delta y=0,1;\, \, \Delta z=0,1$.

Решение:

По определению частного приращения найдем:

$\Delta _{x} w=(x+\Delta x)\cdot y\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $x$

$\Delta _{y} w=x\cdot (y+\Delta y)\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $y$;

$\Delta _{z} w=x\cdot y\cdot (z+\Delta z)$ - частное приращение функции $w=f(x,y,z)$ по $z$;

По определению полного приращения найдем:

$\Delta w=(x+\Delta x)\cdot (y+\Delta y)\cdot (z+\Delta z)$ - полное приращение функции $w=f(x,y,z)$.

Следовательно,

\[\Delta _{x} w=(1+0,1)\cdot 2\cdot 1=2,2\] \[\Delta _{y} w=1\cdot (2+0,1)\cdot 1=2,1\] \[\Delta _{y} w=1\cdot 2\cdot (1+0,1)=2,2\] \[\Delta z=(1+0,1)\cdot (2+0,1)\cdot (1+0,1)=1,1\cdot 2,1\cdot 1,1=2,541.\]

С геометрической точки зрения полное приращение функции $z=f(x,y)$ (по определению $\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)$) равно приращению аппликаты графика функции $z=f(x,y)$ при переходе от точки $M(x,y)$ к точке $M_{1} (x+\Delta x,y+\Delta y)$ (рис. 1).

Рисунок 1.

Пусть x – произвольная точка, ледащая в некоторой окрестности фиксированной точки x 0 . разность x – x 0 принято называть приращение независимой переменной(или приращением аргумента) в точке x 0 и обозначается Δx. Таким образом,

Δx = x –x 0 ,

откуда следует, что

Приращение функции – разность между двумя значениями функции.

Пусть задана функция у = f(x) , определœенная при значении аргумента͵ равном х 0 . Дадим аргументу приращение Dх , ᴛ.ᴇ. рассмотрим значение аргумента͵ равное x 0 + Dх . Предположим, что это значение аргумента также входит в область определœения данной функции. Тогда разность Dy = f(x 0 + Dх) f(x 0) принято называть приращением функции. Приращение функцииf (x ) в точке x - функция обычно обозначаемая Δ x f от новой переменной Δx определяемая как

Δ x f x ) = f (x + Δx ) − f (x ).

Найти приращение аргумента и приращение функции в точке х 0 , если

Пример 2. Найти приращение функции f(x) = x 2 , если х = 1, ∆х = 0,1

Решение: f(х) = х 2 , f(х+∆х) = (х+∆х) 2

Найдем приращение функции ∆f = f(x+∆x) - f(x) = (x+∆x) 2 - x 2 = x 2 +2x*∆x+∆x 2 - x 2 = 2x*∆x + ∆x 2 /

Подставим значения х=1 и ∆х= 0,1, получим ∆f = 2*1*0,1 + (0,1) 2 = 0,2+0,01 = 0,21

Найти приращение аргумента и приращение функции в точки х 0

2.f(x) = 2x 3. x 0 =3 x=2,4

3. f(x) = 2x 2 +2 x 0 =1 x=0,8

4. f(x) = 3x+4 x 0 =4 x=3,8

Определœение : Производной функции в точке принято называть предел (если он существует и конечен) отношения приращения функции к приращению аргумента при условии, что последнее стремится к нулю.

Наиболее употребительны следующие обозначения производной:

Таким образом,

Нахождение производной принято называть дифференцированием . Вводится определœение дифференцируемой функции : Функция f, имеющая производную в каждой точке некоторого промежутка, принято называть дифференцируемой на данном промежутке.

Пусть в некоторой окрестноститочкиопределœена функцияПроизводной функции принято называть такое число , что функцию в окрестности U (x 0) можно представить в виде

f (x 0 + h ) = f (x 0) + Ah + o (h )

если существует.

Определœение производной функции в точке .

Пусть функция f(x) определœена на промежутке (a; b) , и - точки этого промежутка.

Определœение . Производной функции f(x) в точке принято называть предел отношения приращения функции к приращению аргумента при . Обозначается .

Когда последний предел принимает конкретное конечное значение, то говорят о существовании конечной производной в точке . В случае если предел бесконечен, то говорят, что производная бесконечна в данной точке . В случае если же предел не существует, то и производная функции в этой точке не существует .

Функцию f(x) называют дифференцируемой в точке , когда она имеет в ней конечную производную.

В случае если функция f(x) дифференцируема в каждой точке некоторого промежутка (a; b) , то функцию называют дифференцируемой на этом промежутке. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, любой точке x из промежутка (a; b) можно поставить в соответствие значение производной функции в этой точке , то есть, мы имеем возможность определить новую функцию , которую называют производной функции f(x) на интервале (a; b) .

Операция нахождения производной принято называть дифференцированием.