Траектория путь перемещение формулы. Траектория

При помощи данного видеоурока вы сможете самостоятельно изучить тему «Перемещение», которая входит в школьный курс физики за 9 класс. Из этой лекции учащиеся смогут углубить знания о движении. Учитель напомнит о первой характеристике движения - пройденном пути, а затем перейдет к определению перемещения в физике.

Первой характеристикой движения, введенной нами ранее, был пройденный путь. Напомним, что обозначается он буквой S (иногда встречается обозначение L) и измеряется в СИ в метрах.

Пройденный путь – это скалярная величина, т. е. величина, которая характеризуется только числовым значением. А значит, предсказать, где тело окажется в нужный нам момент времени, мы не сможем. Можно говорить только о пройденном телом общем расстоянии (рис. 1).

Рис. 1. Зная только пройденный путь, нельзя определить положение тела в произвольный момент времени

Чтобы охарактеризовать местоположение тела в произвольный момент, вводится величина, которая называется перемещение. Перемещение – векторная величина, т. е. это величина, которая характеризуется не только числовым значением, но и направлением.

Перемещение обозначается так же, как пройденный путь, буквой S , но, в отличие от пройденного пути, над буквой ставится стрелочка, подчеркивая тем самым, что это величина векторная: .

То, что перемещение и пройденный путь обозначаются одной буквой, вводит в некоторое заблуждение, но мы должны четко понимать разницу между пройденным путем и перемещением. Еще раз отметим, что иногда путь обозначается L. Это позволяет избежать путаницы.

Определение

Перемещение – это вектор (направленный отрезок прямой), который соединяет начальную точку движения тела с его конечной точкой (рис. 2).

Рис. 2. Перемещение – векторная величина

Напомним, что пройденный путь – это длина траектории . А значит, путь и перемещение – это совершенно разные физические величины, хотя иногда случаются ситуации, когда они численно совпадают.

Рис. 3. Путь и модуль перемещения совпадают

На рис. 3 рассмотрен самый простой случай, когда тело движется вдоль прямой (оси Ох ). Тело начинает свое движение из точки 0 и попадает в точку А. В этом случае мы можем говорить о том, что модуль перемещения равен пройденному пути: .

Примером такого движения может служить перелет самолета (например, из Санкт-Петербурга в Москву). Если движение было строго прямолинейным, то тогда модуль перемещения будет равен пройденному пути.

Рис. 4. Величина пути больше модуля перемещения

На рис. 4 тело движется вдоль кривой линии, т. е. движение криволинейное (из точки А в точку В). Из рисунка видно, что модуль перемещения (прямая линия) будет меньше пройденного пути, т. е. длина пройденного пути и длина вектора перемещения не равны.

Рис. 5. Замкнутая траектория

На рис. 5 тело движется по замкнутой кривой. Выходит из точки А и в эту же точку возвращается. Модуль перемещения равен , а пройденный путь - это длина всей кривой, .

Данный случай можно характеризовать следующим примером. Ученик вышел из дома утром, пошел в школу, целый день отзанимался, кроме этого, побывал еще в нескольких местах (магазин, спортзал, библиотека) и вернулся домой. Обратите внимание: в итоге ученик оказался дома, а значит, его перемещение равно 0 (рис. 6).

Рис. 6. Перемещение ученика равно нулю

Когда речь идет о перемещении, важно помнить, что перемещение зависит от системы отсчета, в которой рассматривается движение.


Рис. 7. Определение модуля перемещения тела

Тело движется в плоскости XOY . Точка А - начальное положение тела. Ее координаты . Тело перемещается в точку . Вектор - это перемещение тела: .

Рассчитать модуль перемещения можно как гипотенузу прямоугольного треугольника , используя теорему Пифагора: . Для нахождения же вектора перемещения необходимо найти угол между осью Ох и вектором перемещения.

Мы можем выбрать систему произвольно, то есть направить координатные оси так, как нам удобно, главное - проекции всех векторов в дальнейшем рассматривать в одной и той же выбранной системе координат.

Заключение

В заключение можно отметить, что мы познакомились с важной величиной - перемещением. Еще раз обратите внимание на то, что перемещение и путь могут совпадать только в случае прямолинейного движения, без смены направления такого движения.

Список литературы

  1. Кикоин И.К., Кикоин А.К. Физика: учебник для 9 класса средней школы. - М.: Просвещение.
  2. Перышкин А.В., Гутник Е.М., Физика. 9 кл.: учебник для общеобразоват. учреждений/А. В. Перышкин, Е. М. Гутник. - 14-е изд., стереотип. - М.: Дрофа, 2009. - 300.
  3. Соколович Ю.А., Богданова Г.С . Физика: Справочник с примерами решения задач. - 2-е издание передел. - X .: Веста: Издательство «Ранок», 2005. - 464 с.
  1. Интернет-портал «vip8082p.vip8081p.beget.tech» ()
  2. Интернет-портал «foxford.ru» ()

Домашнее задание

  1. Что такое путь и перемещение? Чем они отличаются?
  2. Мотоциклист выехал из гаража и направился на север. Проехал 5 км, затем повернул на запад и проехал также 5 км. На каком расстоянии от гаража он будет находиться?
  3. Минутная стрелка прошла полный круг. Определите перемещение и пройденный путь для точки, которая находится на конце стрелки (радиус часов - 10 см).

Траектория - это линия, которую тело описывает при движении.

Траектория пчелы

Путь - это длина траектории. То есть длина той, возможно, кривой линии, по которой двигалось тело. Путь скалярная величина ! Перемещение - векторная величина ! Это вектор, который проведен из начальной точки отправления тела в конечную точку. Имеет численное значение, равное длине вектора. Путь и перемещение - это существенно разные физические величины.

Обозначения пути и перемещения вы можете встретить разное:

Сумма перемещений

Пусть в течение промежутка времени t 1 тело совершило перемещение s 1 , а в течение следующего промежутка времени t 2 - перемещение s 2 . Тогда за все время движения перемещение s 3 - это векторная сумма

Равномерное движение

Движение с постоянной по модулю и по направлению скоростью. Что это значит? Рассмотрим движение машины. Если она едет по прямой линии, на спидометре одно и то же значение скорости (модуль скорости), то это движение равномерное. Стоит машине изменить направление (повернуть), это будет означать, что вектор скорости изменил свое направление. Вектор скорости направлен туда же, куда едет машина. Такое движение нельзя считать равномерным, несмотря на то, что спидометр показывает одно и то же число.

Направление вектора скорости всегда совпадает с направлением движения тела

Можно ли движение на карусели считать равномерным (если не происходит ускорение или торможение)? Нельзя, постоянно изменяется направление движения, а значит и вектор скорости. Из рассуждений можно сделать вывод, что равномерное движение - это всегда движение по прямой линии! А значит при равномерном движении путь и перемещение одинаковы (поясни почему).

Нетрудно представить, что при равномерном движении за любые равные промежутки времени тело будет перемещаться на одинаковое расстояние.

Положение материальной точки определяется по отношению к какому-либо другому, произвольно выбранному телу, называемому телом отсчета . С ним связывается система отсчета – совокупность системы координат и часов, связанных с телом отсчета.

В декартовой системе координат положение точки А в данный момент времени по отношению к этой системе характеризуется тремя координатами x, y и z или радиусом-вектором r вектор, проведенный из начала системы координат в данную точку. При движении материальной точки ее координаты с течением времени изменяются.r =r (t) или x=x(t), y=y(t), z=z(t) – кинематические уравнения материальной точки .

Основная задача механики – зная состояние системы в некоторый начальный момент времени t 0 , а также законы, управляющие движением, определить состояния системы во все последующие моменты времени t.

Траектория движения материальной точки – линия, описываемая этой точкой в пространстве. В зависимости от формы траектории различают прямолинейное и криволинейное движение точки. Если траектория точки – плоская кривая, т.е. целиком лежит в одной плоскости, то движение точки называют плоским.

Длина участка траектории АВ, пройденного материальной точкой с момента начала отсчета времени, называется длиной пути Δs и является скалярной функцией времени: Δs=Δs(t). Единица измерения – метр (м)– длина пути, проходимого светом в вакууме за 1/299792458 с.

IV . Векторный способ задания движения

Радиус-вектор r вектор, проведенный из начала системы координат в данную точку. Вектор Δr =r -r 0 , проведенный из начального положения движущейся точки в положение ее в данный момент времени называется перемещением (приращение радиуса-вектора точки за рассматриваемый промежуток времени).

Вектором средней скорости < v > называется отношение приращения Δ r радиуса-вектора точки к промежутку времени Δt: (1). Направление средней скорости совпадает с направлением Δr .При неограниченном уменьшении Δt средняя скорость стремиться к предельному значению, которое называется мгновенной скоростью v . Мгновенная скорость это скорость тела в данный момент времени и в данной точке траектории: (2). Мгновенная скоростьv есть векторная величина, равная первой производной радиуса-вектора движущейся точки по времени.

Для характеристики быстроты изменения скорости v точки в механике вводится векторная физическая величина, называемая ускорением.

Средним ускорением неравномерного движения в интервале от t до t+Δt называется векторная величина, равная отношению изменения скорости Δv к интервалу времени Δt:

Мгновенным ускорением а материальной точки в момент времени t будет предел среднего ускорения:(4). Ускорениеа есть векторная величина, равная первой производной скорости по времени.

V. Координатный способ задания движения

Положение точки М можно характеризовать радиус – вектором r или тремя координатами x, y и z: М(x,y,z). Радиус - вектор можно представить в виде суммы трех векторов, направленных вдоль осей координат: (5).

Из определения скорости (6). Сравнивая (5) и (6) имеем:(7). Учитывая (7) формулу (6) можно записать(8). Модуль скорости можно найти:(9).

Аналогично для вектора ускорения:

(10),

(11),

    Естественный способ задания движения (описание движения с помощью параметров траектории)

Движение описывается формулой s=s(t). Каждая точка траектории характеризуется своим значением s. Радиус – вектор является функцией от s и траектория может быть задана уравнением r =r (s). Тогда r =r (t) можно представить как сложную функцию r . Продифференцируем (14). Величина Δs – расстояние между двумя точками вдоль траектории, |Δr | - расстояние между ними по прямой линии. По мере сближения точек разница уменьшается. , гдеτ – единичный вектор, касательный к траектории. , тогда (13) имеет видv =τ v (15). Следовательно скорость направлена по касательной к траектории.

Ускорение может быть направлено под любым углом к касательной к траектории движения. Из определению ускорения (16). Еслиτ - касательный к траектории, то - вектор перпендикулярный этой касательной, т.е. направлен по нормали. Единичный вектор, в направлении нормали обозначаетсяn . Значение вектора равно 1/R, где R – радиус кривизны траектории.

Точка, отстоящая от траектории на расстоянии и R в направлении нормали n , называется центром кривизны траектории. Тогда (17). Учитывая вышеизложенное формулу (16) можно записать:(18).

Полное ускорение состоит из двух взаимно перпендикулярных векторов: , направленного вдоль траектории движения и называемого тангенциальным, и ускорения, направленного перпендикулярно траектории по нормали, т.е. к центру кривизны траектории и называемого нормальным.

Абсолютное значение полного ускорения найдем: (19).

Лекция 2 Движение материальной точки по окружности. Угловое перемещение, угловая скорость, угловое ускорение. Связь между линейными и угловыми кинематическими величинами. Векторы угловой скорости и ускорения.

План лекции

    Кинематика вращательного движения

При вращательном движении мерой перемещения всего тела за малый промежуток времени dt служит вектор элементарного поворота тела. Элементарные повороты (обозначаются или) можно рассматривать какпсевдовекторы (как бы).

Угловое перемещение - векторная величина, модуль которой равен углу поворота, а направление совпадает с направлением поступа­тельного движения правого винта (направленный вдоль оси вращения так, что если смотреть с его конца, то вращение тела кажется происходящим против часовой стрелки). Единица углового перемещения – рад.

Быстроту изменения углового перемещения с течением времени характеризует угловая скорость ω . Угловая скорость твердого тела – векторная физическая величина, характеризующая быстроту изменения углового перемещения тела с течением времени и равная угловому перемещению, совершаемому телом за единицу времени:

Направлен вектор ω вдоль оси вращения в ту же сторону, что и (по правилу правого винта). Единица угловой скорости- рад/с

Быстроту изменения угловой скорости с течением времени характеризует угловое ускорение ε

(2).

Направлен вектор ε вдоль оси вращения в ту же сторону, что и dω, т.е. при ускоренном вращении , при замедленном.

Единица углового ускорения – рад/с 2 .

За время dt произвольная точка твердого тела А переместиться на dr , пройдя путь ds . Из рисунка видно, что dr равно векторному произведению углового перемещения на радиус – вектор точки r : dr =[ · r ] (3).

Линейная скорость точки связана с угловой скоростью и радиусом траектории соотношением:

В векторном виде формулу для линейной скорости можно написать как векторное произведение: (4)

По определению векторного произведения его модуль равен , где - угол между векторами и, а направление совпадает с направлением поступательного движения правого винта при его вращении от к .

Продифференцируем (4) по времени:

Учитывая, что - линейное ускорение,- угловое ускорение, а- линейная скорость, получим:

Первый вектор в правой части направлен по касательной к траектории точки. Он характеризует изменение модуля линейной скорости. Следовательно, этот вектор – касательное ускорение точки: a τ =[ ε · r ] (7). Модуль касательного ускорения равен a τ = ε · r . Второй вектор в (6) направлен к центру окружности и характеризует изменение направления линейной скорости. Этот вектор – нормальное ускорение точки:a n =[ ω · v ] (8). Модуль его равен a n =ω·v или учитывая, что v = ω· r , a n = ω 2 · r = v 2 / r (9).

    Частные случаи вращательного движения

При равномерном вращении: , следовательно .

Равномерное вращение можно характеризовать периодом вращения Т - временем, за которое точка совершает один полный оборот,

Частота вращения - число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени: (11)

Единица частоты вращения - герц (Гц).

При равноускоренном вращательном движении :

Лекция 3 Первый закон Ньютона. Сила. Принцип независимости действующих сил. Результирующая сила. Масса. Второй закон ньютона. Импульс. Закон сохранения импульса. Третий закон Ньютона. Момент импульса материальной точки, момент силы, момент инерции.

План лекции

    Первый закон Ньютона

    Второй закон Ньютона

    Третий закон Ньютона

    Момент импульса материальной точки, момент силы, момент инерции

    Первый закон Ньютона. Масса. Сила

Первый закон Ньютона: Существуют такие системы отсчета, относительно которых тела движутся прямолинейно и равномерно или покоятся, если на них не действуют силы или действие сил скомпенсировано.

Первый закон Ньютона выполняется только в инерциальной системе отсчёта и утверждает существование инерциальной системе отсчёта.

Инерция – это свойство тел стремиться сохранять скорость неизменной.

Инертностью называют свойство тел препятствовать изменению скорости под действием приложенной силы.

Масса тела – это физическая величина являющаяся количественной мерой инертности, это скалярная аддитивная величина. Аддитивность массы состоит в том, что масса системы тел всегда равна сумме масс каждого тела в отдельности. Масса – основная единица системы «СИ».

Одной из форм взаимодействия является механическое взаимодействие . Механическое взаимодействие вызывает деформацию тел, а также изменение их скорости.

Сила – это векторная величина являющаяся мерой механического воздействия на тело со стороны других тел, или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры (деформируется). Сила характеризуется модулем, направлением действия, точкой приложения к телу.

С понятием пути вы уже неоднократно сталкивались. Познакомимся теперь с новым для вас понятием – перемещением , которое более информативно и полезно в физике, чем понятие пути.

Допустим, из пункта А в пункт В на другом берегу реки нужно переправить груз. Это можно сделать на автомобиле через мост, на катере по реке или на вертолёте. В каждом из этих случаев путь, пройденный грузом, будет разным, но перемещение будет неизменным: из точки А в точку В.

Перемещением называют вектор, проведённый из начального положения тела в его конечное положение. Вектор перемещения показывает расстояние, на которое переместилось тело, и направление перемещения. Обратите внимание, что направление перемещения и направление движения – два разных понятия. Поясним это.

Рассмотрим, например, траекторию движения автомобиля от пункта А до середины моста. Обозначим промежуточные точки – В1, В2, В3 (см. рисунок). Вы видите, что на отрезке АВ1 автомобиль ехал на северо-восток (первая синяя стрелка), на отрезке В1В2 – на юго-восток (вторая синяя стрелка), а на отрезке В2В3 – на север (третья синяя стрелка). Итак, в момент проезда моста (точки В3) направление движения характеризовалось синим вектором В2В3, а направление перемещения – красным вектором АВ3.

Итак, перемещение тела – векторная величина , то есть имеющая пространственное направление и числовое значение (модуль). В отличие от перемещения, путь – скалярная величина , то есть имеющая только числовое значение (и не имеющая пространственного направления). Путь обозначают символом l , перемещение обозначают символом (важно: со стрелочкой). Символом s без стрелочки обозначают модуль перемещения. Примечание: изображение любого вектора на чертеже (в виде стрелки) или упоминание его в тексте (в виде слова) делает необязательным наличие стрелочки над обозначением.

Почему в физике не ограничились понятием пути, а ввели более сложное (векторное) понятие перемещения? Зная модуль и направление перемещения, всегда можно сказать, где будет находиться тело (по отношению к своему начальному положению). Зная путь, положение тела определить нельзя. Например, зная лишь, что турист прошёл путь 7 км, мы ничего не можем сказать о том, где он сейчас находится.

Задача. В походе по равнине турист прошёл на север 3 км, затем повернул на восток и прошел ещё 4 км. На каком расстоянии от начальной точки маршрута он оказался? Начертите его перемещение.

Решение 1 – с измерениями линейкой и транспортиром.

Перемещение – это вектор, соединяющий начальное и конечное положения тела. Начертим его на клетчатой бумаге в масштабе: 1 км – 1 см (чертёж справа). Измерив линейкой модуль построенного вектора, получим: 5 см. Согласно выбранному нами масштабу, модуль перемещения туриста равен 5 км. Но напомним: знать вектор – значит знать его модуль и направление. Поэтому, применив транспортир, определим: направление перемещения туриста составляет 53° с направлением на север (проверьте сами).

Решение 2 – без использования линейки и транспортира.

Поскольку угол между перемещениями туриста на север и на восток составляет 90°, применим теорему Пифагора и найдём длину гипотенузы, так как она одновременно является и модулем перемещения туриста:

Как видите, это значение совпадает с полученным в первом решении. Теперь определим угол α между перемещением (гипотенузой) и направлением на север (прилежащим катетом треугольника):

Итак, задача решена двумя способами с совпадающими ответами.

Смещение, сдвиг, передвижение, миграция, движение, перестановка, перегруппировка, перенос, транспортировка, переход, переезд, передача, путешествие; сдвигание, подвигание, телекинез, эпейрофорез, перебазирование, перекатывание, переваливание,… … Словарь синонимов

ПЕРЕМЕЩЕНИЕ, перемещения, ср. (книжн.). 1. Действие по гл. переместить перемещать. Перемещение по службе. 2. Действие и состояние по гл. переместиться перемещаться. Перемещение пластов земной коры. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

В механике, вектор, соединяющий положения движущейся точки в начале и в конце нек рого промежутка времени; направлен вектор П. вдоль хорды траектории точки. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М.… … Физическая энциклопедия

ПЕРЕМЕСТИТЬ, ещу, естишь; ещённый (ён, ена); сов., кого что. Поместить, перевести в другое место. П. декорации. П. бригаду на другой участок. Перемещённые лица (лица, насильственно переселённые из своей страны). Толковый словарь Ожегова. С.И.… … Толковый словарь Ожегова

- (relocation) Переезд офиса, предприятия и т.п. на другое место. Часто его причиной является слияние, поглощение. Иногда сотрудники получают пособие на переезд (relocation allowance), которое должно стимулировать их остаться на службе в данной… … Словарь бизнес-терминов

перемещение - — Тематики электросвязь, основные понятия EN redeployment … Справочник технического переводчика

Перемещение, - Перемещение, мм, величина изменения положения какой либо точки элемента оконного блока (как правило, импоста коробки или вертикальных брусков створок) в направлении нормали к плоскости изделия под воздействием ветровой нагрузки. Источник: ГОСТ… …

перемещение - Миграция материала в виде раствора или взвеси из одного почвенного горизонта в другой … Словарь по географии

перемещение - 3.14 перемещение (transfer) (в отношении места хранения): Изменение места хранения документа. Источник: ГОСТ Р ИСО 15489 1 2007: Система стандартов по информации … Словарь-справочник терминов нормативно-технической документации

перемещение - ▲ изменение положение, в пространстве < > неподвижный перемещение изменение положения в пространстве; преобразование фигуры, сохраняющее расстояния между точками фигуры; движение в другое место. передвижение. поступательное движение… … Идеографический словарь русского языка

Книги

  • ГЭСНм 81-03-40-2001. Часть 40. Дополнительное перемещение оборудования и материальных ресурсов , . Государственные сметные нормативы. Государственные элементные сметные нормы на монтаж оборудования (далее - ГЭСНм) предназначены для определения потребности в ресурсах (затрат труда рабочих,…
  • Перемещение людей и грузов в околоземном пространстве посредством технической феррографитации , Р. А. Сизов. Настоящая публикация является вторым прикладным изданием к книгам Р. А. Сизова "Материя, Антиматерия и Энергосреда - Физическая Триада реального Мира", в котором на основе обнаруженного…