Презентация низкочастотные волны источники свойства применение. Презентация к уроку на тему «Шкала электромагнитных волн





















































































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

«Кругом нас, в нас самих, всюду и везде, вечно сменяясь, совпадая и сталкиваясь, идут излучения разной длины волны… Лик Земли ими меняется, ими в значительной мере лепится»
В.И.Вернадский

Обучающие цели урока:

  1. Усвоить следующие элементы неполного опыта учащихся в рамках отдельного урока: низкочастотное излучение, радиоволны, инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение, гамма-лучи; их применение в жизнедеятельности человека.
  2. Систематизировать и обобщить знания об электромагнитных волнах.

Развивающие цели урока:

  1. продолжить формирование научного мировоззрения на основе знаний об электромагнитных волнах.
  2. показать комплексное решение проблем на основе знаний физики и информатики.
  3. способствовать развитию аналитико-синтетического и образного мышления, для чего побуждать учащихся к осмыслению и нахождению причинно-следственных связей.
  4. формировать и развивать ключевые компетенции: информационную, организационную, самоорганизационную, коммуникационную.
  5. При работе в паре и в группе сформировать такие важные качества и умения школьника, как:
    желание участвовать в совместной деятельности, уверенность в успехе, ощущение положительных эмоций от совместной деятельности;
    умение презентовать себя и свою работу;
    умение строить деловые отношения в совместной деятельности на уроке (принимать цель совместной деятельности и сопроводительные указания к ней, разделять обязанности, согласовывать способы достижения результа­та предложенной цели);
    анализировать и оценивать полученный опыт взаимодействия.

Воспитательные цели урока:

  1. развивать вкус, акцентируя внимание на оригинальном дизайне презентации с эффектами анимации.
  2. воспитывать культуру восприятия теоретического материала с помощью компьютера для получения знаний об истории открытия, свойствах и применении электромагнитных волн
  3. воспитание чувства гордости за свою Родину, за отечественных ученых, которые работали в области электромагнитных волн, применили их в жизнедеятельности человека.

Оборудование:

Ноутбук, проектор, электронная библиотека «Просвещение» диск 1 (10-11класс), материалы из интернета.

План урока:

1. Вступительное слово учителя.

2. Изучение нового материала.

  1. Низкочастотное электромагнитное излучение: история открытия, источники и приемники, свойства и применение.
  2. Радиоволны: история открытия, источники и приемники, свойства и применение.
  3. Инфракрасное электромагнитное излучение: история открытия, источники и приемники, свойства и применение.
  4. Видимое электромагнитное излучение: история открытия, источники и приемники, свойства и применение.
  5. Ультрафиолетовое электромагнитное излучение: история открытия, источники и приемники, свойства и применение.
  6. Рентгеновское излучение: история открытия, источники и приемники, свойства и применение.
  7. Гамма - излучение: история открытия, источники и приемники, свойства и применение.

Каждая группа дома готовила таблицу:

Историк изучал и записывал в свою таблицу историю открытия излучения,

Конструктор изучал источники и приемники различных типов излучений,

Теоретик-эрудит изучал характерные свойстваэлектромагнитных волн,

Практик изучал практическое применение электромагнитных излучений в различных сферах деятельности человека.

Каждый учащийся к уроку чертил 7 таблиц, одна из которых дома заполнялась им.

Учитель: Шкала ЭМ излучений имеет два раздела:

  • 1 раздел – излучение вибраторов;
  • 2 раздел – излучение молекул, атомов, ядер.

1 раздел делится на 2 части (диапазона): низкочастотное излучение и радиоволны.

2 раздел содержит 5 диапазонов: инфракрасное излучение, видимое излучение, ультрафиолетовое излучение, рентгеновское излучение и гамма-лучи.

Мы начинаем изучение с низкочастотных электромагнитных волн, координатору группы 1 предоставляется слово.

Координатор 1:

Низкочастотное электромагнитное излучение - это электромагнитные волны с длиной волны 107 - 105 м

,

История открытия:

Впервые обратил внимание на низкочастотные

электромагнитные волны советский физик Вологдин В.П., создатель современной высокочастотной электротехники. Он обнаружил, что при работе индукционных генераторов повышенной частоты возникали электромагнитные волны длиной от 500 метров до 30 км.


Вологдин В.П.

Источники и приемники

Электрические колебания низкой частоты создаются генераторами в электрических сетях частотой 50 Гц, магнитными генераторами повышенной частоты до 200 Гц, а также в телефонных сетях частотой 5000 Гц.

Электромагнитные волны более 10 км называют низкочастотными волнами. С помощью колебательного контура можно получить электромагнитные волны (радиоволны). Это доказывает, что резкой границы между НЧ и РВ нет. НЧ волны генерируются электрическими машинами и колебательными контурами.

Свойства

Отражение, преломление, поглощение, интерференция, дифракция, поперечность (волны с определённым направлением колебаний Е и В называются поляризованными),

Быстрое затухание;

В веществе, которое пронизывает НЧ волны, индуцируются вихревые токи, вызывая глубокое прогревание этого вещества.

Применение

Низкочастотное электромагнитное поле индуцирует вихревые токи, вызывая глубокое нагревание – это индуктотермия. НЧ используется на электростанциях, в двигателях, в медицине.

Учитель: Расскажите о низкочастотном электромагнитном излучении.

Ученики рассказывают.

Учитель: Следующий диапазон – радиоволны, слово предоставляется координатору 2 .

Координатор 2:

Радиоволны

Радиоволны - это электромагнитные волны с длиной волны от нескольких км до нескольких мм и частотой от 105 -1012 Гц.

История открытия

О радиоволнах впервые в своих работах в 1868 году рассказал Джеймс Максвелл. Он предложил уравнение, которое описывает световые и радиоволны, как волны электромагнетизма.

В 1896 году Генрих Герц экспериментально подтвердил

теорию Максвелла, получив в своей лаборатории радиоволны длиной в несколько десятков сантиметров.

В 1895году 7 мая А.С.Попов доложил Русскому физико-химическому обществу об изобретении прибора, могущего улавливать и регистрировать электрические разряды.

24 марта 1896года, используя эти волны, он передал на расстояние 250м первую в мире радиограмму из двух слов «Генрих Герц».

В 1924г. А.А. Глаголева-Аркадьева с помощью созданного ею массового излучателя получила еще более короткие ЭМ волны, заходящие в область ИКИ излучения.

М.А.Левитская, профессор Воронежского Государственного Университета в качестве излучающих вибраторов брала металлические шарики и маленькие проволочки, наклеенные на стекла. Ею получены ЭМ волны с длиной волны 30мкм.

М.В. Шулейкин разработал математический анализ процессов радиосвязи.

Б.А.Введенский разработал теорию огибания радиоволнами земли.

О.В.Лосев открыл свойство кристаллического детектора генерировать незатухающие колебания.

Источники и приёмники

РВ излучаются вибраторами (антеннами, соединёнными с ламповыми или полупроводниковыми генераторами. В зависимости от назначения генераторы и вибраторы могут иметь разную конструкцию, но всегда антенна преобразует подводимые к ней ЭМ волны.

В природе существуют естественные источники РВ во всех частотных диапазонах. Это звёзды, Солнце, галактики, метагалактики.

РВ генерируются и при некоторых процессах, происходящих в земной атмосфере, например при разряде молний.

Принимаются РВ также антеннами, которые преобразуют падающие на них ЭМ волны, в электромагнитные колебания, воздействующие затем на приёмник (телевизор, радиоприёмник, ЭВМ и др.)

Свойства радиоволн:

Отражение, преломление, интерференция, дифракция, поляризация, поглощение, короткие волны хорошо отражаются от ионосферы, ультракороткие проникают через ионосферу.

Влияние на здоровье человека

Как отмечают медики, наиболее чувствительными системами организма человека к электромагнитным излучениям являются: нервная, иммунная, эндокринная и половая.

Исследование воздействия радиоизлучения от мобильных телефонов на людей дает первые неутешительные результаты.

Еще в начале 90-х годов американский ученый Кларк обратила внимание, что здоровье улучшают …. радиоволны!

В медицине существует даже направление - магнитотерапия, а некоторые ученые, например, доктор медицинских наук, профессор В.А. Иванченко, использует работающие на этом принципе свои медицинские приборы в лечебных целях.

Кажется невероятным, но найдены частоты, губительные для сотен микроорганизмов и простейших, а на определенных частотах идет восстановление организма стоит на несколько минут включить прибор и, в зависимости от определенной частоты, органы, отмеченные как больные, восстанавливают свои функции, приходят в диапазон нормы.

Защита от негативного воздействия

Далеко не последнюю роль могут играть средства индивидуальной защиты на основе текстильных материалов.
Многие зарубежные фирмы создали ткани, позволяющие эффективно защищать организм человека от большинства видов электромагнитного излучения

Применение радиоволн

Телескоп – гигант позволяет вести радиоизмерения.

Комплекс «Спектр-М» позволяет анализировать в какой угодно области спектра любые образцы: твердые, жидкие, газообразные.

Уникальный микроэндоскоп повышает точность диагноза.

Радиотелескоп субмиллиметрового диапазона регистрирует излучение из части Вселенной, которая закрыта слоем космической пыли.

Компактная камера. Преимущество: возможность стирать снимки.

Радиотехнические методы и устройства применяются в автоматике, вычислительной технике, астрономии, физике, химии, биологии, медицине и т. д.

Микроволновое излучение используют для быстрого приготовления пищи в СВЧ-печах.

Воронеж – город радиоэлектроники. Магнитофоны и телевизоры, радиоприемники и радиостанции, телефон и телеграф, радио и телевидение.

Учитель: Расскажите о радиоволнах. Сравните свойства низкочастотного излучения со свойствами радиоволн.

Ученики рассказывают.Короткие волны хорошо отражаются от ионосферы. Ультракороткие проникают через ионосферу.



Низкочастотные колебания

Длина волны (м)

10 13 - 10 5

Частота (Гц)

3 · 10 -3 - 3 · 10 5

Источник

Реостатный альтернатор, динамомашина,

Вибратор Герца,

Генераторы в электрических сетях (50 Гц)

Машинные генераторы повышенной (промышленной) частоты (200 Гц)

Телефонные сети (5000Гц)

Звуковые генераторы (микрофоны, громкоговорители)

Приемник

Электрические приборы и двигатели

История открытия

Оливер Лодж (1893 г.), Никола Тесла (1983)

Применение

Кино, радиовещание (микрофоны, громкоговорители)


Радиоволны

Длина волны(м)

10 5 - 10 -3

Частота(Гц)

3 · 10 5 - 3 · 10 11

Источник

Колебательный контур

Макроскопические вибраторы

Звёзды, галактики, метагалактики

Приемник

Искры в зазоре приемного вибратора (вибратор Герца)

Свечение газоразрядной трубки, когерера

История открытия

Б. Феддерсен (1862 г.), Г. Герц (1887 г.), А.С. Попов, А.Н. Лебедев

Применение

Сверхдлинные - Радионавигация, радиотелеграфная связь, передача метеосводок

Длинные – Радиотелеграфная и радиотелефонная связь, радиовещание, радионавигация

Средние - Радиотелеграфия и радиотелефонная связь радиовещание, радионавигация

Короткие - радиолюбительская связь

УКВ - космическая радио связь

ДМВ - телевидение, радиолокация, радиорелейная связь, сотовая телефонная связь

СМВ- радиолокация, радиорелейная связь, астронавигация, спутниковое телевидение

ММВ - радиолокация


Инфракрасное излучение

Длина волны(м)

2 · 10 -3 - 7,6∙10 -7

Частота (Гц)

3∙10 11 - 3,85∙10 14

Источник

Любое нагретое тело: свеча, печь, батарея водяного отопления, электрическая лампа накаливания

Человек излучает электромагнитные волны длиной 9 · 10 -6 м

Приемник

Термоэлементы, болометры, фотоэлементы, фоторезисторы, фотопленки

История открытия

У. Гершель (1800 г.), Г. Рубенс и Э. Никольс (1896 г.),

Применение

В криминалистике, фотографирование земных объектов в тумане и темноте, бинокль и прицелы для стрельбы в темноте, прогревание тканей живого организма (в медицине), сушка древесины и окрашенных кузовов автомобилей, сигнализация при охране помещений, инфракрасный телескоп,


Видимое излучение

Длина волны(м)

6,7∙10 -7 - 3,8 ∙10 -7

Частота(Гц)

4∙10 14 - 8 ∙10 14

Источник

Солнце, лампа накаливания, огонь

Приемник

Глаз, фотопластинка, фотоэлементы, термоэлементы

История открытия

М. Меллони

Применение

Зрение

Биологическая жизнь


Ультрафиолетовое излучение

Длина волны(м)

3,8 ∙10 -7 - 3∙10 -9

Частота(Гц)

8 ∙ 10 14 - 3 · 10 16

Источник

Входят в состав солнечного света

Газоразрядные лампы с трубкой из кварца

Излучаются всеми твердыми телами, у которых температура больше 1000 ° С, светящиеся (кроме ртути)

Приемник

Фотоэлементы,

Фотоумножители,

Люминесцентные вещества

История открытия

Иоганн Риттер, Лаймен

Применение

Промышленная электроника и автоматика,

Люминисценнтные лампы,

Текстильное производство

Стерилизация воздуха

Медицина, косметология


Рентгеновское излучение

Длина волны(м)

10 -12 - 10 -8

Частота(Гц)

3∙10 16 - 3 · 10 20

Источник

Электронная рентгеновская трубка (напряжение на аноде – до 100 кВ, катод – накаливаемая нить, излучение – кванты большой энергии)

Солнечная корона

Приемник

Фотопленка,

Свечение некоторых кристаллов

История открытия

В. Рентген, Р. Милликен

Применение

Диагностика и лечение заболеваний (в медицине), Дефектоскопия (контроль внутренних структур, сварных швов)


Гамма - излучение

Длина волны(м)

3,8 · 10 -7 - 3∙10 -9

Частота(Гц)

8∙10 14 - 10 17

Энергия(ЭВ)

9,03 10 3 – 1, 24 10 16 Эв

Источник

Радиоактивные атомные ядра, ядерные реакции, процессы превращения вещества в излучение

Приемник

счетчики

История открытия

Поль Виллар (1900 г.)

Применение

Дефектоскопия

Контроль технологических процессов

Исследование ядерных процессов

Терапия и диагностика в медицине



ОБЩИЕ СВОЙСТВА ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ

физическая природа

всех излучений одинакова

все излучения распространяются

в вакууме с одинаковой скоростью,

равной скорости света

все излучения обнаруживают

общие волновые свойства

поляризация

отражение

преломление

дифракция

интерференция


ВЫВОД:

Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Шкала электромагнитных волн. Виды, свойства и применение.

Из истории открытий… 1831 – Майкл Фарадей установил, что любое изменение магнитного поля вызывает появление в окружающем пространстве индукционного (вихревого) электрического поля.

1864 – Джеймс - Клерк Максвелл высказал гипотезу о существовании электромагнитных волн, способных распространятся в вакууме и диэлектриках. Однажды начавшийся в некоторой точке процесс изменения электромагнитного поля будет непрерывно захватывать новые области пространства. Это и есть электромагнитная волна.

1887 - Генрих Герц опубликовал работу "О весьма быстрых электрических колебаниях", где описал свою экспериментальную установку - вибратор и резонатор, - и свои опыты. При электрических колебаниях в вибраторе в пространстве вокруг него возникает вихревое переменное электромагнитное поле, которое регистрируется резонатором.

Электромагнитные волны - электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью.

Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства.

Низкочастотные колебания Длина волны(м) 10 13 - 10 5 Частота(Гц) 3· 10 -3 - 3 ·10 3 Энергия(ЭВ) 1 – 1,24 ·10 -10 Источник Реостатный альтернатор, динамомашина, Вибратор Герца, Генераторы в электрических сетях (50 Гц) Машинные генераторы повышенной (промышленной) частоты (200 Гц) Телефонные сети (5000Гц) Звуковые генераторы (микрофоны, громкоговорители) Приемник Электрические приборы и двигатели История открытия Лодж (1893 г.), Тесла (1983) Применение Кино, радиовещание(микрофоны, громкоговорители)

Радиоволны Получаются с помощью колебательных контуров и макроскопических вибраторов. Свойства: радиоволны различных частот и с различными длинами волн по-разному поглощаются и отражаются средами. проявляют свойства дифракции и интерференции. Длины волн охватывают область от 1 мкм до 50 км

Применение: Радиосвязь, телевидение, радиолокация.

Инфракрасное излучение (тепловое) Излучается атомами или молекулами вещества. Инфракрасное излучение дают все тела при любой температуре. Свойства: проходит через некоторые непрозрачные тела, а также сквозь дождь, дымку, снег, туман; производит химическое действие (фототгластинки); поглощаясь веществом, нагревает его; невидимо; способно к явлениям интерференции и дифракции; регистрируется тепловыми методами.

Применение: Прибор ночного видения, криминалистика, физиотерапия, в промышленности для сушки изделий, древесины, фруктов

Видимое излучение Свойства: отражение, преломление, воздействует на глаз, способно к явлению дисперсии, интерференции, дифракции. Часть электромагнитного излучения, воспринимаемая глазом (от красного до фиолетового). Диапазон длин волн занимает небольшой интервал приблизительно от 390 до750 нм.

Ультрафиолетовое излучение Источники: газоразрядные лампы с кварцевыми трубками. Излучается всеми твердыми телами, у которых t 0> 1 ООО°С, а также светящимися парами ртути. Свойства: Высокая химическая активность, невидимо, большая проникающая способность, убивает микроорганизмы, в небольших дозах благоприятно влияет на организм человека (загар), но в больших дозах оказывает отрицательное воздействие, изменяет развитие клеток, обмен веществ.

Применение: в медицине, в промышленности.

Рентгеновские лучи Излучаются при больших ускорениях электронов. Свойства: интерференция, дифракция рентгеновских лучей на кристаллической решетке, большая проникающая способность. Облучение в больших дозах вызывает лучевую болезнь. Получают при помощи рентгеновской трубки: электроны в вакуумной трубке (р =3 атм) ускоряются электрическим полем при высоком напряжении, достигая анода, при соударении резко тормозятся. При торможении электроны движутся с ускорением и излучают электромагнитные волны с малой длиной (от 100 до 0,01 нм)

Применение: В медицине с целью диагностики заболеваний внутренних органов; в промышленности для контроля внутренней структуры различных изделий.

γ -излучение Источники: атомное ядро (ядерные реакции). Свойства: Имеет огромную проникающую способность, оказывает сильное биологическое воздействие. Длина волны менее 0,01 нм. Самое высокоэнергетическое излучение

Применение: В медицине, производстве (γ -дефектоскопия).

Воздействие ЭМВ на организм человека

Спасибо за внимание!





























1 из 27

Презентация на тему: Электромагнитные колебания

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

познакомиться с историей открытия электромагнитных колебаний познакомиться с историей открытия электромагнитных колебаний познакомиться с развитием взглядов на природу света глубже усвоить теорию колебаний выяснить, как на практике применяются электромагнитных колебаний научиться объяснять электромагнитные явления в природе обобщить знания об электромагнитных колебаниях и волнах различной природы происхождения

№ слайда 3

Описание слайда:

№ слайда 4

Описание слайда:

«Ток - это то, что создает магнитное поле» «Ток - это то, что создает магнитное поле» Максвелл впервые ввел понятие поле как носитель электромагнитной энергии, которая обнаружена на опыте. Физикам открылась бездонная глубина фундаментальной идеи теории Максвелла.

№ слайда 5

Описание слайда:

Впервые электромагнитные волны были получены Г.Герцем в его классических опытах выполненных в 1888 – 1889 гг. Для возбуждения электромагнитных волн Герц использовал искровой генератор (катушку Румкорфа). Впервые электромагнитные волны были получены Г.Герцем в его классических опытах выполненных в 1888 – 1889 гг. Для возбуждения электромагнитных волн Герц использовал искровой генератор (катушку Румкорфа).

№ слайда 6

Описание слайда:

24 марта 1896г., на заседании Физического отделения Русского физико-химического общества А.С.Попов демонстрировал передачу первой в мире радиограммы. 24 марта 1896г., на заседании Физического отделения Русского физико-химического общества А.С.Попов демонстрировал передачу первой в мире радиограммы. Вот что писал впоследствии об этом историческом событии профессор О.Д.Хвольсон: «Я на этом заседании присутствовал и ясно помню все детали. Станция отправления находилась в Химическом институте университета, приемная станция в аудитории старого физического кабинета. Расстояние приблизительно 250м. Передача происходила таким образом, что буквы передавались по алфавиту Морзе и притом знаки были ясно слышны. Первое сообщение было «Heinrich Hertz.»

№ слайда 7

Описание слайда:

№ слайда 8

Описание слайда:

Чтобы передавать звук, например, человеческую речь надо изменять параметры излучаемой волны, или, как говорят, модулировать ее. Незатухающие электромагнитные колебания характеризуются фазой, частотой и амплитудой. Поэтому для передачи этих сигналов необходимо изменять один из этих параметров. Наиболее распространена амплитудная модуляция, которая применяется радиостанциями для диапазонов длинных, средних и коротких волн. Частотную модуляцию применяют в передатчиках, работающих на ультракоротких волнах. Чтобы передавать звук, например, человеческую речь надо изменять параметры излучаемой волны, или, как говорят, модулировать ее. Незатухающие электромагнитные колебания характеризуются фазой, частотой и амплитудой. Поэтому для передачи этих сигналов необходимо изменять один из этих параметров. Наиболее распространена амплитудная модуляция, которая применяется радиостанциями для диапазонов длинных, средних и коротких волн. Частотную модуляцию применяют в передатчиках, работающих на ультракоротких волнах.

№ слайда 9

Описание слайда:

Для воспроизведения в приемнике переданного звукового сигнала модулированные высокочастотные колебания необходимо демодулировать (детектировать). Для этого используют нелинейные выпрямляющие устройства: полупроводниковые выпрямители или электронные лампы(в простейшем случае диоды). Для воспроизведения в приемнике переданного звукового сигнала модулированные высокочастотные колебания необходимо демодулировать (детектировать). Для этого используют нелинейные выпрямляющие устройства: полупроводниковые выпрямители или электронные лампы(в простейшем случае диоды).

№ слайда 10

Описание слайда:

№ слайда 11

Описание слайда:

Естественными источниками инфракрасного излучения являются: Солнце, Земля, звезды, планеты. Естественными источниками инфракрасного излучения являются: Солнце, Земля, звезды, планеты. Искусственными источниками инфракрасного излучения являются любое тело, температура которого выше температуры окружающей среды: костер, горящая свеча, работающий двигатель внутреннего сгорания, ракета, включенная электрическая лампочка.

№ слайда 12

Описание слайда:

№ слайда 13

Описание слайда:

многие вещества прозрачны для инфракрасного излучения многие вещества прозрачны для инфракрасного излучения проходя через атмосферу Земли, сильно поглощается парами воды отражательная способность многих металлов для инфракрасного излучения значительно больше, чем для световых волн: алюминий, медь, серебро отражают до 98 % инфракрасного излучения

№ слайда 14

Описание слайда:

№ слайда 15

Описание слайда:

В промышленности инфракрасное излучение используется для сушки окрашенных поверхностей и подогрева материалов. Для этой цели создано большое число разнообразных нагревателей, в том числе специальные электролампы. В промышленности инфракрасное излучение используется для сушки окрашенных поверхностей и подогрева материалов. Для этой цели создано большое число разнообразных нагревателей, в том числе специальные электролампы.

№ слайда 16

Описание слайда:

Наиболее удивительная и чудесная смесь Наиболее удивительная и чудесная смесь цветов - белый цвет. И. Ньютон А началось все, казалось бы, с далекого от практики, чисто научного исследования преломления света на границе стеклянной пластины и воздуха… Опыты Ньютона не только положили начало большим направлениям современной оптики. Они привели самого Ньютона и его последователей к грустному выводу: в сложных приборах с большим количеством линз и призм обязательно происходит белого света на его красивые цветные составляющие, и всякое оптическое изобретение будет сопровождаться пестрой каймой, искажающей представление о рассматриваемом предмете.

№ слайда 17

Описание слайда:

№ слайда 18

Описание слайда:

Естественным источником ультрафиолетового излучения являются Солнце, звезды, туманности. Естественным источником ультрафиолетового излучения являются Солнце, звезды, туманности. Искусственными источниками ультрафиолетового излучения являются нагретые до температуры 3000 К и выше твердые тела, и высокотемпературная плазма.

№ слайда 19

Описание слайда:

№ слайда 20

Описание слайда:

Для обнаружения и регистрации ультрафиолетового излучения используются обычные фотоматериалы. Для измерения мощности излучения применяются болометры с датчиками, чувствительными к ультрафиолетовому излучению, термоэлементы, фотодиоды. Для обнаружения и регистрации ультрафиолетового излучения используются обычные фотоматериалы. Для измерения мощности излучения применяются болометры с датчиками, чувствительными к ультрафиолетовому излучению, термоэлементы, фотодиоды.

Описание слайда:

Широко применяется в криминалистике, искусствоведении, в медицине, в производственных помещениях пищевой и фармацевтической промышленности, на птицефабриках, на химических предприятиях. Широко применяется в криминалистике, искусствоведении, в медицине, в производственных помещениях пищевой и фармацевтической промышленности, на птицефабриках, на химических предприятиях.

№ слайда 23

Описание слайда:

Было открыто немецким физиком Вильгельмом Рентгеном в 1895г. При изучении ускоренного движения заряженных частиц в разрядной трубке. Источником рентгеновского излучения является изменение состояния электронов внутренних оболочек атомов или молекул, а также ускоренно движущиеся свободные электроны. Проникающая способность этого излучения была столь велика, что Рентген мог рассматривать скелет своей руки на экране. Рентгеновское излучение применяется: в медицине, в криминалистике, в промышленности, в научных исследованиях. Было открыто немецким физиком Вильгельмом Рентгеном в 1895г. При изучении ускоренного движения заряженных частиц в разрядной трубке. Источником рентгеновского излучения является изменение состояния электронов внутренних оболочек атомов или молекул, а также ускоренно движущиеся свободные электроны. Проникающая способность этого излучения была столь велика, что Рентген мог рассматривать скелет своей руки на экране. Рентгеновское излучение применяется: в медицине, в криминалистике, в промышленности, в научных исследованиях.

№ слайда 24

Описание слайда:

№ слайда 25

Описание слайда:

Самое коротковолновое магнитное излучение, занимающее весь диапазон частот больше 3*1020 Гц., что соответствует длинам волн меньше 10-12м. Оно было открыто французским ученым Полем Вилларом в 1900г. Обладает еще большей проникающей способностью чем рентгеновское излучение. Оно проходит сквозь метровый слой бетона, и слой свинца толщиной несколько сантиметров. Гамма-излучение возникает при взрыве ядерного оружия вследствие радиоактивного распада ядер. Самое коротковолновое магнитное излучение, занимающее весь диапазон частот больше 3*1020 Гц., что соответствует длинам волн меньше 10-12м. Оно было открыто французским ученым Полем Вилларом в 1900г. Обладает еще большей проникающей способностью чем рентгеновское излучение. Оно проходит сквозь метровый слой бетона, и слой свинца толщиной несколько сантиметров. Гамма-излучение возникает при взрыве ядерного оружия вследствие радиоактивного распада ядер.

№ слайда 26

Описание слайда:

изучение истории открытия волн разного диапазона позволяет убедительно показать диалектический характер развития взглядов, идей и гипотез, ограниченность тех или иных законов и вместе с тем неограниченное приближение человеческого знания ко все более сокровенным тайнам природы изучение истории открытия волн разного диапазона позволяет убедительно показать диалектический характер развития взглядов, идей и гипотез, ограниченность тех или иных законов и вместе с тем неограниченное приближение человеческого знания ко все более сокровенным тайнам природы открытие Герцем электромагнитных волн, которые обладают теми же свойствами, что и свет, имело решающее значение для утверждения, что свет – электромагнитная волна анализ информации обо всем спектре электромагнитных волн позволяет составить более полную картину структуры объектов во Вселенной

№ слайда 27

Описание слайда:

Касьянов В.А. Физика 11 кл.: Учебн. для общеобразоват. Учреждений. – 4-е изд., стереотип. – М.: Дрофа, 2004. – 416с. Касьянов В.А. Физика 11 кл.: Учебн. для общеобразоват. Учреждений. – 4-е изд., стереотип. – М.: Дрофа, 2004. – 416с. Колтун М.М. Мир физики: Научно-художественная лит-ра/Оформление Б. Чупрыгина. – М.: Дет. Лит., 1984. – 271 с. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. – 7-е изд. – М.: Просвещение, 2000. – 254 с. Мякишев Г.Я., Буховцев Б.Б. Физика: Учеб. для 10 кл. общеобразоват. учреждений. – М.:Просвещение, 1983. – 319 с. Орехов В.П. Колебания и волны в курсе физики средней школы. Пособие для учителей. М., «Просвещение», 1977. – 176 с. Я познаю мир: Дет. Энцикл.: Физика/Под общ. Ред. О.Г.Хинн. – М.: ТКО «АСТ», 1995. – 480 с. www. 5ballov.ru

Цель урока : обеспечить в ходе урока повторение основных законов, свойств электромагнитных волн;

Образовательная: Систематизировать материал по теме, осуществить коррекцию знаний, некоторое ее углубление;

Развивающая : Развитие устной речи учащихся, творческих навыков учащихся, логики, памяти; познавательных способностей;

Воспитательная : Формировать интерес учащихся к изучению физики. воспитывать аккуратность и навыки рационального использования своего времени;

Тип урока : урок повторения и коррекции знаний;

Оборудование : компьютер, проектор, презентация «Шкала электромагнитных излучений», диск « Физика. Библиотека наглядных пособий».

Ход урока:

1. Объяснение нового материала.

1. Мы знаем, что длина электромагнитных волн бывает самой различной: от значений порядка 1013 м (низкочастотные колебания) до 10 -10 м (g- лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее, именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.
2. Принято выделять низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и g-излучение. Со всеми этими излучениями, кроме g -излучения, вы уже знакомы. Самое коротковолновое g -излучение испускают атомные ядра.
3. Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны.
4. Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.
5. Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь это относится к рентгеновскому и g -излучениям, сильно поглощаемом атмосферой.
6. По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.
7. Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно g -лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.

Обобщим знания о волнах и запишем все виде таблиц.

1. Низкочастотные колебания

Низкочастотные колебания
Длина волны(м) 10 13 - 10 5
Частота(Гц) 3· 10 -3 - 3 ·10 3
Энергия(ЭВ) 1 – 1,24 ·10 -10
Источник Реостатный альтернатор, динамомашина,
Вибратор Герца,
Генераторы в электрических сетях (50 Гц)
Машинные генераторы повышенной (промышленной) частоты (200 Гц)
Телефонные сети (5000Гц)
Звуковые генераторы (микрофоны, громкоговорители)
Приемник Электрические приборы и двигатели
История открытия Лодж (1893 г.), Тесла (1983)
Применение Кино, радиовещание(микрофоны, громкоговорители)

2. Радиоволны


Радиоволны
Длина волны(м) 10 5 - 10 -3
Частота(Гц) 3 ·10 3 - 3 ·10 11
Энергия(ЭВ) 1,24 ·10-10 - 1,24 · 10 -2
Источник Колебательный контур
Макроскопические вибраторы
Приемник Искры в зазоре приемного вибратора
Свечение газоразрядной трубки, когерера
История открытия Феддерсен (1862 г.), Герц (1887 г.), Попов, Лебедев, Риги
Применение Сверхдлинные - Радионавигация, радиотелеграфная связь, передача метеосводок
Длинные – Радиотелеграфная и радиотелефонная связь, радиовещание, радионавигация
Средние - Радиотелеграфия и радиотелефонная связь радиовещание, радионавигация
Короткие - радиолюбительская связь
УКВ - космическая радио связь
ДМВ - телевидение, радиолокация, радиорелейная связь, сотовая телефонная связь
СМВ- радиолокация, радиорелейная связь, астронавигация, спутниковое телевидение
ММВ - радиолокация

Инфракрасное излучение
Длина волны(м) 2 ·10 -3 - 7,6· 10 -7
Частота(Гц) 3 ·10 11 - 3 ·10 14
Энергия(ЭВ) 1,24· 10 -2 – 1,65
Источник Любое нагретое тело: свеча, печь, батарея водяного отопления, электрическая лампа накаливания
Человек излучает электромагнитные волны длиной 9 10 -6 м
Приемник Термоэлементы, болометры, фотоэлементы, фоторезисторы, фотопленки
История открытия Рубенс и Никольс (1896 г.),
Применение В криминалистике, фотографирование земных объектов в тумане и темноте, бинокль и прицелы для стрельбы в темноте, прогревание тканей живого организма (в медицине), сушка древесины и окрашенных кузовов автомобилей, сигнализация при охране помещений, инфракрасный телескоп,

4. Видимое излучение

5. Ультрафиолетовое излучение

Ультрафиолетовое излучение
Длина волны(м) 3,8 10 -7 - 3 ·10 -9
Частота(Гц) 8 ·10 14 - 10 17
Энергия(ЭВ) 3,3 – 247,5 ЭВ
Источник Входят в состав солнечного света
Газоразрядные лампы с трубкой из кварца
Излучаются всеми твердыми телами, у которых температура больше 1000 ° С, светящиеся (кроме ртути)
Приемник Фотоэлементы,
Фотоумножители,
Люминесцентные вещества
История открытия Иоганн Риттер, Лаймен
Применение Промышленная электроника и автоматика,
Люминисценнтные лампы,
Текстильное производство
Стерилизация воздуха

6. Рентгеновское излучение

Рентгеновское излучение
Длина волны(м) 10 -9 - 3 ·10 -12
Частота(Гц) 3 ·10 17 - 3 ·10 20
Энергия(ЭВ) 247,5 – 1,24 ·105 ЭВ
Источник Электронная рентгеновская трубка (напряжение на аноде – до 100 кВ. давление в баллоне – 10 -3 – 10 -5 н/м 2 , катод – накаливаемая нить. Материал анодов W,Mo, Cu, Bi, Co, Tl и др.
Η = 1-3%, излучение – кванты большой энергии)
Солнечная корона
Приемник Фотопленка,
Свечение некоторых кристаллов
История открытия В. Рентген, Милликен
Применение Диагностика и лечение заболеваний (в медицине), Дефектоскопия (контроль внутренних структур, сварных швов)

7. Гамма - излучение

Вывод
Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко - при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко - при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства. Все это служит подтверждением закона диалектики (переход количественных изменений в качественные).

Литература:

  1. « Физика- 11» Мякишев
  2. Диск «Уроки физики Кирилла и Мефодия. 11 класс»())) «Кирилл и Мефодий, 2006)
  3. Диск « Физика. Библиотека наглядных пособий. 7-11 классы»((1С: «Дрофа» и «Формоза» 2004)
  4. Ресурсы Интернета