Как выглядят молекулы льда. Кристаллическая решетка льда и воды

Кандидат технических наук В. БЕЛЯНИН, ведущий научный сотрудник РНЦ "Курчатовский институт", Е. РОМАНОВА, студентка МАДИ (ГТУ).

Соотношения золотой пропорции исследователи находят в морфологической структуре растений, птиц, животных, человека. Закономерности золотой пропорции обнаруживаются и в организации неживой природы. В данной статье на основании анализа молекулы воды в различных агрегатных состояниях высказана гипотеза, что ее структура в состоянии талой воды практически соответствует треугольнику золотой пропорции.

Наука и жизнь // Иллюстрации

Теплоемкость воды достигает минимального значения при температуре около 37оС.

Наука и жизнь // Иллюстрации

Илл. 1. Плотность воды при понижении температуры сначала возрастает, достигает максимума при 4оС и начинает уменьшаться.

Наука и жизнь // Иллюстрации

В момент плавления объем свинца мгновенно увеличивается от 1 до 1,003, а объем воды скачком уменьшается от 1,1 до 1,0.

Наука и жизнь // Иллюстрации

Вода имеет аномально высокие температуры кипения и замерзания по сравнению с другими трехатомными соединениями водорода.

Наука и жизнь // Иллюстрации

В жидкой воде молекулы H2O могут объединяться в сложные образования - кластеры, по структуре напоминающие лед.

Наука и жизнь // Иллюстрации

Схематичное изображение молекулы воды на плоскости.

Деление отрезка в крайнем и среднем отношении, или золотая пропорция. Отрезок разделен на две части так, что CB:AC = AC:AB.

"Золотой треугольник". Соотношение его сторон OA:AB = OB:AB ≈ 0,618,

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Таблица 1.

Таблица 2.

Воде была дана волшебная власть стать соком жизни на Земле.
Леонардо да Винчи

Вода - одно из самых уникальных и загадочных веществ на Земле. Природа этого вещества до конца еще не понята. Внешне вода кажется достаточно простой, в связи с чем долгое время считалась неделимым элементом. Лишь в 1766 году Г. Кавендиш (Англия) и затем в 1783 году А. Лавуазье (Франция) показали, что вода не простой химический элемент, а соединение водорода и кислорода в определенной пропорции. После этого открытия химический элемент, обозначаемый как Н, получил название "водород" (Hydrogen - от греч. hydro genes), которое можно истолковать как "порождающий воду".

Дальнейшие исследования показали, что за незатейливой химической формулой Н 2 О скрывается вещество, обладающее уникальной структурой и не менее уникальными свойствами. Исследователи, пытавшиеся на протяжении двух с лишним столетий раскрыть секреты воды, часто заходили в тупик. Да и сейчас ученые понимают, что вода остается трудным объектом для исследований, ее свойства до сих пор не всегда до конца прогнозируемы.

Загадочная магия воды. Почему жидкая вода имеет необычные свойства? Традиционный ответ может быть следующим: из-за свойств атомов кислорода и водорода, из-за их структурного расположения в молекуле, из-за определенного поведения электронов в молекуле и т.п.

Так в чем же заключаются загадочные, необычные свойства привычной всем жидкой воды? Прежде всего, в том, что практически все свойства воды аномальны, а многие из них не подчиняются логике тех законов физики, которые управляют другими веществами. Кратко упомянем те из них, которые обуславливают существование жизни на Земле.

Вначале о трех особенностях тепловых свойств воды.

Первая особенность: вода - единственное вещество на Земле (кроме ртути), для которого зависимость удельной теплоемкости от температуры имеет минимум.

Из-за того, что удельная теплоемкость воды имеет минимум около 37 о С, нормальная температура человеческого тела, состоящего на две трети из воды, находится в диапазоне температур 36-38 о С (внутренние органы имеют более высокую температуру, чем наружные).

Вторая особенность: теплоемкость воды аномально высока. Чтобы нагреть определенное ее количество на один градус, необходимо затратить больше энергии, чем при нагреве других жидкостей, - по крайней мере вдвое по отношению к простым веществам. Из этого вытекает уникальная способность воды сохранять тепло. Подавляющее большинство других веществ таким свойством не обладают. Эта исключительная особенность воды способствует тому, что у человека нормальная температура тела поддерживается на одном уровне и жарким днем, и прохладной ночью.

Таким образом, вода играет главенствующую роль в процессах регулирования теплообмена человека и позволяет ему поддерживать комфортное состояние при минимуме энергетических затрат. При нормальной температуре тела человек находится в наиболее выгодном энергетическом состоянии.

Температура других теплокровных млекопитающих (32-39 о С) также хорошо соотносится с температурой минимума удельной теплоемкости воды.

Третья особенность: вода обладает высокой удельной теплотой плавления, то есть воду очень трудно заморозить, а лед - растопить. Благодаря этому климат на Земле в целом достаточно стабилен и мягок.

Все три особенности тепловых свойств воды позволяют человеку оптимальным образом существовать в условиях благоприятной среды.

Имеются особенности и в поведении объема воды. Плотность большинства веществ - жидкостей, кристаллов и газов - при нагревании уменьшается и при охлаждении увеличивается, вплоть до процесса кристаллизации или конденсации. Плотность воды при охлаждении от 100 до 4 о С (точнее, до 3,98 о С) возрастает, как и у подавляющего большинства жидкостей. Однако, достигнув максимального значения при температуре 4 о С, плотность при дальнейшем охлаждении воды начинает уменьшаться. Другими словами, максимальная плотность воды наблюдается при температуре 4 о С (одна из уникальных аномалий воды), а не при температуре замерзания 0 о С.

Замерзание воды сопровождается скачкообразным(!) уменьшением плотности более чем на 8%, тогда как у большинства других веществ процесс кристаллизации сопровождается увеличением плотности. В связи с этим лед (твердая вода) занимает больший объем, чем жидкая вода, и держится на ее поверхности.

Столь необычное поведение плотности воды крайне важно для поддержания жизни на Земле.

Покрывая воду сверху, лед играет в природе роль своего рода плавучего одеяла, защищающего реки и водоемы от дальнейшего замерзания и сохраняющего жизнь подводному миру. Если бы плотность воды увеличивалась при замерзании, лед оказался бы тяжелее воды и начал тонуть, что привело бы к гибели всех живых существ в реках, озерах и океанах, которые замерзли бы целиком, превратившись в глыбы льда, а Земля стала ледяной пустыней, что неизбежно привело бы к гибели всего живого.

Отметим еще некоторые особенности воды.

Внешне вода подвижна и податлива, и ее можно заключить в любой сосуд. Однако, проникая в трещины горных пород и расширяясь при замерзании, вода раскалывает скальные породы любой твердости, которые постепенно распадаются на все более мелкие частицы. Так начинается возврат окаменевших пород в жизненный цикл: на полях промерзание поверхностных слоев земли с ее органическими компонентами помогает образованию плодородной почвы.

Процесс включения твердых веществ в большой круговорот живой природы ускоряется чудесным свойством воды их растворять. Вода с растворенными компонентами твердых веществ становится средой питания и поставщиком микроэлементов, необходимых для жизни растений, животных и человека.

Вода сильнее других жидкостей проявляет свойства универсального растворителя. Если ей дать достаточно времени, она может растворить практически любое твердое вещество. Именно из-за уникальной растворяющей способности воды никому до сих пор не удалось получить химически чистую воду - она всегда содержит растворенный материал сосуда. Вода абсолютно необходима для всех ключевых систем жизнеобеспечения человека. Она содержится в человеческой крови (79%) и способствует переносу по кровеносной системе в растворенном состоянии тысяч необходимых для жизни веществ. Вода содержится в лимфе (96%), которая разносит из кишечника питательные вещества по тканям живого организма (см. таблицу 1).

Перечисленные свойства и особая роль воды в обеспечении жизни на Земле не могут оставить равнодушным ни один пытливый ум, даже если он верит в счастливые случайности. "Начало всего есть вода", - справедливо отмечал Фалес из Милета в VI веке до н.э.

Жидкое чудо . Прекратим перечисление странных, но жизненно необходимых свойств воды, которых можно набрать еще с десяток, и переключим внимание на секреты необычного строения ее молекулы. Именно анализ строения молекулы воды позволяет понять ее исключительность в живой и неживой природе. Так что дорога к истине проходит через строение одиночной молекулы воды.

Прежде всего отметим, что молекула воды самая маленькая среди подобных трехатомных молекул (по отношению к гомологам, то есть водородным соединениям типа Н 2 S, Н 2 Se, Н 2 Те, со свойствами которых традиционно сравнивают свойства воды). Такие молекулы при нормальных условиях образуют газы, а молекулы воды - жидкость. Почему?

Хаотичное сообщество газообразных молекул воды при конденсации, то есть при образовании жидкой фазы, формирует жидкое вещество удивительной сложности. В первую очередь это связано с тем, что молекулы воды обладают уникальным свойством объединяться в кластеры (группы) (Н 2 О)x . Под кластером обычно понимают группу атомов или молекул, объединенных физическим взаимодействием в единый ансамбль, но сохраняющих внутри него индивидуальное поведение. Возможности прямого наблюдения кластеров ограничены, и поэтому экспериментаторы компенсируют аппаратурные недостатки интуицией и теоретическими построениями.

При комнатной температуре степень ассоциации X для воды составляет, по современным данным, от 3 до 6. Это означает, что формула воды не просто Н 2 О, а среднее между Н 6 О 3 и Н 12 О 6 . Другими словами, вода - сложная жидкость, "составленная" из повторяющихся групп, содержащих от трех до шести одиночных молекул. Вследствие этого вода имеет аномальные значения температуры замерзания и кипения по сравнению с гомологами. Если бы вода подчинялась общим правилам, она должна была замерзать при температуре порядка -100 о С и закипать при температуре около +10 о С.

Если бы вода при испарении оставалась в виде Н 6 О 3 , Н 8 О 4 или Н 12 О 6, то водяной пар был бы намного тяжелее воздуха, в котором доминируют молекулы азота и кислорода. В этом случае поверхность всей Земли была бы покрыта вечным слоем тумана. Представить себе жизнь на такой планете практически невозможно.

Людям крупно повезло: кластеры воды при испарении распадаются, и вода превращается практически в простой газ с химической формулой Н 2 О (обнаруженное в последнее время в паре незначительное количество димеров Н 4 О 2 погоды не делает). Плотность газообразной воды меньше плотности воздуха, и поэтому вода способна насыщать своими молекулами земную атмосферу, создавая комфортные для человека погодные условия.

На Земле нет других веществ, наделенных способностью быть жидкостью при температурах существования человека и при этом образовывать газ не только легче воздуха, но и способный возвращаться к ее поверхности в виде осадков.

Восхитительная геометрия . Итак, какова же самая маленькая среди трехатомных молекул? Молекула воды имеет симметричную V-образную форму, так как два небольших атома водорода располагаются с одной стороны от сравнительно крупного атома кислорода. Это сильно отличает молекулу воды от линейных молекул, например Н 2 Ве, в которой все атомы располагаются цепочкой. Именно такое странное расположение атомов в молекуле воды и позволяет ей иметь множество необычных свойств.

Если внимательно рассмотреть геометрические параметры молекулы воды, то в ней обнаруживается определенная гармония. Чтобы увидеть ее, построим равнобедренный треугольник Н-О-Н с протонами в основании и кислородом в вершине. Такой треугольник схематично копирует структуру молекулы воды, проекция которой на плоскость условно изображена на рисунке.

Длины сторон этого треугольника и валентный угол между двумя связями О-Н изменяются при изменении агрегатного состояния воды. Приведем эти параметры (см. таблицу 2).

Прокомментируем данные, характеризующие различные состояния воды.

Параметры молекулы воды в парообразном состоянии получены на основе обработки спектров ее поглощения. Результаты неоднократно уточнялись, но по существу правильно оценивают длины связей и валентный угол в молекуле воды в состоянии пара.

Кристаллическая структура льда при нормальном давлении довольно рыхлая с причудливой паутиной связей между молекулами воды. Схематично кристаллическую решетку обычного льда можно построить из атомов кислорода, каждый из которых участвует с соседними атомами в четырех водородных связях, направленных приблизительно к вершинам правильного тетраэдра.

Напомним, что водородной называется связь между атомами в одной молекуле или между соседними молекулами, которая осуществляется через атом водорода. Водородная связь играет чрезвычайно важную роль в структуре не только воды, но и большинства биологических молекул - углеводов, белков, нуклеиновых кислот и т. п.

Если кристаллический лед хорошо упорядочен по кислороду, то этого нельзя сказать про водород: в расположении ионов водорода (протонов) наблюдается сильный беспорядок. Их положение четко не определено, и поэтому лед можно считать разупорядоченным по водороду.

Лед обладает многими удивительными особенностями, из которых отметим две.

Во-первых, он всегда очень чист химически. В структуре льда практически не бывает примесей: при замерзании они вытесняются в жидкость. Именно поэтому снежинки всегда белые, а льдинки на поверхности грязной лужи практически прозрачные. Вообще говоря, любой растущий кристалл стремится создать идеальную кристаллическую решетку и вытесняет посторонние вещества. Но в планетарном масштабе именно замечательный феномен замерзания и таяния воды играет роль гигантского очистительного процесса - вода на Земле постоянно очищает сама себя.

Во-вторых, лед и особенно снег обладают очень высокой отражательной способностью. Благодаря этому солнечное излучение не вызывает заметного нагрева полярных областей, и, как следствие этого, наша планета избавлена от сезонных наводнений и повышений уровня Мирового океана.

Экспериментальное определение параметров одиночной молекулы воды в жидкой фазе до сих пор встречает непреодолимые трудности, поскольку жидкая вода - это смесь структурных элементов, то есть различных кластеров, находящихся в динамическом равновесии между собой. Полной ясности в отношении их взаимодействий до сих пор нет, а разделить такую смесь на отдельные компоненты невозможно: "простая" жидкость Н 2 О не торопится раскрывать свои внутренние секреты.

Вернемся к рисунку, на котором в общих чертах представлена структура молекулы воды. В ней есть симметрия, которая играет основную роль в попытках всестороннего объяснения физического мира, и асимметрия, наделяющая эту молекулу возможностью движения и связью с золотой пропорцией. Поэтому кратко напомним о том, что в математике называют золотой пропорцией.

Золотая пропорция . Это понятие возникает при решении геометрической задачи о нахождении на отрезке АВ такой точки С , чтобы выполнялось соотношение СВ :АС = АС :АВ .

Решение этой задачи приводит к отношению СВ :АС = (-1+√5)/2, которое называют золотой пропорцией, а соответствующее геометрическое деление отрезка АВ точкой С называют золотым сечением. Если принять весь отрезок за единицу, то АС = 0,618033… и СВ = 0,381966....

Время показало, что золотая пропорция воплощает совершенные и гармоничные отношения двух величин. В геометрической интерпретации она приводит к соразмерному и привлекательному соотношению между двумя неравными отрезками.

Исследователи золотой пропорции с античных времен до наших дней всегда восхищались и продолжают восхищаться ее свойствами, которые проявляются в строении различных элементов физического и биологического мира. Золотая пропорция обнаруживается везде, где соблюдены принципы гармонии.

Что же объединяет золотую пропорцию с молекулой воды? Чтобы ответить на этот вопрос, рассмотрим двумерный образ золотой пропорции в виде треугольника.

В золотом треугольнике отношение ОА :АВ = ОВ :АВ приблизительно равно 0,618, угол α = 108,0 о. Для льда отношение длин связей О-Н к Н-Н равно 0,100:0,163 = 0,613 и угол α = 109,5 о, для пара - соответственно 0,631 и 104,5 о. Не распознать в золотом треугольнике прообраз структуры молекулы воды просто невозможно! Удивительно, что до сих пор так мало внимания обращали на возможность подобной интерпретации ее строения.

И действительно, поместив в треугольнике АОВ в точки А и В атомы водорода, а в точку О - атом кислорода, получим в первом приближении молекулу жидкой воды, сконструированную на основе золотой пропорции. Подобная элегантность молекулы очаровывает и восхищает. Так что роль молекулы воды в природе и жизни не может быть правильно оценена без учета красоты ее формы.

Исключительная гармония . Убедимся, что молекула жидкой воды - единственное трехатомное вещество, имеющее соразмерности, свойственные золотой пропорции.

В трехатомных молекулах-гомологах, близких по химическому составу к молекуле воды (Н 2 S, H 2 Se и Н 2 Те), валентный угол приблизительно равен 90 о. Например, молекула Н 2 S имеет следующие геометрические параметры:

длина связи S-Н, нм......................... 0,1345

длина связи Н-Н, нм........................... 0,1938

валентный угол Н-S-Н, град.............. 92,2

Отношение длин связей S-Н к Н-Н равно 0,694, что далеко от золотой пропорции. Квантово-химические расчеты показывают, что если бы вода была подобна родственным ей веществам, то валентный угол у ее молекулы должен был быть приблизительно таким же, как у Н 2 S, или больше максимум на 5 о.

Но вода, как выясняется, не любит подобия, она всегда герой другого романа. Если бы валентный угол у воды был порядка 90-95 о, о золотой пропорции пришлось бы забыть и вода оказалась бы в одном содружестве с другими водородными соединениями.

Но вода уникальна, ее молекула обладает практически выверенными эстетическими качествами, и поэтому ее свойства необходимо иногда интерпретировать, выходя за рамки традиционной научной парадигмы. И тогда некоторые загадки воды смогут быть объяснены таким "ненаучным" понятием, как гармония.

На приведенные рассуждения можно возразить: экспериментальные измерения геометрических параметров молекулы воды имеют определенную погрешность, и поэтому соотношение золотой пропорции может строго не выполняться. Но даже если в экспериментальные измерения внести еще большую погрешность, молекула воды все равно останется единственным из трехатомных веществ, имеющим практически "золотые" гармоничные пропорции.

В связи с этим обратим внимание на загадку талой воды, которая, по широко распространенному мнению, обладает отличным от обычной воды физиологическим воздействием.

Удивительная талая вода . Она рождается при таянии льда и сохраняет температуру 0 о С, пока весь лед не растает. Специфика межмолекулярных взаимодействий, характерная для структуры льда, сохраняется и в талой воде, так как при плавлении кристалла разрушается только 15% всех водородных связей. Поэтому присущая льду связь каждой молекулы воды с четырьмя соседними ("ближний порядок") в значительной степени не нарушается, хотя и наблюдается бoльшая размытость кислородной каркасной решетки.

Таким образом, талая вода отличается от обычной изобилием многомолекулярных кластеров, в которых в течение некоторого времени сохраняются рыхлые льдоподобные структуры. После таяния всего льда температура воды повышается и водородные связи внутри кластеров перестают противостоять возрастающим тепловым колебаниям атомов. Размеры кластеров изменяются, и поэтому начинают меняться свойства талой воды: диэлектрическая проницаемость приходит к своему равновесному состоянию через 15-20 минут, вязкость - через 3-6 суток. Биологическая активность талой воды спадает, по одним данным, приблизительно за 12-16 часов, по другим - за сутки.

Итак, физико-химические свойства талой воды самопроизвольно меняются во времени, приближаясь к свойствам обычной воды: она постепенно как бы "забывает" о том, что еще недавно была льдом.

Лед и пар - различные агрегатные состояния воды, и поэтому логично предположить, что в жидкой промежуточной фазе валентный угол отдельной молекулы воды лежит в диапазоне между значениями в твердой фазе и в паре. В кристалле льда валентный угол молекулы воды близок к 109,5 о. При таянии льда межмолекулярные водородные связи ослабевают, расстояние Н-Н несколько сокращается, валентный угол уменьшается. При нагревании жидкой воды происходит разупорядочение кластерной структуры, и этот угол продолжает уменьшаться. В парообразном состоянии валентный угол молекулы воды составляет уже 104,5 о.

Значит, для обычной жидкой воды валентный угол вполне может иметь некоторое среднее значение между 109,5 и 104,5 о, то есть примерно 107,0 о. Но так как талая вода по своей внутренней структуре близка ко льду, то и валентный угол ее молекулы должен быть ближе к 109,5 о, скорее всего, около 108,0 о.

Сказанное выше можно сформулировать в виде гипотезы: в силу того, что талая вода значительно более структурирована, чем обычная вода, ее молекула с большой долей вероятности имеет структуру, максимально приближенную к гармоничному треугольнику золотой пропорции с валентным углом, близким к 108 о, и с отношением длин связей примерно 0,618-0,619.

Экспериментального подтверждения этой гипотезы у авторов нет, как нет и какой-либо теории ее обоснования. Есть только догадка, высказанная на этих страницах, которая может, естественно, оспариваться.

Таинственная сила талой воды . Человеку с незапамятных времен известны удивительные свойства талой воды. Давно замечено, что вблизи тающих родников растительность альпийских лугов всегда пышнее, а у кромки тающего льда в арктических морях бурно цветет жизнь. Полив талой водой повышает урожайность сельскохозяйственных культур, ускоряет прорастание семян. При употреблении талой воды устойчиво повышаются привесы в животноводстве, ускоряется развитие цыплят. Известно, с какой жадностью животные пьют весной талую воду, а птицы буквально купаются в первых лужицах подтаявшего снега.

Талая вода, в отличие от обычной, по своей структуре очень похожа на жидкость, содержащуюся в клетках растительных и живых организмов. Именно поэтому для человека более подходит "ледяная" структура талой воды, в которой молекулы объединены в ажурные кластеры. Это уникальное свойство талой воды способствует ее легкому усвоению организмом, она биологически активна. Вот почему так полезны овощи и фрукты - они доставляют в организм воду, имеющую аналогичную структуру.

При питье талой воды происходит подпитка организма самым гармоничным из всех веществ на Земле. Она улучшает обмен веществ и усиливает кровообращение, снижает количество холестерина в крови и успокаивает боли в сердце, повышает адаптационные возможности организма и способствует продлению жизни. Глоток чистейшей талой воды тонизирует лучше пастеризованного сока, в ней есть заряд энергии, бодрости и легкости.

Один из авторов этой работы постоянно пьет талую с плавающими льдинками воду и считает, что именно поэтому за три года ни разу не простудился. Талая вода освежает и молодит кожу, которая перестает нуждаться в кремах и лосьонах.

Теоретическое изучение свойств талой воды находится пока на уровне гипотез. Нет общепринятого мнения о причинах, вызывающих необычные эффекты при ее применении. Есть определенные проблемы и с доказательной стороной биологической активности талой воды. Исследования в этом направлении вызывают порой жаркие дискуссии. Сложность проблемы, отсутствие ясности - все это должно не отпугивать, а притягивать и способствовать появлению новых идей, гипотез, теорий. Таков зачастую тернистый путь развития науки.

Подчеркнем: приведенная гипотеза не претендует на расшифровку загадки талой воды. Она лишь позволяет выйти за рамки традиционного мышления и посмотреть на взаимную любовь жизни и воды с необычной стороны - со стороны гармонии и красоты, со стороны особых свойств талой воды, добавляющих ее изящной молекуле черты, которыми не обладают другие молекулы.

ЛИТЕРАТУРА

Ауэрбах Ф. Семь аномалий воды. - СПб., 1919.

Габуда С. П. Связанная вода. Факты и гипотезы. - Новосибирск: Наука, 1982.

Зацепина Г. Н. Физические свойства и структура воды. - М.: МГУ, 1998.

Синюков В. В. Вода известная и неизвестная. - М.: Знание, 1987.

Белянин В. С., Романова Е. Золотая пропорция. Новый взгляд // Наука и жизнь, 2003, № 6.

Вода: структура, состояние, сольватизация. Достижения последних лет. - М.: Наука, 2003.

Подписи к иллюстрациям

Илл. 1. Плотность льда почти на 10% меньше, чем у воды, а удельный объем на столько же больше. Поэтому лед плавает, а вода, замерзая в трещинах горных пород, раскалывает их.

Свойства воды

Почему вода - вода?

Среди необозримого множества веществ вода с ее физико-химическими свойствами занимает совершенно особое, исключительное место. И это надо понимать буквально.

Почти все физико-химические свойства воды - исключение в природе. Она действительно самое удиви­тельное вещество на свете. Вода удивительна не только многообразием изотоп­ных форм молекулы и не только надеждами, которые связаны с ней как с неиссякаемым источником энер­гии будущего. Кроме того, она удивительна и своими - самыми обычными свойствами.

Как построена молекула воды?

Как построена одна молекула воды, теперь известно очень точно. Она построена вот так.

Хорошо изучено и измерено взаимное расположение ядер атомов водорода и кислорода и расстояние между ними. Оказалось, что молекула воды нелинейна. Вместе с электронными оболочками атомов молекулу воды, если на нее взглянуть «сбоку», можно было бы изобра­зить вот так:

т. е. геометрически взаимное расположение зарядов в молекуле можно изобразить как простой тетраэдр. Все молекулы воды с любым изотопным составом построены совершенно одинаково.

Сколько молекул воды в океане?

Одна. И этот ответ не совсем шутка. Конечно, каждый может, посмотрев в справочник и узнав, сколько в Мировом океане воды, легко сосчитать, сколько всего в нем содержится молекул Н2О. Но такой ответ будет не вполне верен. Вода - вещество особен­ное. Благодаря своеобразному строению отдельные молекулы взаимодействуют между собой. Возникает особая химическая связь вследствие того, что каждый из атомов водорода одной молекулы оттягивает к себе электроны атомов кислорода в соседних молекулах. За счет такой водородной связи каждая молекула воды оказывается довольно прочно связанной с четырьмя другими соседними молекулами, подобно тому как это изображено на схеме. Правда, эта схема чересчур упро­щена - она плоская, иначе не изобразишь на рисунке. Представим себе несколько более верную картину. Для этого нужно учесть, что плоскость, в которой расположены водородные связи (они обозначены пунктиром), в молекуле воды направлена перпендикулярно к плос­кости расположения водородных атомов.

Все отдельные молекулы Н2О в воде оказываются связанными в единую сплошную пространственную сетку - в одну гигантскую молекулу. Поэтому вполне оправдано утверждение некоторых ученых физико-химиков, что весь океан - это одна молекула. Но не следует понимать это утверждение слишком буквально. Хотя все молекулы воды в воде и связываются между собой водородными связями, они в то же бремя находятся в очень сложном подвижном равновесии, сохра­няя индивидуальные свойства и единичных молекул и образуя сложные агрегаты. Подобное представление приложимо не только к воде: кусок алмаза тоже одна молекула.

Как построена молекула льда?

Никаких особых молекул льда нет. Молекулы воды благодаря своему замечательному строению соединены в куске льда друг с другом так, что каждая из них связана и окружена четырьмя другими молекулами. Это приводит к возникновению очень рыхлой струк­туры льда, в которой остается очень много свободного объема. Правильное кристаллическое строение льда выражается в изумительном изяществе снежинок и в красоте морозных узоров на замерзших оконных сте­клах.

Как же все-таки построены молекулы воды в воде?

К сожалению, этот очень важный вопрос изучен еще недостаточно. Строение молекул в жидкой воде очень сложно. Когда лед плавится, его сетчатая структура частично сохраняется в образующейся воде. Молекулы в талой воде состоят из многих простых молекул - из агрегатов, сохраняющих свойства льда. При повышении температуры часть их распадается, их размеры стано­вятся меньше.

Взаимное притяжение ведет к тому, что средний раз­мер сложной молекулы воды в жидкой воде значи­тельно превышает размеры одной молекулы воды. Такое необычайное молекулярное строение воды обу­словливает ее необычайные физико-химические свой­ства.

Какова должна быть плотность воды?

Правда, очень странный вопрос? Вспомните, как была установлена единица массы - один грамм. Это масса одного кубического сантиметра воды. Значит, не может быть никакого сомнения в том, что плотность воды должна быть только такой, какая она есть. Можно ли в этом сомневаться? Можно. Теоретики подсчитали, что если бы вода не сохраняла рыхлую, льдоподобную структуру в жидком состоянии и ее молекулы были бы упакованы плотно, то и плотность воды была бы гораздо выше. При 25°С она была бы равна не 1,0, а 1,8 г/см3.

При какой температуре вода должна кипеть?

Этот вопрос тоже, конечно, странен. Ведь вода кипит при ста градусах. Это знает каждый. Больше того, всем известно, что именно температура кипения воды при нормальном атмосферном давлении и выбрана в каче­стве одной из опорных точек температурной шкалы, условно обозначенной 100°С.

Однако вопрос поставлен иначе: при какой темпера­туре вода должна кипеть? Ведь температуры кипения различных веществ не случайны. Они зависят от поло­жения элементов, входящих в состав их молекул, в периодической системе Менделеева.

Если сравнивать между собой одинаковые по составу химические соединения различных элементов, принад­лежащих к одной и той же группе таблицы Менделеева, то легко заметить, что чем меньше атомный номер эле­мента, чем меньше его атомный вес, тем ниже темпера­тура кипения его соединений. Вода по химическому составу может быть названа гидридом кислорода. Н2Те, H2Se и H2S - химические аналоги воды. Если просле­дить за температурами их кипения и сопоставить, как изменяются температуры кипения гидридов в других группах периодической системы, то можно довольно точно определить температуру кипения любого гидрида, так нее как и любого другого соединения. Сам Менделе­ев таким способом смог предсказать свойства химиче­ских соединений еще не открытых элементов.

Если же определить температуру кипения гидрида кислорода по положению его в периодической таблице, то окажется, что вода должна кипеть при -80° С. Следо­вательно, вода кипит приблизительно на сто восемьде­сят градусов выше, чем должна кипеть. Температура кипения воды - это наиболее обычное ее свойство - оказывается необычайным и удивительным.

Свойства любого химического соединения зависят от приро­ды образующих его элементов и, следовательно, от их поло­жения в периодической систе­ме химических элементов Менделеева. На этих графиках приведены зависимости темпе­ратур кипения и плавления водородных соединений IV и VI группы периодической системы. Вода является порази­тельным исключением. Благо­даря очень малому радиусу протона силы взаимодействия между ее молекулами столь велики, что разделить их очень трудно, поэтому вода кипит и плавится при ано­мально высоких температурах.

График А. Нормальная зави­симость температуры кипения гидридов элементов IV группы от их положения в таблице Менделеева.

График Б. Среди гидридов элементов VI группы вода об­ладает аномальными свойства­ми: вода должна была бы ки­петь при минус 80 – минус 90° С, а кипит при плюс 100° С.

График В. Нормальная зави­симость температуры плавле­ния гидридов элементов IV группы от их положения в таблице Менделеева.

График Г. Среди гидридов элементов VI группы вода на­рушает порядок: должна была бы плавиться при минус 100 °С, а ледяные сосульки тают при 0°С.

При какой температуре вода замерзает?

Не правда ли, вопрос не менее странен, чем предыду­щие? Ну кто же не знает, что вода замерзает при нуле градусов? Это вторая опорная точка термометра. Это самое обычное свойство воды. Но ведь и в этом случае можно спросить: при какой температуре вода должна замерзать в соответствии со своей химической приро­дой? Оказывается, гидрид кислорода на основании егс положения в таблице Менделеева должен был бы за­твердевать при ста градусах ниже нуля.

Сколько существует жидких состояний воды?

На такой вопрос не так просто ответить. Конечно, тоже одно - привычная нам всем жидкая вода. Но вода в жидком состоянии обладает такими необыкно­венными свойствами, что приходится задуматься: пра­вилен ли такой простой, казалось бы, не вызывающий

никаких сомнений ответ? Вода - единственное в мире вещество, которое после плавления сначала сжимается, а затем по мере повышения температуры начинает рас­ширяться. Примерно при 4°С у воды наибольшая плот­ность. Эту редкостную аномалию в свойствах воды объ­ясняют тем, что в действительности жидкая вода представляет собой сложный раствор совершенно необы­чайного состава: это раствор воды в воде.

При плавлении льда сначала образуются крупные сложные молекулы воды. Они сохраняют остатки рых­лой кристаллической структуры льда и растворены в обычной низкомолекулярной воде. Поэтому сначала плотность воды низкая, но с повышением температуры эти большие молекулы разрушаются, и поэтому плот­ность воды растет, пока не начнет преобладать обычное тепловое расширение, при котором плотность воды снова падает. Если это верно, то возможны несколько состояний воды, только их никто не умеет разделить. И пока неизвестно, удастся ли когда-нибудь это сделать. Такое необычайное свойство воды имеет огромное значение для жизни. В водоемах перед наступлением зимы постепенно охлаждающаяся вода опускается вниз, пока температура всего водоема не достигнет 4°С. При дальнейшем охлаждении более холодная вода остается сверху и всякое перемешивание прекращается. В результате создается необычайное положение: тон­кий слой холодной воды становится как бы «теплым одеялом» для всех обитателей подводного мира. При 4°С они чувствуют себя явно неплохо.

Что должно быть легче - вода или лед?

Кто же этого не знает... Ведь лед плавает на воде. В океане плавают гигантские айсберги . Озера зимой покрыты плавающим сплошным слоем льда. Конечно, лед легче воды.

Но почему «конечно»? Разве это так ясно? Наоборот, объем всех твердых тел при плавлении увеличивается, и они тонут в своем собственном расплаве. А вот лед плавает в воде. Это свойство воды - аномалия в природе, исключение, и притом совершенно замечательное исключение.

Положительные заряды в мо­лекуле воды связаны с атома­ми водорода. Отрицательные заряды - это валентные элек­троны кислорода. Их взаим­ное расположение в молекуле воды можно изобразить в ви­де простого тетраэдра.

Попробуем вообразить, как выглядел бы мир, если бы вода обладала нормальными свойствами и лед был бы, как и полагается любому нормальному веществу, плотнее жидкой воды. Зимой намерзающий сверху более плотный лед тонул бы в воде, непрерывно опускаясь на дно водоема. Летом лед, защищенный толщей холодной воды, не мог бы растаять. Постепенно все озера, пруды, реки, ручьи промерзли бы нацело, превратившись в гигантские ледяные глыбы. Наконец, промерзли бы моря, а за ними и океаны. Наш прекрасный цветущий зеленый мир стал бы сплошной ледяной пустыней, кое-где покрытой тон­ким слоем талой воды.

Сколько существует льдов?

В природе на нашей Земле - один: обычный лед. Лед - горная порода с необычайными свойствами. Он твердый, но течет, как жидкость, и существуют огром­ные ледяные реки, медленно стекающие с высоких гор. Лед изменчив - он непрерывно исчезает и образуется вновь. Лед необычайно прочен и долговечен - десятки тысячелетий хранит он в себе без изменений тела мамонтов, случайно погибших в ледниковых трещинах. В своих лабораториях человек сумел открыть еще, по крайней мере, шесть различных, не менее удиви­тельных льдов. В природе их найти нельзя. Они могут существовать только при очень высоких давлениях. Обычный лед сохраняется до давления 208 МПа (мегапаскалей), но при этом давлении он плавится при - 22 °С. Если давление выше, чем 208 МПа, возникает плот­ный лед - лед-Ш. Он тяжелее воды и тонет в ней. При более низкой температуре и большем давлении - до 300 МПа - образуется еще более плотный лед-П. Дав­ление сверх 500 МПа превращает лед в лед-V. Этот лед можно нагреть почти до 0 ° С, и он не растает, хотя и нахо­дится под огромным давлением. При давлении около 2ГПа (гигапаскалей) возникает лед-VI. Это буквально горячий лед - он выдерживает, не плавясь, темпера­туру 80° С. Лед-VII, найденный при давлении ЗГПа, пожалуй, можно назвать раскаленным льдом. Это самый плотный и тугоплавкий из известных льдов. Он плавится только при 190° выше нуля.

Лед-VII обладает необыкновенно высокой твердостью. Этот лед может стать даже причиной вне­запных катастроф. В подшипниках, в которых враща­ются валы мощных турбин электростанций, развива­ется огромное давление. Если в смазку попадет хотя бы немного воды, она замерзнет, несмотря на то что темпе­ратура подшипников очень высока. Образовавшиеся частицы льда-VII, обладающие огромной твердостью, начнут разрушать вал и подшипник и быстро выведут их из строя.

Может быть, лед и в космосе есть?

Как будто бы есть, и при этом очень странный. Но открыли его ученые на Земле, хотя такой лед на нашей планете существовать не может. Плотность всех извест­ных в настоящее время льдов даже при очень высоких давлениях, лишь очень немного превышает 1 г/см3. Плотность гексагональной и кубической модификации льда при очень низких давлениях и температурах, даже близких к абсолютному нулю, немного меньше едини­цы. Их плотность равна 0,94 г/см3.

Но оказалось, что в вакууме , при ничтожных давле­ниях и при температурах ниже -170° С, при условиях, когда образование льда происходит при его конденса­ции из пара на охлаждаемой твердой поверхности, воз­никает совершенно удивительный лед. Его плотность... 2,3 г/см3. Все известные до сих пор льды кристалличе­ские, а этот новый лед, по-видимому, аморфный, он характеризуется беспорядочным относительным распо­ложением отдельных молекул воды; определенная кри­сталлическая структура у него отсутствует. По этой причине его иногда называют стеклянным льдом. Уче­ные уверены, что этот удивительный лед должен возникать в космических условиях и играть боль­шую роль в физике планет и комет. Открытие такого сверхплотного льда было для физиков неожиданным.

Что нужно, чтобы лед растаял?

Очень много тепла. Гораздо больше, чем для плавле­ния такого лее количества любого другого вещества. Ис­ключительно большая удельная теплота плавления -80 кал (335 Дж) на грамм льда - таклее аномальное свойство воды. При замерзании воды такое нее количе­ство тепла снова выделяется.

Когда наступает зима, образуется лед, выпадает снег и вода отдает обратно тепло, подогревает землю и воз­дух. Они противостоят холоду и смягчают переход к суровой зиме. Благодаря этому замечательному свойст­ву воды на нашей планете существует осень и весна.

Сколько тепла нужно, чтобы нагреть воду?

Очень много. Больше, чем для нагревания равного количества любого другого вещества. Чтобы нагреть грамм воды на один градус, необходима одна калория (4,2 Дж). Это больше чем вдвое превышает теплоем­кость любого химического соединения.

Вода - вещество, необычайное далее в самых обы­денных для нас свойствах. Конечно, эта способность воды имеет очень большое значение не только при варке обеда на кухне. Вода - это великий распредели­тель тепла по Земле. Нагретая Солнцем под экватором, она переносит тепло в Мировом океане гигантскими потоками морских течений в далекие полярные обла­сти, где жизнь возможна только благодаря этой удиви­тельной особенности воды.

Почему в море вода соленая?

Это, пожалуй, одно из самых важных следствий одного из самых удивительных свойств воды. В ее моле­куле центры положительных и отрицательных зарядов сильно смещены относительно друг друга. Поэтому вода обладает исключительно высоким, аномальным значе­нием диэлектрической проницаемости. Для воды е = 80, а для воздуха и вакуума е = 1. Это значит, что два лю­бых разноименных заряда в воде взаимно притяги­ваются друг к другу с силой, в 80 раз меньшей, чем в воздухе. Ведь по закону Кулона:

Но все же межмолекулярные связи во всех телах, определяющие прочность тела, обусловлены взаимо­действием между положительными зарядами атомных ядер и отрицательными электронами. На поверхности тела, погруженного в воду, силы, действующие между молекулами или атомами, ослабевают под влиянием воды почти в сотню раз. Если оставшаяся прочность связи между молекулами становится недостаточной, чтобы противостоять действию теплового движения, молекулы или атомы тела начинают отрываться от его поверхности и переходят в воду. Тело начинает раство­ряться, распадаясь либо на отдельные молекулы, как сахар в стакане чаю, либо на заряженные частицы - ионы, как поваренная соль.

Именно благодаря аномально высокой диэлектриче­ской проницаемости вода - один из самых сильных растворителей. Она даже способна растворить любую горную породу на земной поверхности. Медленно и неотвратимо она разрушает даже граниты, выщелачи­вая из них легкорастворимые составные части.

Ручьи, речки и реки сносят растворенные водой при­меси в океан. Вода из океана испаряется и вновь возвра­щается на землю, чтобы снова и снова продолжать свою вечную работу. А растворенные соли остаются в морях и океанах.

Не думайте, что вода растворяет и сносит в море только то, что легко растворимо, и что в морской воде содержится только обычная соль, которая стоит на обе­денном столе. Нет, морская вода содержит в себе почти все элементы, существующие в природе. В ней есть и магний, и кальций, и сера, и бром, и йод, и фтор. В меньшем количестве в ней найдены железо, медь, никель, олово, уран, кобальт, даже серебро и золото. Свыше шестидесяти элементов нашли химики в морской воде. Наверное, будут найдены и все осталь ные. Больше всего в морской воде поваренной соли. Поэтому вода в море соленая.

Можно ли бегать по поверхности воды?

Можно. Чтобы в этом убедиться, посмотрите летом на поверхность любого пруда или озера. По воде не только ходит, но и бегает немало живого и быстрого народца. Если учесть, что площадь опоры лапок у этих насекомых очень мала, то нетрудно понять, что, несмо­тря на их небольшой вес, поверхность воды выдержи-вает, не прорываясь, значительное давление.

Может ли вода течь вверх?

Да, может. Это происходит всегда и повсеместно. Сама поднимается вода вверх в почве, смачивая всю толщу земли от уровня грунтовых вод. Сама поднима­ется вода вверх по капиллярным сосудам дерева и помогает растению доставлять растворенные питатель­ные вещества на большую высоту - от глубоко скры­тых в земле корней к листьям и плодам. Сама движется вода вверх в порах промокательной бумаги, когда вам приходится высушивать кляксу, или в ткани полотенца, когда вытираете лицо. В очень тонких трубочках - в капиллярах - вода может подняться на высоту до нескольких метров.

Чем это объясняется?

Еще одной замечательной особенностью воды - ее исключительно большим поверхностным натяжением. Молекулы воды на ее поверхности испытывают дей­ствие сил межмолекулярного притяжения только с одной стороны, а у воды это взаимодействие аномально велико. Поэтому каждая молекула на ее поверхности втягивается внутрь жидкости. В результате возникает сила, стягивающая поверхность жидкости, У воды она особенно велика: ее поверхностное натяжение состав­ляет 72 мН/м (миллиньютона на метр).

Может ли вода помнить?

Такой вопрос звучит, надо признать, очень необыч­но, но он вполне серьезен и очень важен. Он касается большой физико-химической проблемы, которая в своей наиболее важной части еще не исследована. Этот вопрос только поставлен в науке, но ответа на него она еще не нашла.

Вопрос в том: влияет или нет предыдущая история воды на ее физико-химические свойства и возможно ли, исследуя свойства воды, узнать, что происходило с ней ранее, - заставить саму воду «вспомнить» и расска­зать нам об этом. Да, возможно, как это ни кажется удивительным. Проще всего это можно понять на про­стом, но очень интересном и необычайном примере - на памяти льда.

Лед - это ведь вода. Когда вода испаряется - меняется изотопный состав воды и пара. Легкая вода испаряется хотя и в ничтожной степени, но быстрее тяжелой.

При испарении природной воды состав изменяется по изотопному содержанию не только дейтерия, но и тяжелого кислорода. Эти изменения изотопного состава пара очень хорошо изучены, и так же хорошо исследо­вана их зависимость от температуры.

Недавно ученые поставили замечательный опыт. В Арктике, в толще огромного ледника на севере Гренлан­дии, была заложена буровая скважина и высверлен и извлечен гигантский ледяной керн длиной почти полтора километра. На нем были отчетливо различимы годичные слои нараставшего льда. По всей длине керна эти слои были подвергнуты изотопному анализу, и по относительному содержанию тяжелых изотопов водо рода и кислорода - дейтерия и 18О были определены температуры образования годичных слоев льда на каждом участке керна. Дата образования годичного слоя определялась прямым отсчетом. Таким образом была восстановлена климатическая обстановка на Земле на протяжении тысячелетия. Вода все это сумела запомнить и записать в глубинных слоях гренландского ледника.

В результате изотопных анализов слоев льда была построена учеными кривая изменения климата на Земле. Оказалось, средняя температура у нас подвер­жена вековым колебаниям. Было очень холодно в XV в., в конце XVII в. и в начале XIX. Самые жаркие годы были 1550 и 1930.

Тогда в чем же состоит загадка «памяти» воды?

Дело в том, что за последние годы в науке постепенно накопилось много поразительных и совершенно непо­нятных фактов. Одни из них установлены твердо, дру­гие требуют количественного надежного подтвержде­ния, и все они еще ждут своего объяснения.

Например, еще никто не знает, что происходит с водой, протекающей сквозь сильное магнитное поле. Физики-теоретики совершенно уверены, что ничего с ней при этом происходить не может и не происходит, подкрепляя свою убежденность вполне достоверными теоретическими расчетами, из которых следует, что после прекращения действия магнитного поля вода должна мгновенно вернуться в прежнее состояние и остаться такой, какой была. А опыт показывает, что она изменяется и становится другой.

Велика ли разница? Судите сами. Из обычной воды в паровом котле растворенные соли, выделяясь, отлага­ются плотным и твердым, как камень, слоем на стенках котельных труб, а из омагниченной воды (так ее теперь стали называть в технике) выпадают в виде рыхлого осадка, взвешенного в воде. Вроде разница невелика. Но это зависит от точки зрения. По мнению работников тепловых электростанций, эта разница исключительно валена, так как омагниченная вода обеспечивает нор­мальную и бесперебойную работу гигантских электро­станций: не зарастают стены труб паровых котлов, выше теплопередача, больше выработка электроэнер­гии. На многих тепловых станциях давно установлена магнитная подготовка воды, а как и почему она работа­ет, не знают ни инженеры, ни ученые. Кроме того, на опыте подмечено, что после магнитной обработки воды в ней ускоряются процессы кристаллизации, растворе­ния, адсорбции, изменяется смачивание... правда, во всех случаях эффекты невелики и трудно воспроизво­димы.

Действие магнитного поля на воду (обязательно быстротекущую) длится малые доли секунды, а «по­мнит» вода об этом десятки часов. Почему - неизвест­но. В этом вопросе практика далеко опередила науку. Ведь далее неизвестно, на что именно действует магнит­ная обработка - на воду или на содержащиеся в ней примеси. Чистой-то воды ведь не бывает.

«Память» воды не ограничивается только сохране­нием последствий магнитного воздействия. В науке существуют и постепенно накапливаются многие факты и наблюдения, показывающие, что вода как будто бы «помнит» и о том, что она раньше была замо­рожена.

Талая вода, недавно получившаяся при таянии куска льда, как будто бы тоже отличается от той воды, из которой этот кусок льда образовался. В талой воде быстрее и лучше прорастают семена, быстрее развива­ются ростки; далее как будто бы быстрее растут и развиваются цыплята, которые получают талую воду. Кроме удивительных свойств талой воды, установлен­ных биологами, известны и чисто физико-химические отличия, например талая вода отличается по вязкости, по значению диэлектрической проницаемости. Вязкость талой воды принимает свое обычное для воды значение только через 3-6 суток после плавления. Почему это так (если это так), толее никто не знает.

Большинство исследователей называют эту область явлений «структурной памятью» воды, считая, что все эти странные проявления влияния предыдущей исто­рии воды на ее свойства объясняются изменением тон­кой структуры ее молекулярного состояния. Может быть, это и так, но... назвать - это еще не значит объяснить. По-прежнему в науке существует важная проблема: почему и как вода «помнит», что с нею было.

Откуда на Земле взялась вода?

Вечно по всем направлениям Вселенную пронизы­вают потоки космических лучей - потоки частиц с огромной энергией. Больше всего в них протонов - ядер атомов водорода. В своем движении в космосе наша планета непрерывно подвергается «протонному обстрелу». Пронизывая верхние слои земной атмосфе­ры, протоны захватывают электроны, превращаются в атомы водорода и немедленно вступают в реакцию с кислородом, образуя воду. Расчет показывает, что еже­годно почти полторы тонны такой «космической» воды рождается в стратосфере. На большой высоте при низкой температуре упругость водяного пара очень мала и молекулы воды, постепенно накапливаясь, конденсиру­ются на частицах космической пыли, образуя таин­ственные серебристые облака. Ученые предполагают, что они состоят из мельчайших ледяных кристалликов, возникших из такой «космической» воды. Подсчет показал, что воды, появившейся таким образом на Земле за всю ее историю, как раз хватило бы, чтобы родились все океаны нашей планеты. Значит, вода при­шла на Землю из космоса? Но...

Геохимики не считают воду небесной гостьей. Они убеждены, что у нее земное происхождение. Породы, слагающие земную мантию, которая лежит между цен­тральным ядром Земли и земной корой, под влиянием накапливающегося тепла радиоактивного распада изо­топов местами расплавлялись. Из них выделялись лету­чие составные части: азот , хлор, соединения углерода, серы, больше всего выделялось водяных паров.

Какое же количество могли выбросить при изверже­ниях все вулканы за все время существования нашей планеты?

Ученые подсчитали и это. Оказалось, что такой изверженной «геологической» воды тоже как раз хва­тило бы, чтобы заполнить все океаны.

В центральных частях нашей планеты, образующих ее ядро, воды, наверное, нет. Вряд ли она там может существовать. Одни ученые считают, что далее если и присутствуют там и кислород и водород, то они должны вместе с другими элементами образовывать новые для науки, неизвестные металлоподобные формы соедине­ний, обладающих высокой плотностью, устойчивых при тех огромных давлениях и температурах, что царят в центре земного шара.

Другие исследователи уверены, что ядро земного ша­ра состоит из железа. Что на самом деле находится не так уж далеко от нас, у нас под ногами, на глубинах, пре­вышающих 3 тыс. км, пока еще никому не известно, но воды там, наверное, нет.

Больше всего воды в недрах Земли находится в ее мантии - слоях, расположенных под земной корой и простирающихся примерно на глубину до 3 тыс. км. Геологи считают, что в мантии сосредоточено не менее 13 млрд. куб. км воды.

Самый верхний слой земной оболочки - земная кора содержит еще примерно 1,5 млрд. куб. км воды. Почти вся вода в этих слоях находится в связанном состоянии - она входит в состав горных пород и мине­ралов, образуя гидраты. В этой воде не выкупаешься и ее не выпьешь.

Гидросферу - водную оболочку земного шара образуют еще примерно 1,5 млрд. куб. км воды. Почти все это количество содержится в Мировом океане. Он занимает около 70% всей земной поверхности, его пло­щадь - свыше 360 млн. кв. км. Из космоса наша планета выглядит совсем не как земной шар, а, скорее, как водяной шар.

Средняя глубина Океана - около 4 км. Если срав­нить эту «бездонную глубину» с размерами самого зем­ного шара, средний диаметр которого равенкм, то тогда, наоборот, придется признать, что мы живем на мокрой планете, она только слегка смочена водой, да и то не по всей поверхности. Вода в океанах и морях соле­ная - пить ее нельзя.

На суше воды совсем немного: всего только около 90 млн. куб. км. Из них более 60 млн. куб. км находится под землей, почти все это соленые воды. Около 25 млн. куб. км твердой воды лежит в горных и ледниковых рай­онах, в Арктике, в Гренландии, в Антарктиде. Эти запасы воды на земном шаре заповедны.

Во всех озерах, болотах, созданных человеком водо­хранилищах и в почве содержится еще 500 тыс. куб. км воды.

Вода присутствует и в атмосфере. В воздухе всегда, даже в самых безводных пустынях, где нет ни капли воды и никогда не идет дождь, и то находится немало водяных паров. Кроме того, по небу всегда плывут обла­ка, собираются тучи, идет снег, льют дожди, над землей стелются туманы. Все эти запасы воды в атмосфере подсчитаны точно: все они, вместе взятые, составляют всего только 14 тыс. куб. км.

Идея древних философов о том, что все в природе образуют четыре элемента (стихии): земля, воздух, огонь и вода, просуществовала вплоть до Средних веков. В 1781 Г.Кавендиш сообщил о получении им воды при сжигании водорода, но не оценил в полной мере важности своего открытия. Позже (1783) А.Лавуазье доказал, что вода вовсе не элемент, а соединение водорода и кислорода. Й.Берцелиус и П.Дюлонг (1819), а также Ж.Дюма и Ж.Стас (1842) установили весовой состав воды, пропуская водород через оксид меди, взятый в строго определенном количестве, и взвешивая образовавшиеся медь и воду. Исходя из этих данных, они определили отношение Н:О для воды. Кроме того, в 1820-х годах Ж.Гей-Люссак измерил объемы газообразных водорода и кислорода, которые при взаимодействии давали воду: они соотносились между собой как 2:1, что, как мы теперь знаем, отвечает формуле Н 2 О. Распространенность . Вода покрывает 3/4 поверхности Земли. Тело человека состоит из воды примерно на 70%, яйцо – на 74%, а некоторые овощи – это почти одна вода. Так, в арбузе ее 92%, в спелых томатах – 95%.

Вода в природных резервуарах никогда не бывает однородной по составу: она проходит через горные породы, соприкасается с почвой и воздухом, а потому содержит растворенные газы и минеральные вещества. Более чистой является дистиллированная вода.

Морская вода . Состав морской воды различается в разных регионах и зависит от притока пресных вод, скорости испарения, количества осадков, таяния айсбергов и т.д. См. также ОКЕАН. Минеральная вода . Минеральная вода образуется при просачивании обычной воды сквозь породы, содержащие соединения железа, лития, серы и других элементов. Мягкая и жесткая вода . Жесткая вода содержит в больших количествах соли кальция и магния. Они растворяются в воде при протекании по породам, сложенным гипсом (С aSO 4 ), известняком (СаСО 3 ) или доломитом (карбонаты Mg и Са). В мягкой воде этих солей мало. Если вода содержит сульфат кальция, то говорят, что она обладает постоянной (некарбонатной) жесткостью. Ее можно умягчить добавлением карбоната натрия; это приведет к осаждению кальция в виде карбоната, а в растворе останется сульфат натрия. Соли натрия не вступают в реакцию с мылом, и расход его будет меньше, чем в присутствии солей кальция и магния.

Вода, обладающая временной (карбонатной) жесткостью, содержит бикарбонаты кальция и магния; ее можно умягчить несколькими способами: 1) нагреванием, приводящим к разложению бикарбонатов на нерастворимые карбонаты; 2) добавлением известковой воды (гидроксида кальция), в результате чего бикарбонаты превращаются в нерастворимые карбонаты; 3) с помощью обменных реакций.

Молекулярная структура . Анализ данных, полученных из спектров поглощения, показал, что три атома в молекуле воды образуют равнобедренный треугольник с двумя атомами водорода в основании и кислородом в вершине: Валентный угол НОН равен 104,31 ° , длина связи О–Н составляет 0,99 Å (1 Å = 10 –8 см), а расстояние Н–Н равно 1,515 Å . Атомы водорода так глубоко «внедрены» в атом кислорода, что молекула оказывается почти сферической; ее радиус – 1,38 Å . ВОДА Физические свойства . Благодаря сильному притяжению между молекулами у воды высокие температуры плавления (0 ° С) и кипения (100 ° С). Толстый слой воды имеет голубой цвет, что обусловливается не только ее физическими свойствами, но и присутствием взвешенных частиц примесей. Вода горных рек зеленоватая из-за содержащихся в ней взвешенных частиц карбоната кальция. Чистая вода – плохой проводник электричества, ее удельная электропроводность равна 1,5 Ч 10 –8 Ом –1 Ч см –1 при 0 ° С. Сжимаемость воды очень мала: 43 Ч 10 –6 см 3 на мегабар при 20 ° С. Плотность воды максимальна при 4 ° С; это объясняется свойствами водородных связей ее молекул. Давление паров . Если оставить воду в открытой емкости, то она постепенно испарится – все ее молекулы перейдут в воздух. В то же время вода, находящаяся в плотно закупоренном сосуде, испаряется лишь частично, т.е. при определенном давлении водяных паров между водой и воздухом, находящимся над ней, устанавливается равновесие. Давление паров в равновесии зависит от температуры и называется давлением насыщенного пара (или его упругостью). Когда давление насыщенного пара сравнивается с внешним давлением, вода закипает. При обычном давлении 760 мм рт.ст. вода кипит при 100 ° С, а на высоте 2900 м над уровнем моря атмосферное давление падает до 525 мм рт.ст. и температура кипения оказывается равной 90 ° С.

Испарение происходит даже с поверхности снега и льда, именно поэтому высыхает на морозе мокрое белье.

Вязкость воды с ростом температуры быстро уменьшается и при 100

° С оказывается в 8 раз меньше, чем при 0 ° С. Химические свойства . Каталитическое действие . Очень многие химические реакции протекают только в присутствии воды. Так, окисление кислородом не происходит в сухих газах, металлы не реагируют с хлором и т.д. Гидраты . Многие соединения всегда содержат определенное число молекул воды и называются поэтому гидратами. Природа образующихся при этом связей может быть разной. Например, в пентагидрате сульфата меди, или медном купоросе CuSO 4 Ч 5H 2 O , четыре молекулы воды образуют координационные связи с ионом сульфата, разрушающиеся при 125 ° С; пятая же молекула воды связана так прочно, что отрывается лишь при температуре 250 ° С. Еще один стабильный гидрат – серная кислота; она существует в двух гидратных формах, SO 3 Ч H 2 O и SO 2 (OH) 2 , между которыми устанавливается равновесие. Ионы в водных растворах тоже часто бывают гидратированы. Так, Н + всегда находится в виде иона гидроксония Н 3 О + или Н 5 О 2 + ; ион лития – в виде Li (H 2 O) 6 + и т.д. Элементы как таковые редко находятся в гидратированной форме. Исключение составляют бром и хлор, которые образуют гидраты Br 2 Ч 10 H 2 O и Cl 2 Ч 6H 2 О . Некоторые обычные гидраты содержат кристаллизационную воду, например хлорид бария BaCl 2 Ч 2H 2 O , английская соль (сульфат магния) MgSO 4 Ч 7H 2 O , питьевая сода (карбонат натрия) Na 2 CO 3 Ч 10 H 2 O , глауберова соль (сульфат натрия) Na 2 SO 4 Ч 10 H 2 O. Соли могут образовывать несколько гидратов; так, сульфат меди существует в виде CuSO 4 Ч 5H 2 O, CuSO 4 Ч 3H 2 O и CuSO 4 Ч H 2 O . Если давление насыщенного пара гидрата больше, чем атмосферное давление, то соль будет терять воду. Этот процесс называется выцветанием (выветриванием). Процесс, при котором соль поглощает воду, называется расплыванием . Гидролиз . Гидролиз – это реакция двойного разложения, в которой одним из реагентов является вода; трихлорид фосфора PCl 3 легко вступает в реакцию с водой: PCl 3 + 3H 2 O = P (OH) 3 + 3HCl Аналогичным образом гидролизуются жиры с образованием жирных кислот и глицерина. Сольватация . Вода – полярное соединение, а потому охотно вступает в электростатическое взаимодействие с частицами (ионами или молекулами) растворенных в ней веществ. Образовавшиеся в результате сольватации молекулярные группы называются сольватами. Слой молекул воды, связанный с центральной частицей сольвата силами притяжения, составляет сольватную оболочку. Впервые понятие сольватации было введено в 1891 И.А.Каблуковым. Тяжелая вода . В 1931 Г.Юри показал, что при испарении жидкого водорода его последние фракции оказываются тяжелее обычного водорода вследствие содержания в них в два раза более тяжелого изотопа. Этот изотоп называется дейтерием и обозначается символом D . По своим свойствам вода, содержащая вместо обычного водорода его тяжелый изотоп, существенно отличается от обычной воды.

В природе на каждые 5000 массовых частей Н

2 О приходится одна часть D 2 O . Это соотношение одинаково для речной, дождевой, болотной воды, подземных вод или кристаллизационной воды. Тяжелая вода используется в качестве метки при исследовании физиологических процессов. Так, в моче человека соотношение между Н и D тоже равно 5000:1. Если дать пациенту выпить воду с большим содержанием D 2 O , то, последовательно измеряя долю этой воды в моче, можно определить скорость выведения воды из организма. Оказалось, что около половины выпитой воды остается в организме даже спустя 15 сут. Тяжелая вода, вернее, входящий в ее состав дейтерий – важный участник реакций ядерного синтеза.

Третий изотоп водорода – тритий, обозначаемый символом Т. В отличие от первых двух он радиоактивен и обнаружен в природе лишь в малых количествах. В пресноводных озерах соотношение между ним и обычным водородом равно 1:10

18 , в поверхностных водах – 1:10 19 , в глубинных водах он отсутствует. См. также ВОДОРОД. ЛЕД Лед, твердая фаза воды, используется в основном как хладагент. Он может находиться в равновесии с жидкой и газообразной фазами или только с газообразной фазой. Толстый слой льда имеет голубоватый цвет, что связано с особенностями преломления им света. Сжимаемость льда очень низка.

Лед при нормальном давлении существует только при температуре 0

° С или ниже и обладает меньшей плотностью, чем холодная вода. Именно поэтому айсберги плавают в воде. При этом, поскольку отношение плотностей льда и воды при 0 ° С постоянно, лед всегда выступает из воды на определенную часть, а именно на 1/5 своего объема. См. также АЙСБЕРГИ. ПАР Пар – газообразная фаза воды. Вопреки общепринятому мнению, он невидим. Тот «пар», который вырывается из кипящего чайника, – это на самом деле множество мельчайших капелек воды. Пар обладает свойствами, очень важными для поддержания жизни на Земле. Хорошо известно, например, что под действием солнечного тепла вода с поверхности морей и океанов испаряется. Образующиеся водяные пары поднимаются в атмосферу и конденсируются, а затем выпадают на землю в виде дождя и снега. Без такого круговорота воды наша планета давно превратилась бы в пустыню.

Пар имеет множество применений. С одними мы хорошо знакомы, о других только слышали. Среди наиболее известных устройств и механизмов, работающих с применением пара, – утюги, паровозы, пароходы, паровые котлы. Пар вращает турбины генераторов на тепловых электростанциях.

См. также КОТЕЛ ПАРОВОЙ; ДВИГАТЕЛЬ ТЕПЛОВОЙ; ТЕПЛОТА; ТЕРМОДИНАМИКА. ЛИТЕРАТУРА Эйзенберг Д., Кауцман В. Структура и свойства воды . Л., 1975
Зацепина Г.Н. Физические свойства и структура воды . М., 1987

К.х.н. О.В. Мосин

МОЛЕКУЛЯРНАЯ ФИЗИКА ВОДЫ В ТРЕХ ЕЕ АГРЕГАТНЫХ СОСТОЯНИЯХ

Вода, окись водорода, H 2 0, простейшее устойчивое в обычных условиях химическое соединение водорода с кислородом (11,19% водорода и 88,81% кислорода по массе). Вода – это бесцветная жидкость без запаха и вкуса (в толстых слоях имеет голубоватый цвет), которой принадлежит важнейшая роль в геологической истории Земли и возникновении жизни, в формировании физической и химической среды, климата и погоды на нашей планете. Вода - обязательный компонент практически всех технологических процессов - как сельскохозяйственного, так и промышленного производства.

Вода входит в состав всех живых организмов, причём в целом в них содержится лишь вдвое меньше воды, чем во всех реках Земли. В живых организмах количество воды, за исключением семян и спор, колеблется между 60 и 99,7% по массе. По словам французского биолога Э. Дюбуа-Реймона, живой организм есть l"eau animée (одушевлённая вода). Все воды Земли постоянно взаимодействуют между собой, а также с атмосферой, литосферой и биосферой.

Земной шар содержит около 16 млрд. км3 воды, что составляет 0,25 % массы всей нашей планеты. Из этого количества на долю гидросферы Земли (океаны, моря, озера, реки, ледники и подземные воды) приходится 1,386 млрд. км3. Пресные поверхностные воды (озера и реки) составляют всего лишь 0,2 млн. км3, а водяной пар атмосферы - 13 тыс. км3.

Общая масса распределенных по поверхности Земли снега и льда достигает примерно 2,5-3,0 x 1016 т, что составляет всего лишь 0,0004% массы всей нашей планеты. Однако, такого количества достаточно, чтобы покрыть всю поверхность Земного шара 53 метровым слоем, а если бы вся эта масса вдруг растаяла, превратившись в воду, то уровень Мирового Океана поднялся бы по сравнению с нынешним примерно на 64 метра.

Воды Земли пронизывают ее, начиная с самых больших высот стратосферы вплоть до огромных глубин земной коры, достигая мантии, и образуют непрерывную оболочку планеты - гидросферу, включающую в себя всю воду в жидком, твердом, газообразном, химически и биологически связном состоянии.

Гидросфера - водная оболочка Земли , включающая океаны, моря, озёра, водохранилища, реки, подземные воды, почвенную влагу, составляет около 1,4-1,5 млрд. км 3 , причём на долю воды суши приходится всего около 90 млн. км 3 . Из них подземные воды составляют 60, ледники 29, озёра 0,75, почвенная влага 0,075, реки 0,0012 млн. км 3 .

Гидросфера играла и играет основополагающую роль в геологической истории Земли, в формировании физической и химической среды, климата и погоды, в возникновении жизни на нашей планете. Она развивалась вместе и в тесном взаимодействии с литосферой, атмосферой, а затем и живой природой.

В атмосфере вода находится в виде пара, тумана и облаков, капель дождя и кристаллов снега (всего около 13-15 тыс. км 3). Около 10% поверхности суши постоянно занимают ледники. На севере и северо-востоке СССР, на Аляске и Севере Канады - общей площадью около 16 млн. км 2 всегда сохраняется подпочвенный слой льда (всего около 0,5 млн. км 3 .

В земной коре - литосфере содержится, по разным оценкам, от 1 до 1,3 млрд. км3 воды, что близко к содержанию её в гидросфере. В земной коре значительные количества воды находятся в связанном состоянии, входя в состав некоторых минералов и горных пород (гипс, гидратированные формы кремнезёма, гидросиликаты и др.). Огромные количества воды (13-15 млрд. км 3) сосредоточены в более глубоких недрах мантии Земли. Выход воды, выделявшейся из мантии в процессе разогревания Земли на ранних стадиях её формирования, и дал, по современным воззрениям, начало гидросфере. Ежегодное поступление воды из мантии и магматических очагов составляет около 1 км 3 .

Имеются данные о том, что вода, хотя бы частично, имеет «космическое» происхождение: протоны, пришедшие в верхнюю атмосферу от Солнца, захватив электроны, превращаются в атомы водорода, которые, соединяясь с атомами кислорода, дают H 2 O.

Вода встречается в природных условиях в трех состояниях: твердом - в виде льда и снега, жидком - в виде собственно воды, газообразном - в виде водяного пара. Эти состояния воды называют агрегатными состояниями, или соответственно твердой, жидкой и парообразной фазами. Переход воды из одной фазы в другую обусловлен изменением ее температуры и давления. На рис. 1 приведена диаграмма агрегатных состояний воды в зависимости от температуры t и давления P. Из рис.1. видно, что в области I вода находится только в твердом виде, в области II - только в жидком, в области III - только в виде водяного пара. Вдоль кривой AC она находится в состоянии равновесия между твердой и жидкой фазами (плавление льда и кристаллизация воды); вдоль кривой AB - в состоянии равновесия между жидкой и газообразной фазами (испарение воды и конденсация пара); вдоль кривой AD - в равновесии между твердой и газообразной фазами (сублимация водяного пара и возгонка льда).

Рис. 1. Диаграмма агрегатных состояний воды в области тройной точки А. I - лед. II - вода. III - водяной пар.

Равновесие фаз по рис.1 вдоль кривых AB, АС и AD надо понимать как динамическое равновесие, т. е. вдоль этих кривых число вновь образующихся молекул одной фазы строго равно числу вновь образующихся молекул другой фазы. Если, например, постепенно охлаждать воду при любом давлении, то в пределе окажемся на кривой AC, где будет наблюдаться вода при соответствующих температуре и давлении. Если постепенно нагревать лед при различном давлении, то окажемся на той же кривой равновесия АС, но со стороны льда. Аналогично будем иметь воду и водяной пар, в зависимости от того, с какой стороны будем подходить к кривой AB.

Все три кривые агрегатного состояния - АС (кривая зависимости температуры плавления льда от давления), АВ (кривая зависимости температуры кипения воды от давления), AD (кривая зависимости давления пара твердой фазы от температуры) - пересекаются в одной точке A, носящей название тройной точки. По современным исследованиям, значения давления насыщающих паров и температуры в этой точке соответственно равны: P = 610,6 Па (или 6,1 гПа = 4,58 мм рт. ст.), t = 0,01°C (или T = 273,16 К). Кроме тройной точки, кривая АВ проходит еще через две характерные точки - точку, соответствующую кипению воды при нормальном давлении воздуха с координатами P = 1,013·10 5 Па и t = 100°C, и точку с координатами P = 2,211·10 7 Па и t кр = 374,2°C, соответствующими критической температуре - температуре, только ниже которой водяной пар можно перевести в жидкое состояние путем сжатия.

Кривые АС, АВ, AD относящиеся к процессам перехода вещества из одной фазы в другую, описываются уравнением Клапейрона-Клаузиуса:

где T - абсолютная температура, отвечающая для каждой кривой соответственно температуре испарения, плавления, сублимации и т. д.; L - удельная теплота соответственно испарения, плавления, сублимации; V 2 – V 1 - разность удельных объемов соответственно при переходе от воды ко льду, от водяного пара к воде, от водяного пара ко льду.

Непосредственный опыт показывает, что природные воды суши при нормальном атмосферном давлении переохлаждаются (кривая AF) до некоторых отрицательных значений температуры не кристаллизуясь. Таким образом, вода обладает свойством переохлаждаться, т.е. принимать температуру ниже точки плавления льда. Переохлажденное состояние воды является состоянием метастабильным (неустойчивым), в котором начавшийся в какой-либо точке переход жидкой фазы в твердую продолжается непрерывно, пока не будет ликвидировано переохлаждение или пока не превратится в твердое тело вся жидкость. Способность воды принимать температуру ниже точки плавления льда была обнаружена впервые Фаренгейтом еще в 1724 г.

Таким образом, ледовые кристаллы могут возникать только в переохлажденной воде. Переход переохлажденной воды в твердое состояние – лед, происходит только при наличии в ней центров (ядер) кристаллизации, в качестве которых могут выступать взвешенные частицы наносов, находящиеся в воде, кристаллики льда или снега, поступающие в воду из атмосферы, кристаллики льда, образующиеся в переохлажденной воде в результате ее турбулентного поступательного движения, частицы других веществ, присутствующих в водной толще.

Рис. 2. Фазовая диаграмма воды. Ih, II - IX - формы льда; 1 - 8 - тройные точки.

Переохлаждение воды – термодинамическое состояние, при котором температура воды оказывается ниже температуры ее кристаллизации. Возникает это состояние в результате понижения температуры воды или же повышения температуры ее кристаллизации. Температура воды может быть понижена отводом тепла, что наиболее часто встречается в природе, или смешением ее с соленой, например морской, водой. Температура кристаллизации может быть повышена путем понижения давления.

В лабораторных условиях при большом давлении и интенсивном охлаждении дистиллированную воду можно переохладить до температуры порядка - 30, а капель - 50°С. От глубины переохлаждения воды зависит и скорость ее кристаллизации.

Таким образом, диаграмму агрегатных состояний воды - сплошная линия AD на рис. 1 - следует рассматривать как относящуюся к очень малым тепловым нагрузкам, когда влияние времени на преобразование фазы мало. При больших тепловых нагрузках процесс фазовых преобразований будет происходить согласно штриховой кривой AF.

Температура плавления льда (кривая AC) очень слабо зависит от давления. Практически кривая AC параллельна горизонтальной оси: при изменении давления от 610,6 до 1,013·10 5 Па температура плавления уменьшается всего лишь от 0,01 до 0°С. Однако эта температура понижается с увеличением давления только до определенного значения, затем она повышается и при очень высоком давлении достигает значения порядка 450°С (рис.1.2). Как следует из рис. 1.2, при высоком давлении лед может находиться и при положительной температуре. Насчитывают до десяти различных форм льда. Форма льда Ih, для которой характерно понижение температуры плавления с увеличением давления, соответствует обычному льду, образующемуся вследствие замерзания воды при нормальных условиях. Координаты тройных точек различных форм льда, обозначенных на рис.1.2 арабскими цифрами 1-8, приведены в табл. 1.1. Структура и физические свойства всех форм льда существенно отличаются от льда Ih.

Твердое тело (лед), как и жидкость, испаряется в широком диапазоне значений температуры и непосредственно переходит в газообразное состояние (возгонка), минуя жидкую фазу, - кривая AD. Обратный процесс, т. е. переход газообразной формы непосредственно в твердую (сублимация), осуществляется, также минуя жидкую фазу. Возгонка и сублимация льда и снега играют большую роль в природе.

Строение молекулы воды

Вода представляет собой сложное вещество, основной структурной единицей которого является молекула H 2 O, состоящая из двух атомов водорода и одного атома кислорода. Схем возможного взаимного расположения атомов H и O в молекуле H 2 O за весь период ее изучения было предложено несколько десятков; общепризнанная в настоящее время схема приведена на рис. 3.

Рис. 3. Схема строения молекулы воды: геометрия молекулы и электронные орбиты

Полную кинетическую энергию трехатомной молекулы типа H 2 O можно описать следующим выражением:

где и - скорости соответственно поступательного и вращательного движения молекулы; I x , I y , I z - моменты инерции молекулы относительно соответствующих осей вращения; m - масса молекулы.

Из этого уравнения видно, что полная энергия трехатомной молекулы типа H 2 O состоит из шести частей, отвечающих шести степеням свободы: трем поступательным и трем вращательным.

Из курса физики известно, что на каждую из этих степеней свободы при тепловом равновесии приходится одинаковое количество энергии, равное 1/2 kT, где k=R m /N A = 1,3807·10 -23 Дж/К - постоянная Больцмана; Т-абсолютная температура; N A = 6,0220·10 23 моль -1 - число Авогадро; kN A =R m = 8,3144 Дж/(моль·К) - универсальная газовая постоянная. Тогда полная кинетическая энергия такой молекулы равна:


Полная кинетическая энергия молекул, содержащихся в грамм-молекуле любого газа (пара), составит:

Полная кинетическая энергия W связана с удельной теплоемкостью cv при постоянном объеме формулой:

Подсчет удельной теплоемкости воды по этой формуле для водяного пара дает значение 25 Дж/(моль·К). По опытным данным, для водяного пара cv = 27,8 Дж/(моль·К), т. е. близко к расчетному значению.

Изучение молекулы воды с помощью спектрографических исследований позволило установить, что она имеет структуру как бы равнобедренного треугольника: в вершине этого треугольника расположен атом кислорода, а в основании его - два атома водорода. Угол при вершине составляет 104°27, а длина стороны - 0,096 нм. Эти параметры относятся к гипотетическому равновесному состоянию молекулы без ее колебаний и вращений.

Относительная молекулярная масса H 2 O зависит от относительной атомной массы ее составляющих и имеет различные значения, так как кислород и водород имеют изотопы.

Кислород имеет шесть изотопов: 14 O, 15 O, 16 O, 17 O, 18 O, 19 O, из которых стабильны только три, а водород три: 1 H (протий), 2 H (дейтерий), 3 H (тритий). Некоторые из изотопов радиоактивны, имеют короткое время полураспада и присутствуют в воде в незначительных количествах, другие же получены только искусственным путем и в природе не встречаются.

Таким образом, принимая во внимание изотопы кислорода и водорода, можно составить из них несколько видов молекулы H 2 O с различными относительными молекулярными массами. Из них наиболее распространены молекулы 1 H 2 16 O с относительными молекулярными массами 18 (обычная вода) и молекулы 2 H 2 16 O с относительными молекулярными массами 20. Последние молекулы образуют так называемую тяжелую воду. Тяжелая вода по своим физическим свойствам значительно отличается от обыкновенной воды.

Молекулярно-кинетическая теория вещества и воды

Структура воды в трех ее агрегатных состояниях еще не может считаться окончательно установленной. Существует ряд гипотез, объясняющих строение пара, воды и льда.

Эти гипотезы в большей или меньшей степени опираются на молекулярно-кинетическую теорию строения вещества, основы которой были заложены еще М.В. Ломоносовым. В свою очередь, молекулярно-кинетическая теория исходит из принципов классической механики, в которой молекулы (атомы) рассматриваются как шарики правильной формы, электрически нейтральные, идеально упругие. Такие молекулы подвержены лишь механическим соударениям и не испытывают никаких электрических сил взаимодействия. По этим причинам использование молекулярно-кинетической теории может лишь в первом приближении объяснить строение вещества.

Газ - в нашем случае водяной пар, - согласно молекулярно-кинетической теории, представляет собой собрание молекул. Расстояние между ними во много раз больше размеров самих молекул. Молекулы газа находятся в непрерывном беспорядочном движении, пробегая путь между стенками сосудов, в котором заключен газ, и сталкиваясь друг с другом на этом пути. Соударения молекул между собой происходят без потери механической энергии; они рассматриваются как соударения идеально упругих шариков. Удары молекул о стенки ограничивающего их сосуда обусловливают давление газа на эти стенки. Скорость движения молекул увеличивается с повышением температуры и уменьшается с ее падением.

Когда температура газа, уменьшаясь от более высоких значений, приближается к температуре кипения жидкости (для воды 100°C при нормальном давлении), скорость молекул уменьшается, и при соударении силы притяжения между ними становятся больше сил упругих отталкиваний при ударе и поэтому газ конденсируется в жидкость.

При искусственном сжижении газа температура его должна быть ниже так называемой критической, которой отвечает и критическое давление (п.1.1). При температуре выше критической газ (пар) никаким давлением не может быть переведен в жидкость.

Величина RT кр / (P кр V кр) для всех газов, в том числе и для водяного пара, должна быть равна 8/3=2,667 (здесь R - газовая постоянная; T кр, P кр, V кр - соответственно критические температура, давление, объем). Однако для водяного пара она равна 4,46. Это объясняется тем, что в состав пара входят не только одиночные молекулы, но и их ассоциации.

Жидкость в отличие от газа представляет собой совокупность молекул, расположенных столь близко друг от друга, что между ними проявляются силы взаимного притяжения. Поэтому молекулы жидкости не разлетаются в разные стороны, как молекулы газа, а только колеблются около своего положения равновесия. Вместе с тем, так как строение жидкости не вполне плотное, в ней имеются свободные места - «дырки», вследствие чего, по теории Я.И.Френкеля, некоторые молекулы, обладающие большей энергией, вырываются из своего «оседлого» места и скачком перемещаются в соседнюю «дырку», расположенную на расстоянии, примерно равном размеру самой молекулы. Таким образом, в жидкости молекулы сравнительно редко перемещаются с места на место, а большую часть времени находятся в «оседлом» состоянии, лишь претерпевая колебательные движения. Этим, в частности, объясняется слабая диффузия в жидкостях по сравнению с большой ее скоростью в газах. При нагревании жидкости энергия ее молекул увеличивается, скорость их колебания возрастает. При температуре 100°C и нормальном атмосферном давлении вода распадается на отдельные молекулы H2O, скорость которых уже в состоянии преодолеть взаимное притяжение молекул, и вода превращается в пар.

При охлаждении жидкости (воды) происходит обратный процесс. Скорости колебательного движения молекул уменьшаются, структура жидкости становится более прочной, и жидкость переходит в кристаллическое (твердое) состояние-лед. Различают два вида твердых тел: кристаллические и аморфные. Основным признаком кристаллических тел является анизотропия их свойств по различным направлениям: теплового расширения, прочности, оптических и электрических свойств и т. п. Аморфные тела изотропны, т. е. обладают одинаковыми свойствами во всех направлениях. Лед является кристаллическим телом.

В твердом теле, в отличие от газа и жидкости, каждый атом или молекула колеблются только около своего положения равновесия, но не перемещаются. В твердом теле отсутствуют «дырки», в которые могут переходить отдельные молекулы. Поэтому диффузия в твердых телах отсутствует. Атомы, составляющие молекулы, образуют прочную кристаллическую решетку, неизменность которой обусловлена молекулярными силами. Когда температура твердого тела приближается к температуре плавления, кристаллическая решетка его разрушается, и оно переходит в жидкое состояние. В отличие от кристаллизации жидкостей плавление твердых тел происходит сравнительно медленно, без явно выраженного скачка.

Кристаллизация большинства жидкостей происходит с уменьшением объема, а плавление твердых тел сопровождается увеличением объема. Исключение составляют вода, сурьма, парафин и некоторые другие вещества, у которых твердая фаза менее плотная, чем жидкая.

Структура воды в трех ее агрегатных состояниях

Проблема оценки структуры воды пока остается одной из самых сложных. Рассмотрим кратко две обобщенные гипотезы о структуре воды, получившие наибольшее признание, одна - в начальный период развития учения о структуре воды, другая - в настоящее время.

Согласно гипотезе, предложенной Уайтингом (1883г.) и имеющей к настоящему времени различные интерпретации, основной строительной единицей водяного пара является молекула H 2 O, называемая гидроль, или моногидроль. Основной строительной единицей воды является двойная молекула воды (H 2 O) 2 -дигидроль; лед же состоит из тройных молекул (H 2 O) 3 - тригидроль. На этих представлениях основана так называемая гидрольная теория структуры воды.

Водяной пар, согласно этой теории, состоит из собрания простейших молекул моногидроля и их ассоциаций, а также из незначительного количества молекул дигидроля.

Вода в жидком виде представляет собой смесь молекул моногидроля, дигидроля и тригидроля. Соотношение числа этих молекул в воде различно и зависит от температуры. Согласно этой гипотезе, соотношение количества молекул воды и объясняет одну из основных ее аномалий - наибольшую плотность воды при 4°С.

Так как молекула воды несимметрична, то центры тяжести положительных и отрицательных зарядов ее не совпадают. Молекулы имеют два полюса - положительный и отрицательный, создающие, как магнит, молекулярные силовые поля. Такие молекулы называют полярными, или диполями, а количественную характеристику полярности определяют электрическим моментом диполя, выражаемым произведением расстояния l между электрическими центрами тяжести положительных и отрицательных зарядов молекулы на заряд e в абсолютных электростатических единицах:

Для воды дипольный момент очень высокий: p = 6,13·10 -29 Кл·м. Полярностью молекул моногидроля и объясняется образование дигидроля и тригидроля. Вместе с тем, так как собственные скорости молекул возрастают с повышением температуры, этим можно объяснить постепенный распад тригидроля в дигидроль и далее в моногидроль соответственно при таянии льда, нагревании и кипении воды.

Другая гипотеза строения воды, разрабатывавшаяся в XX веке (модели О.Я.Самойлова, Дж.Попла, Г.Н.Зацепиной и др.), основана на представлении, что лед, вода и водяной пар состоят из молекул H 2 O, объединенных в группы с помощью так называемых водородных связей (Дж.Бернал и Р.Фаулер, 1933г.). Эти связи возникают в результате взаимодействия атомов водорода одной молекулы с атомом кислорода соседней молекулы (с сильно электроотрицательным элементом). Такая особенность водородного обмена в молекуле воды обусловливается тем, что, отдавая свой единственный электрон на образование ковалентной связи с кислородом, он остается в виде ядра, почти лишенного электронной оболочки. Поэтому атом водорода не испытывает отталкивания от электронной оболочки кислорода соседней молекулы воды, а, наоборот, притягивается ею, и может вступить с нею во взаимодействие. Согласно данной гипотезе, можно предположить, что силы, образующие водородную связь, являются чисто электростатическими. Однако, согласно методу молекулярных орбиталей, водородная связь образуется за счет дисперсионных сил, ковалентной связи и электростатического взаимодействия.

В табл.1 показан молекулярный состав воды, льда и водяного пара по различным литературным источникам.

Таблица 1.1
Молекулярный состав льда, воды и водяного пара, %

Таким образом, в результате взаимодействия атомов водорода одной молекулы воды с отрицательными зарядами кислорода другой молекулы образуются четыре водородные связи для каждой молекулы воды. При этом молекулы, как правило, объединяются в группы - ассоциаты : каждая молекула оказывается окруженной четырьмя другими (рис. 4). Такая плотная упаковка молекул характерна для воды в замерзшем состоянии (лед Ih) и приводит к открытой кристаллической структуре, принадлежащей к гексогональной симметрии. При этой структуре образуются «пустоты - каналы» между фиксированными молекулами, поэтому плотность льда меньше плотности воды.

Повышение температуры льда до его плавления и выше приводит к разрыву водородных связей. При жидком состоянии воды достаточно даже обычных тепловых движений молекул, чтобы эти связи разрушить.

Рис. 4. Схема взаимодействия молекул воды. 1 - кислород, 2 - водород, 3 - химическая связь, 4 - водородная связь.

При повышении температуры воды до 4°С упорядоченность расположения молекул по кристаллическому типу с характерной структурой для льда до некоторой степени сохраняется. Имеющиеся в этой структуре отмеченные выше пустоты заполняются освободившимися молекулами воды. Вследствие этого плотность жидкости увеличивается до максимальной при температуре 3,98°С. Дальнейший рост температуры приводит к искажению и разрыву водородных связей, а, следовательно, и разрушению групп молекул, вплоть до отдельных молекул, что характерно для пара.

Так в чем же заключаются загадочные, необычные свойства привычной всем жидкой воды? Прежде всего, в том, что практически все свойства воды аномальны, а многие из них не подчиняются логике тех законов физики, которые управляют другими веществами.

Молекулы воды при конденсации формирует жидкое вещество удивительной сложности. В первую очередь это связано с тем, что молекулы воды обладают уникальным свойством объединяться в кластеры (группы) (Н 2 О)x. Под кластером обычно понимают группу атомов или молекул, объединенных физическим взаимодействием в единый ансамбль, но сохраняющих внутри него индивидуальное поведение. Возможности прямого наблюдения кластеров ограничены, и поэтому экспериментаторы компенсируют аппаратурные недостатки интуицией и теоретическими построениями.

При комнатной температуре степень ассоциации X для воды составляет, по современным данным, от 3 до 6. Это означает, что формула воды не просто Н 2 О, а среднее между Н 6 О 3 и Н 12 О 6 . Другими словами, вода - сложная жидкость, "составленная" из повторяющихся групп, содержащих от трех до шести одиночных молекул. Вследствие этого вода имеет аномальные значения температуры замерзания и кипения по сравнению с гомологами. Если бы вода подчинялась общим правилам, она должна была замерзать при температуре порядка -100 о С и закипать при температуре около +10 о С.

Если бы вода при испарении оставалась в виде Н 6 О 3 , Н 8 О 4 или Н 12 О 6 , то водяной пар был бы намного тяжелее воздуха, в котором доминируют молекулы азота и кислорода. В этом случае поверхность всей Земли была бы покрыта вечным слоем тумана. Представить себе жизнь на такой планете практически невозможно.

Людям крупно повезло: кластеры воды при испарении распадаются, и вода превращается практически в простой газ с химической формулой Н 2 О (обнаруженное в последнее время в паре незначительное количество димеров Н 4 О 2 погоды не делает). Плотность газообразной воды меньше плотности воздуха, и поэтому вода способна насыщать своими молекулами земную атмосферу, создавая комфортные для человека погодные условия.

На Земле нет других веществ, наделенных способностью быть жидкостью при температурах существования человека и при этом образовывать газ не только легче воздуха, но и способный возвращаться к её поверхности в виде осадков.

К.х.н. О.В. Мосин

Пользовательского поиска

Структура воды

К.х.н. О.В. Мосин

Молекула воды представляет собой маленький диполь, содержащий положительный и отрицательный заряды на полюсах. Так как масса и заряд ядра кислорода больше чем у ядер водорода, то электронное облако стягивается в сторону кислородного ядра. При этом ядра водорода оголяются. Таким образом, электронное облако имеет неоднородную плотность. Около ядер водорода имеется недостаток электронной плотности, а на противоположной стороне молекулы, около ядра кислорода, наблюдается избыток электронной плотности. Именно такая структура и определяет полярность молекулы воды. Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура - правильный тетраэдр.

Строение молекулы воды (рисунок справа)

Благодаря наличию водородных связей каждая молекула воды образует водородную связь с 4-мя соседними молекулами, образуя ажурный сетчатый каркас в молекуле льда. Однако, в жидком состоянии вода - неупорядоченная жидкость; эти водородные связи - спонтанные, короткоживущие, быстро рвутся и образуются вновь. Всё это приводит к неоднородности в структуре воды.

Водородные связи между молекулами воды (рисунок ниже слева)

То, что вода неоднородна по своему составу, было установлено давно. С давних пор известно, что лёд плавает на поверхности воды, то есть плотность кристаллического льда меньше, чем плотность жидкости.

Почти у всех остальных веществ кристалл плотнее жидкой фазы. К тому же и после плавления при повышении температуры плотность воды продолжает увеличиваться и достигает максимума при 4C. Менее известна аномалия сжимаемости воды: при нагреве от точки плавления вплоть до 40C она уменьшается, а потом увеличивается. Теплоёмкость воды тоже зависит от температуры немонотонно.

Кроме того, при температуре ниже 30C с увеличением давления от атмосферного до 0,2ГПа вязкость воды уменьшается, а коэффициент самодиффузии - параметр, который определяет скорость перемещения молекул воды относительно друг друга растёт.

Для других жидкостей зависимость обратная, и почти нигде не бывает, чтобы какой-то важный параметр вёл себя немонотонно, т.е. сначала рос, а после прохождения критического значения температуры или давления уменьшался. Возникло предположение, что на самом деле вода это не единая жидкость, а смесь двух компонентов, которые различаются свойствами, например плотностью и вязкостью, а следовательно, и структурой. Такие идеи стали возникать в конце XIX века, когда накопилось много данных об аномалиях воды.

Первым идею о том, что вода состоит из двух компонентов, высказал Уайтинг в1884 году. Его авторство цитирует Э.Ф.Фрицман в монографии "Природа воды. Тяжёлая вода", изданной в1935 году. В 1891 году В.Ренгтен ввёл представление о двух состояниях воды, которые различаются плотностью. После неё появилось множество работ, в которых воду рассматривали как смесь ассоциатов разного состава (гидролей).

Когда в 20-е годы определили структуру льда, оказалось, что молекулы воды в кристаллическом состоянии образуют трёхмерную непрерывную сетку, в которой каждая молекула имеет четырёх ближайших соседей, расположенных в вершинах правильного тетраэдра. В1933 году Дж.Бернал и П.Фаулер предположили, что подобная сетка существует и в жидкой воде. Поскольку вода плотнее льда, они считали, что молекулы в ней расположены не так, как во льду, то есть подобно атомам кремния в минерале тридимите, а так, как атомы кремния в более плотной модификации кремнезёма кварце. Увеличение плотности воды при нагревании от 0 до 4C объяснялось присутствием при низкой температуре тридимитовой компоненты. Таким образом, модель Бернала Фаулера сохранила элемент двухструктурности, но главное их достижение- идея непрерывной тетраэдрическои сетки. Тогда появился знаменитый афоризм И.Ленгмюра: "Океан- одна большая молекула". Излишняя конкретизация модели не прибавила сторонников теории единой сетки.

Только в 1951 году Дж. Попл создал модель непрерывной сетки, которая была не так конкретна, как модель Бернала Фаулера. Попл представлял воду, как случайную тетраэдрическую сетку, связи между молекулами в которой искривлены и имеют различную длину. Модель Попла объясняет уплотнение воды при плавлении искривлением связей. Когда в 60-70-е годы появились первые определения структуры льдов II и IX, стало ясно, как искривление связей может приводить к уплотнению структуры. Модель Попла не могла объяснить немонотонность зависимости свойств воды от температуры и давления так хорошо, как модели двух состояний. Поэтому идею двух состояний ещё долго разделяли многие учёные.

Но во второй половине XX века нельзя было так фантазировать о составе и строении гидролей, как это делали в начале века. Уже было известно, как устроен лёд и кристаллогидраты, и многое знали про водородную связь. Помимо континуальных моделей (модель Попла), возникли две группы смешанных моделей: кластерные и клатратные. В первой группе вода представала в виде кластеров из молекул, связанных водородными связями, которые плавали в море молекул, в таких связях не участвующих. Модели второй группы рассматривали воду как непрерывную сетку (обычно в этом контексте называемую каркасом) водородных связей, которая содержит пустоты; в них размещаются молекулы, не образующие связей с молекулами каркаса. Нетрудно было подобрать такие свойства и концентрации двух микрофаз кластерных моделей или свойства каркаса и степень заполнения его пустот клатратных моделей, чтобы объяснить все свойства воды, в том числе и знаменитые аномалии.

Среди кластерных моделей наиболее яркой оказалась модель Г.Немети и Х.Шераги : предложенные ими картинки, изображающие кластеры связанных молекул, которые плавают в море несвязанных молекул, вошли во множество монографий.

Первую модель клатратного типа в 1946 году предложил О.Я.Самойлов: в воде сохраняется подобная гексагональному льду сетка водородных связей, полости которой частично заполнены мономерными молекулами. Л.Полинг в 1959 году создал другой вариант, предположив, что основой структуры может служить сетка связей, присущая некоторым кристаллогидратам.

В течение второй половины 60-х годов и начала 70-х наблюдается сближение всех этих взглядов. Появлялись варианты кластерных моделей, в которых в обеих микрофазах молекулы соединены водородными связями. Сторонники клатратных моделей стали допускать образование водородных связей между пустотными и каркасными молекулами. То есть фактически авторы этих моделей рассматривают воду как непрерывную сетку водородных связей. И речь идёт о том, насколько неоднородна эта сетка (например, по плотности). Представлениям о воде как о водородно-связанных кластерах, плавающих в море лишённых связей молекул воды, был положен конец в начале восьмидесятых годов, когда Г.Стэнли применил к модели воды теорию перколяции, описывающую фазовые переходы воды.

В 1999 г. известный российский исследователь воды С.В. Зенин защитил в Институте медико-биологических проблем РАН докторскую диссертацию, посвященную кластерной теории, которая явилась существенным этапом в продвижении этого направления исследований, сложность которых усиливается тем, что они находятся на стыке трех наук: физики, химии и биологии. Им на основании данных, полученных тремя физико-химическими методами: рефрактометрии (С.В. Зенин, Б.В. Тяглов, 1994), высокоэффективной жидкостной хроматографии (С.В. Зенин с соавт., 1998) и протонного магнитного резонанса (С.В. Зенин, 1993) построена и доказана геометрическая модель основного стабильного структурного образования из молекул воды (структурированная вода), а затем (С.В. Зенин, 2004) получено изображение с помощью контрастно-фазового микроскопа этих структур.

Сейчас наукой доказано, что особенности физических свойств воды и многочисленные короткоживущие водородные связи между соседними атомами водорода и кислорода в молекуле воды создают благоприятные возможности для образования особых структур-ассоциатов (кластеров), воспринимающих, хранящих и передающих самую различную информацию.

Структурной единицей такой воды является кластер, состоящий из клатратов, природа которых обусловлена дальними кулоновскими силами. В структуре кластров закодирована информация о взаимодействиях, имевших место с данными молекулами воды. В водных кластерах за счёт взаимодействия между ковалентными и водородными связями между атомами кислорода и атомами водорода может происходить миграция протона (Н+) по эстафетному механизму, приводящие к делокализации протона в пределах кластера.

Вода, состоящая из множества кластеров различных типов, образует иерархическую пространственную жидкокристаллическую структуру, которая может воспринимать и хранить огромные объемы информации.

На рисунке (В.Л. Воейков) в качестве примера приведены схемы нескольких простейших кластерных структур.

Некоторые возможные структуры кластеров воды

Переносчиками информации могут быть физические поля самой различной природы. Так установлена возможность дистанционного информационного взаимодействия жидкокристаллической структуры воды с объектами различной природы при помощи электромагнитных, акустических и других полей. Воздействующим объектом может быть и человек.

Вода является источником сверхслабого и слабого переменного электромагнитного излучения. Наименее хаотичное электромагнитное излучение создаёт структурированная вода. В таком случае может произойти индукция соответствующего электромагнитного поля, изменяющего структурно-информационные характеристики биологических объектов.

В течение последних лет получены важные данные о свойствах переохлаждённой воды. Изучать воду при низкой температуре очень интересно, поскольку её удаётся сильнее переохладить, чем другие жидкости. Кристаллизация воды, как правило, начинается на каких-то неоднородностях либо на стенках сосуда, либо на плавающих частичках твердых примесей. Поэтому найти температуру, при которой бы переохлаждённая вода самопроизвольно закристаллизовалась нелегко. Но учёным удалось это сделать, и сейчас температура так называемой гомогенной нуклеации, когда образование кристаллов льдов идёт одновременно повсему объёму, известна для давлений вплоть до0,3 ГПа, то есть захватывая области существования льда II.

От атмосферного давления до границы, разделяющей льды I и II, эта температура падает от231 до180 К, а потом слегка увеличивается до 190К. Ниже этой критической температуры жидкая вода невозможна в принципе.

Структура льда (рисунок справа)

Однако с этой температурой связана одна загадка. В середине восьмидесятых годов была открыта новая модификация аморфного льда- лёд высокой плотности, и это помогло возрождению представлений о воде как о смеси двух состояний. В качестве прототипов рассматривались не кристаллические структуры, а структуры аморфных льдов разной плотности. В наиболее внятном виде эту концепцию сформулировали Е.Г.Понятовский и В.В.Синицин, которые в 1999 году написали: "Вода рассматривается как регулярный раствор двух компонентов, локальные конфигурации в которых соответствуют ближнему порядку модификаций аморфного льда". Более того, изучая ближний порядок в переохлаждённой воде при высоком давлении методами дифракции нейтронов, учёным удалось найти компоненты, соответствующие этим структурам.

Следствием полиморфизма аморфных льдов стали также предположения о расслоении воды на два несмешивающихся компонента при температуре ниже гипотетической низкотемпературной критической точки. К сожалению, по оценке исследователей, эта температура при давлении 0,017 ГПа равна 230К ниже температуры нуклеации, поэтому наблюдать расслоение жидкой воды никому ещё неудалось. Так возрождение модели двух состояний поставило вопрос о неоднородности сетки водородных связей в жидкой воде. Разобраться в этой неоднородности можно только спомощью компьютерного моделирования.

Говоря о кристаллической структуре воды, следует отметить, что известно 14 модификаций льда, большинство из которых не встречаются в природе, в которых молекулы воды и сохраняют свою индивидуальность, и соединены водородными связями. С другой стороны существует множество вариантов сетки водородных связей в клатратных гидратах. Энергии этих сеток (льдов высокого давления и клатратных гидратов) ненамного выше энергий кубического и гексагонального льдов. Поэтому фрагменты таких структур также могут появляться в жидкой воде. Можно сконструировать бесчисленное множество различных непериодических фрагментов, молекулы в которых имеют по четыре ближайших соседа, расположенных приблизительно по вершинам тетраэдра, но при этом их структура не соответствует структурам известных модификаций льда. Как показали многочисленные расчёты, энергии взаимодействия молекул в таких фрагментах будут близки друг кдругу, и нет оснований говорить, что какая-то структура должна преобладать в жидкой воде.

Структурные исследования воды можно изучать разными методами; спектроскопией протонного магнитного резонанса, инфракрасной спекроскопии, дифракцией рентгеновских лучей и др. Например, дифракцию рентгеновских лучей и нейтронов вводе изучали много раз. Однако подробных сведений о структуре эти эксперименты дать немогут. Неоднородности, различающиеся по плотности, можно было бы увидеть по рассеянию рентгеновских лучей и нейтронов под малыми углами, однако такие неоднородности должны быть большими, состоящими из сотен молекул воды. Можно было бы их увидеть, и исследуя рассеяние света. Однако вода исключительно прозрачная жидкость. Единственный же результат дифракционных экспериментов функции радиального распределения, то есть расстояния между атомами кислорода, водорода и кислорода-водорода. Из них видно, что никакого дальнего порядка в расположении молекул воды нет. Эти функции для воды затухают гораздо быстрее, чем для большинства других жидкостей. Например, распределение расстояний между атомами кислорода при температуре, близкой к комнатной, даёт только три максимума, на 2,8, 4,5 и 6,7 . Первый максимум соответствует расстоянию до ближайших соседей, и его значение примерно равно длине водородной связи. Второй максимум близок к средней длине ребра тетраэдра: вспомним, что молекулы воды в гексагональном льду располагаются по вершинам тетраэдра, описанного вокруг центральной молекулы. А третий максимум, выраженный весьма слабо, соответствует расстоянию до третьих и более далёких соседей по водородной сетке. Этот максимум и сам не очень ярок, а про дальнейшие пики и говорить не приходится. Были попытки получить из этих распределений более детальную информацию. Так в 1969 году И.С.Андрианов и И.З.Фишер нашли расстояния вплоть до восьмого соседа, при этом до пятого соседа оно оказалось равным 3, а до шестого 3,1 . Это позволяет делать данные о дальнем окружении молекул воды.

Другой метод исследования структуры - нейтронная дифракция на кристаллах воды осуществляется точно также, как и рентгеновская дифракция. Однако из-за того, что длины нейтронного рассеяния различаются у разных атомов не столь сильно, метод изоморфного замещения становится неприемлемым. На практике обычно работают с кристаллом, у которого молекулярная структура уже приблизительно установлена другими методами. Затем для этого кристалла измеряют интенсивности нейтронной дифракции. По этим результатам проводят преобразование Фурье, в ходе которого используют измеренные нейтронные интенсивности и фазы, вычисляемые с учётом неводородных атомов, т.е. атомов кислорода, положение которых в модели структуры известно. Затем на полученной таким образом фурье-карте атомы водорода и дейтерия представлены с гораздо большими весами, чем на карте электронной плотности, т.к. вклад этих атомов в нейтронное рассеяние очень большой. По этой карте плотности можно, например, определить положения атомов водорода (отрицательная плотность) и дейтерия (положительная плотность).

Возможна разновидность этого метода, которая состоит в том, что кристалл образовавшийся в воде, перед измерениями выдерживают в тяжёлой воде. В этом случае нейтронная дифракция не только позволяет установить, где расположены атомы водорода, но и выявляет те из них, способные обмениваться на дейтерий, что особенно важно при изучение изотопного (H-D)-обмена. Подобная информация помогает подтвердить правильность установления структуры.

Другие методы также позволяют изучать динамику молекул воды. Это эксперименты по квазиупругому рассеянию нейтронов, сверхбыстрой ИК-спектроскопии иизучение диффузии воды с помощью ЯМР или меченых атомов дейтерия. Метод ЯМР-спектроскопии основан на том, что ядро атома водорода имеет магнитный момент- спин, взаимодействующий с магнитными полями, постоянными и переменными. По спектру ЯМР можно судить о том, в каком окружении эти атомы и ядра находятся, получая, таким образом, информацию о структуре молекулы.

В результате экспериментов по квазиупругому рассеянию нейтронов в кристаллах воды был измерен важнейший параметр- коэффициент самодиффузии при различных давлениях и температурах. Чтобы судить о коэффициенте самодиффузии по квазиупругому рассеянию нейтронов, необходимо сделать предположение о характере движения молекул. Если они движутся в соответствии с моделью Я.И.Френкеля (известного отечественного физика-теоретика, автора "Кинетической теории жидкостей"- классической книги, переведённой намногие языки), называемой также моделью "прыжок-ожидание", тогда время осёдлой жизни (время между прыжками) молекулы составляет 3,2 пикосекунды. Новейшие методы фемтосекундной лазерной спектроскопии позволили оценить время жизни разорванной водородной связи: протону требуется 200 фс для того, чтобы найти себе партнёра. Однако всё это средние величины. Изучить детали строения и характера движения молекул воды можно только при помощи компьютерного моделирования, называемого иногда численным экспериментом.

Так выглядит структура воды по результатам компьютерного моделирования (по данным д.х.н. Г.Г.Маленкова). Общую беспорядочную структуру можно разбить на два типа областей (показаны тёмными и светлыми шариками), которые различаются по своему строению, например по объёму многогранника Вороного (а), степени тетраэдричности ближайшего окружения (б), значению потенциальной энергии (в), а также по наличию четырёх водородных связей у каждой молекулы (г). Впрочем, эти области буквально через мгновение, спустя несколько пикосекунд, изменят свое расположение.

Моделирование проводится так. Берётся структура льда и, нагревается до расплавления. Затем после некоторого времени, чтобы вода забыла о кристаллическом происхождении, снимаются мгновенные микрофотографии.

Для анализа структуры воды выбираются три параметра:
- степень отклонения локального окружения молекулы от вершин правильного тетраэдра;
-потенциальная энергия молекул;
-объём так называемого многогранника Вороного.

Чтобы построить этот многогранник, берут ребро от данной молекулы до ближайшей, делят его пополам и через эту точку проводят плоскость, перпендикулярную ребру. Получается объём, приходящийся на одну молекулу. Объём полиэдра это плотность, тетраэдричность степень искажения водородных связей, энергия степень устойчивости конфигурации молекул. Молекулы с близкими значениями каждого из этих параметров стремятся сгруппироваться вместе в отдельные кластеры. Области как с низкой, так и с высокой плотностью обладают разными значениями энергии, но могут иметь и одинаковые значения. Эксперименты показали, что области с разным строением кластеры возникают спонтанно и спонтанно распадаются. Вся структура воды живёт и постоянно меняется, причём время, за которое происходят эти изменения, очень маленькое. Исследователи следили за перемещениями молекул и выяснили, что они совершают нерегулярные колебания с частотой около 0,5 пс и амплитудой 1 ангстрем. Наблюдались также и редкие медленные скачки на ангстремы, которые длятся пикосекунды. В общем, за 30 пс молекула может сместиться на 8-10 ангстрем. Время жизни локального окружения тоже невелико. Области, составленные из молекул с близкими значениями объёма многогранника Вороного, могут распасться за 0,5 пс, а могут жить и несколько пикосекунд. А вот распределение времён жизни водородных связей очень велико. Но это время не превышает 40 пс, а среднее значение несколько пс.

В заключение следует подчеркнуть, что теория кластерного строения воды имеет много подводных камней. Например, Зенин предполагает, что основной структурный элемент воды- кластер из 57 молекул, образованный слиянием четырёх додекаэдров. Они имеют общие грани, а их центры образуют правильный тетраэдр. То, что молекулы воды могут располагаться по вершинам пентагонального додекаэдра, известно давно; такой додекаэдр- основа газовых гидратов. Поэтому ничего удивительного в предположении о существовании таких структур в воде нет, хотя уже говорилось, что никакая конкретная структура не может быть преобладающей и существовать долго. Поэтому странно, что этот элемент предполагается главным и что в него входит ровно 57 молекул. Из шариков, например, можно собирать такиеже структуры, которые состоят из примыкающих друг к другу додекаэдров и содержат 200 молекул. Зенин же утверждает, что процесс трёхмерной полимеризации воды останавливается на 57 молекулах. Более крупных ассоциатов, по его мнению, быть не должно. Однако если бы это было так, из водяного пара не могли бы осаждаться кристаллы гексагонального льда, которые содержат огромное число молекул, связанных воедино водородными связями. Совершенно не ясно, почему рост кластера Зенина остановился на 57 молекулах. Чтобы уйти от противоречий, Зенин и упаковывает кластеры в более сложные образования-ромбоэдры- из почти тысячи молекул, причём исходные кластеры друг с другом водородных связей не образуют. Почему? Чем молекулы на их поверхности отличаются от тех, что внутри? По мнению Зенина, узор гидроксильных групп на поверхности ромбоэдров и обеспечивает память воды. Следовательно, молекулы воды в этих крупных комплексах жёстко фиксированы, и сами комплексы представляют собой твёрдые тела. Такая вода не будет течь, а температура её плавления, которая связана с молекулярной массой, должна быть весьма высокой.

Какие свойства воды объясняет модель Зенина? Поскольку в основе модели лежат тетраэдрические постройки, её можно в той или иной степени согласовать с данными по дифракции рентгеновских лучей и нейтронов. Однако вряд ли модель может объяснить уменьшение плотности при плавлении- упаковка додекаэдров менее плотная, чем лёд. Но труднее всего согласуется модель с динамическими свойствами- текучестью, большим значением коэффициента самодиффузии, малыми временами корреляции и диэлектрической релаксации, которые измеряются пикосекундами.

К.х.н. О.В. Мосин


Cписок литературы:
Г.Г. Маленков. Успехи физической химии, 2001
С.В.Зенин, Б.М. Полануер, Б.В. Тяглов. Экспериментальное доказательство наличия фракций воды. Ж. Гомеопатическая медицина и акупунктура. 1997.№2.С.42-46.
С.В. Зенин, Б.В. Тяглов. Гидрофобная модель структуры ассоциатов молекул воды. Ж.Физ.химии.1994.Т.68.№4.С.636-641.
С.В. Зенин Исследование структуры воды методом протонного магнитного резонанса. Докл.РАН.1993.Т.332.№3.С.328-329.
С.В.Зенин, Б.В.Тяглов. Природа гидрофобного взаимодействия. Возникновение ориентационных полей в водных растворах. Ж.Физ.химии.1994.Т.68.№3.С.500-503.
С.В. Зенин, Б.В. Тяглов, Г.Б.Сергеев, З.А. Шабарова. Исследование внутримолекулярных взаимодействий в нуклеотидамидах методом ЯМР. Материалы 2-й Всесоюзной конф. По динамич. Стереохимии. Одесса.1975.с.53.
С.В. Зенин. Структурированное состояние воды как основа управления поведением и безопасностью живых систем. Диссертация. Доктор биологических наук. Государственный научный Центр "Институт медико-биологических проблем" (ГНЦ "ИМБП"). Защищена 1999. 05. 27. УДК 577.32:57.089.001.66.207 с.
В.И. Слесарев. Отчет о выполнении НИР