Химия и космос. химия земли к сожалению, человек научился использовать только те материалы, которые находятся на поверхности земли, но земные ресурсы

В то время как «горячими» ядерными процессами в космосе - плазменным состоянием , нуклеогенезом (процессом элементов) внутри звёзд и др. - в основном занимается физика. - новая область знания, получившая значительное развитие во 2-й половине 20 в. главным образом благодаря успехам космонавтики. Ранее исследования химических процессов в космическом пространстве и состава космических тел осуществлялись в основном путём излучения Солнца, звёзд и, отчасти, внешних слоев планет. Этот метод позволил открыть элемент на Солнце ещё до того, как он был обнаружен на Земле. Единственным прямым методом изучения космических тел был и фазового состава различных метеоритов, выпадавших на Землю. Так был накоплен значительный материал, имеющий фундаментальное значение и для дальнейшего развития . Развитие космонавтики, полёты автоматических станций к планетам Солнечной системы - Луне, Венере, Марсу - и, наконец, посещение человеком Луны открыли перед совершенно новые возможности. Прежде всего - это непосредственное исследование Луны при участии космонавтов или путём забора образцов автоматическими (подвижными и стационарными) аппаратами и доставка их на Землю для дальнейшего изучения в химических лабораториях. Кроме того, автоматические спускаемые аппараты сделали возможным изучение и условий его существования в и на поверхности др. планет Солнечной системы, прежде всего Марса и Венеры. Одна из важнейших задач изучение на основе состава и распространённости космических тел, стремление объяснить на химической основе их происхождение и историю. Наибольшее внимание в уделяется проблемам распространённости и распределения . Распространённость в космосе определяется нуклеогенезом внутри звёзд. Химический состав Солнца, планет земного типа Солнечной системы и метеоритов, по-видимому, практически тождествен. Образование ядер связано с различными ядерными процессами в звёздах. Поэтому на разных этапах своей различные звёзды и звёздные системы имеют неодинаковый химический состав. Известны звёзды с особенно сильными спектральными линиями Ва или Mg или Li и др. Распределение по фазам в космических процессах исключительно разнообразно. На агрегатное и фазовое состояние в космосе на разных стадиях его превращений оказывают разностороннее влияние:1) огромный диапазон , от звёздных до абсолютного нуля; 2) огромный диапазон , от миллионов в условиях планет и звёзд до космического ; 3) глубоко проникающие галактическое и солнечное излучения различного состава и интенсивности; 4) излучения, сопровождающие превращения нестабильных в стабильные; 5) магнитное, гравитационное и др. физические поля. Установлено, что все эти факторы влияют на состав внешней коры планет, их газовых оболочек, метеоритного , космической и др. При этом процессы фракционирования в космосе касаются не только атомного, но и изотопного состава. Определение изотопных , возникших под влиянием излучений, позволяет глубоко проникать в историю процессов образования планет, астероидов, метеоритов и устанавливать возраст этих процессов. Благодаря экстремальным условиям в космическом пространстве протекают процессы и встречаются состояния , не свойственные Земле: плазменное состояние звёзд (например, Солнца); конденсирование Не, На, CH 4 , NH 3 и др. легколетучих в больших планет при очень низких ; образование нержавеющего в космическом при на Луне; хондритовая структура каменных метеоритов; образование сложных органических в метеоритах и, вероятно, на поверхности планет (например, Марса). В межзвёздном пространстве обнаруживаются в крайне малых и многих элементов, а также ( , и т. д.) и, наконец, идёт синтез различных сложных (возникающих из первичных солнечных Н, CO, NH 3 , O 2 , N 2 , S и других простых соединений в равновесных условиях при участии излучений). Все эти органические в метеоритах, в межзвёздном пространстве - оптически не активны.

С развитием астрофизики и некоторых др. наук расширились возможности получения информации, относящейся к . Так, поиски в межзвёздной среде ведутся посредством методов радиоастрономии. К концу 1972 в межзвёздном пространстве обнаружено более 20 видов , в том числе несколько довольно сложных органических , содержащих до 7 . Установлено, что наблюдаемые их в 10-100 млн. раз меньше, чем . Эти методы позволяют также посредством сравнения радиолиний изотопных разновидностей одной (например, H 2 12 CO и H 2 13 CO) исследовать изотопный состав межзвёздного и проверять правильность существующих теорий происхождения .

Исключительное значение для познания космоса имеет изучение сложного многостадийного процесса низкотемпературной , например перехода солнечного в твёрдое планет Солнечной системы, астероидов, метеоритов, сопровождающегося конденсационным ростом, аккрецией (увеличением массы, «нарастанием» любого путём добавления частиц извне, например из газопылевого облака) и агломерацией первичных агрегатов (фаз) при одновременной потере летучих в космического пространства. В космическом , при относительно низких (5000-10000 °С), из остывающей последовательно выпадают твёрдые фазы разного химического состава (в зависимости от ), характеризующиеся различными энергиями связи, окислительными потенциалами и т. п. Например, в хондритах различают силикатную, металлическую, сульфидную, хромитную, фосфидную, карбидную и др. фазы, которые агломерируются в какой-то момент их истории в каменный метеорит и, вероятно, подобным же образом и в планет земного типа.

Далее в планетах происходит процесс дифференциации твёрдого, остывающего на оболочки - металлическое ядро, силикатные фазы (мантию и кору) и - уже в результате вторичного разогревания планет теплотой радиогенного происхождения, выделяющейся при распаде радиоактивных , и и, возможно, других элементов. Такой процесс выплавления и при вулканизме характерен для Луны, Земли, Марса, Венеры. В его основе лежит универсальный принцип зонного , разделяющего легкоплавкое (например, коры и ) от тугоплавкого мантии планет. Например, первичное солнечное CaSiO 3 + CO 2 достигает равновесного состояния, при котором в ней содержится 97% CO 2 при 90 атм. Пример Луны говорит о том, что вторичные (вулканические) не удерживаются небесным телом, если его масса невелика.

Соударения в космическом пространстве (либо между частицами метеоритного , либо при налёте метеоритов и др. частиц на поверхность планет) благодаря огромным космическими скоростям движения могут вызвать тепловой , оставляющий следы в структуре твёрдых космических тел, и образование метеоритных кратеров. Между космическими телами происходит . Например, по минимальной оценке, на Землю ежегодно выпадает не меньше 1× в другие, а в общем случае - к изменению изотопного или атомного состава »,1971, в. 11; Аллер Л. Х., пер. с англ., М., 1963; Сиборг Г. Т., Вэленс Э. Г., Элементы Вселенной, пер. с англ., 2 изд., М., 1966; Merrill P. W., Space chemistry, Ann Arbor, 1963; Spitzer L., Diffuse matter in space, N. Y.,1968; Snyder L. E., Buhl D., Molecules in the interstellar medium, «Sky and Telescope», 1970, v. 40, p. 267, 345.

Космохимия (астрохимия) - раздел науки о космосе, включающий изучение химического и изотопного состава космических тел, а также межпланетной и межзвездной среды, изучение химических элементов в космосе, процессов радиоактивного распада и ядерных реакций и др. Установлено, что в космосе имеются те же химические элементы, что и на Земле.

Космохимия исследует преимущественно «холодные» процессы на уровне атомно-молекулярных взаимодействий веществ, в то время как «горячими» ядерными процессами в космосе - плазменным состоянием вещества, нуклеогенезом (процессом образования химических элементов) внутри звёзд занимается физика. Развитие космонавтики открыли перед космохимией новые возможности. Это непосредственное исследование пород Луны в результате забора образцов грунта.

Автоматические спускаемые аппараты сделали возможным изучение вещества и условий его существования в атмосфере и на поверхности других планет Солнечной системы и астероидов, в кометах. В межзвёздном пространстве обнаруживаются в крайне малых концентрациях атомы и молекулы многих элементов, а также минералы (кварц, силикаты, графит и другие) и, наконец, идёт синтез различных сложных органических соединений из первичных солнечных газов Н, CO, NH3, O2, N2, S и других простых соединений в равновесных условиях при участии излучений.

Космохимия: что это?

Космохимия – новая область знания, получившая значительное развитие благодаря успехам космонавтики. Ранее исследования химических процессов в космическом пространстве и состава космических тел осуществлялись в основном путём спектрального анализа излучения Солнца, звёзд и, отчасти, внешних слоев атмосфер планет . Этот метод позволил открыть элемент гелий на Солнце ещё до того, как он был обнаружен на Земле. Единственным прямым методом изучения космических тел был анализ химического и фазового состава различных метеоритов, выпадавших на Землю. Развитие космонавтики, полёты автоматических станций к планетам Солнечной системы – Луне, Венере, Марсу – посещение человеком Луны открыли перед космохимией новые возможности.

Прежде всего – это непосредственное исследование пород Луны при участии космонавтов или путём забора образцов грунта автоматическими аппаратами и доставка их на Землю. Кроме того, автоматические спускаемые аппараты сделали возможным изучение вещества и условий его существования в атмосфере и на поверхности других планет Солнечной системы, прежде всего Марса и Венеры. Наибольшее внимание уделяется проблемам распространённости и распределения химических элементов. Химический состав Солнца, планет земного типа Солнечной системы и метеоритов, по-видимому, практически тождествен. Образование ядер химических элементов связано с различными ядерными процессами в звёздах. Поэтому на разных этапах своей эволюции различные звёзды и звёздные системы имеют неодинаковый химический состав. Известны звёзды с особенно сильными спектральными линиями Ва, Mg, Li и др. Распределение химических элементов по фазам в космических процессах исключительно разнообразно.

На агрегатное и фазовое состояние вещества в космосе на разных стадиях его превращений оказывают разностороннее влияние:

1) огромный диапазон температур, от звёздных до абсолютного нуля;

2) огромный диапазон давлений, от миллионов атмосфер в условиях планет и звёзд до космического вакуума;

3) глубоко проникающие галактическое и солнечное излучения различного состава и интенсивности;

4) излучения, сопровождающие превращения нестабильных атомов в стабильные. При этом процессы фракционирования вещества в космосе касаются не только атомного, но и изотопного состава.

Определение изотопных равновесий, возникших под влиянием излучений, позволяет глубоко проникать в историю процессов образования вещества планет, астероидов, метеоритов и устанавливать возраст этих процессов. Благодаря экстремальным условиям в космическом пространстве протекают процессы и встречаются состояния вещества, не свойственные Земле: плазменное состояние вещества звёзд (например, Солнца); конденсация Не, CH4, NH3 и других легколетучих газов в атмосфере больших планет при очень низких температурах; образование нержавеющего железа в космическом вакууме при взрывах на Луне; хондритовая структура вещества каменных метеоритов; образование сложных органических веществ в метеоритах и, вероятно, на поверхности планет (например, Марса).

История космохимии

Становление и развитие космохимии прежде всего связаны с трудами В. М. Гольдшмидта, Г. Юри, А. П. Виноградова. Гольдшмидт впервые сформулировал (1924-32) закономерности распределения элементов в метеоритном веществе и нашел основные принципы распределения элементов в фазах метеоритов (силикатной, сульфидной, металлической).

Одна из важнейших задач космохимии - изучение на основе состава и распространённости химических элементов эволюции космических тел, стремление объяснить на химической основе их происхождение и историю. Наибольшее внимание в космохимии уделяется проблемам распространённости и распределения химических элементов. Распространённость химических элементов в космосе определяется нуклеосинтезом внутри звёзд. Химический состав Солнца, планет земного типа Солнечной системы и метеоритов, по-видимому, практически тождествен.

Образование ядер химических элементов связано с различными ядерными процессами в звёздах. Поэтому на разных этапах своей эволюции различные звёзды и звёздные системы имеют неодинаковый химический состав. Известны звёзды с особенно сильными спектральными линиями Ва или Mg или Li и др. С развитием астрофизики и некоторых др. наук расширились возможности получения информации, относящейся к космохимии. Так, поиски молекул в межзвёздной среде ведутся посредством методов радиоастрономии. К концу 1972 в межзвёздном пространстве обнаружено более 20 видов молекул, в том числе несколько довольно сложных органических молекул, содержащих до 7 атомов.

Установлено, что наблюдаемые концентрации их в 10в100 млн. раз меньше, чем концентрация водорода. Эти методы позволяют также посредством сравнения радиолиний изотопных разновидностей одной молекулы (например, H212CO и H213CO) исследовать изотопный состав межзвёздного газа и проверять правильность существующих теорий происхождения химических элементов. Исключительное значение для познания химии космоса имеет изучение сложного многостадийного процесса конденсации вещества низкотемпературной плазмы , например перехода солнечного вещества в твёрдое вещество планет Солнечной системы, астероидов, метеоритов, сопровождающегося конденсационным ростом, аккрецией (увеличением массы, "нарастанием" любого вещества путём добавления частиц извне, например из газопылевого облака) и агломерацией первичных агрегатов (фаз) при одновременной потере летучих веществ в вакууме космического пространства.

В космическом вакууме, при относительно низких температурах (5000в10000 °С), из остывающей плазмы последовательно выпадают твёрдые фазы разного химического состава (в зависимости от температуры), характеризующиеся различными энергиями связи, окислительными потенциалами и т. п. Например, в хондритах различают силикатную, металлическую, сульфидную, хромитную, фосфидную, карбидную и др. фазы, которые агломерируются в какой-то момент их истории в каменный метеорит и, вероятно, подобным же образом и в вещество планет земного типа. Возможность интерпретации данных по химическому составу планет на основе представлений об их "холодном" происхождении из пылевой компоненты протопланетного облака. Виноградов (1959) обосновал концепцию выплавления и дегазации вещества планет земной группы как основного механизма дифференциации вещества планет и формирования их наружных оболочек - коры, атмосферы и гидросферы.

До второй половины 20 века исследования химических процессов в космическом пространстве и состава космических тел осуществлялись в основном путем спектрального анализа вещества Солнца, звезд, отчасти внешних слоев атмосферы планет. Единственным прямым методом изучения космических тел был анализ химического и фазового состава метеоритов. Развитие космонавтики открыло новые возможности непосредственного изучения внеземного вещества. Это привело к фундаментальным открытиям: установлению широкого распространения пород базальтового состава на поверхности Луны, Венеры, Марса; определению состава атмосфер Венеры и Марса; выяснению определяющей роли ударных процессов в формировании структурных и химических особенностей поверхности планет и образовании реголита и др.

Осмий на сегодня определён как самое тяжёлое вещество на планете. Всего один кубический сантиметр этого вещества весит 22.6 грамма. Он был открыт в 1804 году английским химиком Смитсоном Теннантом, при растворении золота в После в пробирке остался осадок. Это произошло из-за особенности осмия, он нерастворим в щелочах и кислотах.

Самый тяжёлый элемент на планете

Представляет собой голубовато-белый металлический порошок. В природе встречается в виде семи изотопов, шесть из них стабильны и один неустойчив. По плотности немного превосходит иридий, который имеет плотность 22,4 грамма на кубический сантиметр. Из обнаруженных на сегодня материалов, самое тяжёлое вещество в мире - это осмий.

Он относится к группе таких как лантан, иттрий, скандий и других лантаноидов.

Дороже золота и алмазов

Добывается его очень мало, порядка десяти тысяч килограмм в год. Даже в наиболее большом источнике осмия, Джезказганском месторождении, содержится порядка трёх десятимиллионных долей. Биржевая стоимость редкого металла в мире достигает порядка 200 тысяч долларов за один грамм. При этом максимальная чистота элемента в процессе очистки около семидесяти процентов.

Хотя в российских лабораториях удалось получить чистоту 90,4 процента, но количество металла не превышало нескольких миллиграмм.

Плотность материи за пределами планеты Земля

Осмий, бесспорно, является лидером самых тяжёлых элементов нашей планеты. Но если мы обратим свой взор в космос, то нашему вниманию откроется множество веществ более тяжёлых, чем наш «король» тяжёлых элементов.

Дело в том, что во Вселенной существуют условия несколько другие, чем на Земле. Гравитация ряда настолько велика, что вещество неимоверно уплотняется.

Если рассмотреть структуру атома, то обнаружится, что расстояния в межатомном мире чем-то напоминают видимый нами космос. Где планеты, звезды и прочие находятся на достаточно большой дистанции. Остальное же занимает пустота. Именно такую структуру имеют атомы, и при сильной гравитации эта дистанция достаточно сильно уменьшается. Вплоть до «вдавливания» одних элементарных частиц в другие.

Нейтронные звезды - сверхплотные объекты космоса

В поисках за пределами нашей Земли мы сможем обнаружить самое тяжёлое вещество в космосе на нейтронных звёздах.

Это достаточно уникальные космические обитатели, один из возможных типов эволюции звёзд. Диаметр таких объектов составляет от 10 до 200 километров, при массе равной нашему Солнцу или в 2-3 раза больше.

Это космическое тело в основном состоит из нейтронной сердцевины, которая состоит из текучих нейтронов. Хотя по некоторым предположениям учёных она должна находиться в твёрдом состоянии, достоверной информации на сегодня не существует. Однако известно, что именно нейтронные звезды, достигая своего передела сжатия, впоследствии превращаются в с колоссальным выбросом энергии, порядка 10 43 -10 45 джоулей.

Плотность такой звезды сравнима, к примеру, с весом горы Эверест, помещённой в спичечный коробок. Это сотни миллиардов тонн в одном кубическом миллиметре. К примеру, чтобы стало более понятно, насколько велика плотность вещества, возьмём нашу планету с её массой 5,9×1024 кг и «превратим» в нейтронную звезду.

В результате, чтобы сравнялась с плотностью нейтронной звезды, её нужно уменьшить до размеров обычного яблока, диаметром 7-10 сантиметров. Плотность уникальных звёздных объектов увеличивается с перемещением к центру.

Слои и плотность вещества

Наружный слой звезды представлен собой в виде магнитосферы. Непосредственно под ней плотность вещества уже достигает порядка одной тонны на сантиметр кубический. Учитывая наши знания о Земле, на данный момент, это самое тяжёлое вещество из обнаруженных элементов. Но не спешите с выводами.

Продолжим наши исследования уникальных звёзд. Их называют также пульсарами, из-за высокой скорости вращения вокруг своей оси. Этот показатель у различных объектов колеблется от нескольких десятков до сотен оборотов в секунду.

Проследуем далее в изучении сверхплотных космических тел. Затем следует слой, который имеет характеристики металла, но, скорее всего, он похож по поведению и структуре. Кристаллы намного меньше, чем мы видим в кристаллической решётке Земных веществ. Чтобы выстроить линию из кристаллов в 1 сантиметр, понадобится выложить более 10 миллиардов элементов. Плотность в этом слое в один миллион раз выше, чем в наружном. Это не самое тяжёлое вещество звезды. Далее следует слой, богатый нейтронами, плотность которого в тысячу раз превышает предыдущий.

Ядро нейтронной звезды и его плотность

Ниже находится ядро, именно здесь плотность достигает своего максимума - в два раза выше, чем вышележащий слой. Вещество ядра небесного тела состоит из всех известных физике элементарных частиц. На этом мы достигли конца путешествия к ядру звезды в поисках самого тяжёлого вещества в космосе.

Миссия в поисках уникальных по плотности веществ во Вселенной, казалось бы, завершена. Но космос полон загадок и неоткрытых явлений, звёзд, фактов и закономерностей.

Чёрные дыры во Вселенной

Следует обратить внимание, на то, что сегодня уже открыто. Это чёрные дыры. Возможно, именно эти загадочные объекты могут быть претендентами на то, что самое тяжёлое вещество во Вселенной - их составляющая. Обратите внимание, что гравитация чёрных дыр настолько велика, что свет не может её покинуть.

По предположениям учёных, вещество, затянутое в область пространства времени, уплотняется настолько, что пространства между элементарными частицами не остаётся.

К сожалению, за горизонтом событий (так называется граница, где свет и любой объект, под действием сил гравитации, не может покинуть чёрную дыру) следуют наши догадки и косвенные предположения, основанные на выбросах потоков частиц.

Ряд учёных предполагают, что за горизонтом событий смешиваются пространство и время. Существует мнение, что они могут являться «проходом» в другую Вселенную. Возможно, это соответствует истине, хотя вполне возможно, что за этими пределами открывается другое пространство с совершенно новыми законами. Область, где время поменяется «местом» с пространством. Местонахождение будущего и прошлого определяется всего лишь выбором следования. Подобно нашему выбору идти направо или налево.

Потенциально допустимо, что во Вселенной существуют цивилизации, которые освоили путешествия во времени через чёрные дыры. Возможно, в будущем люди с планеты Земля откроют тайну путешествий сквозь время.

Современным астрономам известно около трех с половиной тысяч экзопланет, которые находятся от нас на расстоянии от четырех до двадцати восьми тысяч световых лет. Некоторые из них очень . Попасть на какую-нибудь из них в обозримом будущем будет сложно - разве что человечество совершит огромный технологический скачок. Тем не менее, экзопланеты уже сегодня представляют собой огромный интерес с точки зрения астрохимии. Об этом - наш новый материал, написанный в партнерстве с Уральским федеральным университетом .

Основную часть вещества Вселенной (если говорить о барионном веществе) составляет водород - около 75 процентов. На втором месте идет гелий (около 23 процентов). Однако в космосе можно найти самые разнообразные химические элементы и даже сложные молекулярные соединения, включая органические. Изучением процессов образования и взаимодействия химических соединений в космосе занимается астрохимия . Представителям этой специальности очень интересно исследовать экзопланеты, потому что на них могут реализоваться самые разные сценарии, которые приведут к появлению необычных соединений.

Радуга на службе у астрономов

Основным инструментом получения информации о химическом составе отдаленных объектов является спектроскопия . Она использует тот факт, что атомы химических элементов (или молекулы соединений) могут излучать или поглощать свет только на определенных частотах, отвечающих переходам системы между различными уровнями энергии. В результате формируется спектр излучения (или поглощения), по которому можно однозначно определить вещество. Это как отпечатки пальцев, только для атомов.

Наглядным примером разложения света в спектр является радуга. Нам переходы от одного цвета к другому кажутся плавными и непрерывными, а на самом деле некоторых цветов в радуге нет, потому что определенные длины волн поглощаются содержащимися в Солнце водородом и гелием. Кстати, гелий впервые открыли именно по наблюдению за спектром Солнца (поэтому он и называется «гелий», от др.-греч. ἥλιος - «солнце»), а в лаборатории его выделили только через 27 лет. Это был первый успешный пример использования спектроскопии для изучения звезд.

Фраунгоферовы линии поглощения на фоне непрерывного спектра фотосферы Солнца.

Wikimedia commons


В простейшем случае атома водорода спектр излучения представляет собой серию линий, отвечающих переходам между уровнями с различными значениями главного квантового числа n (эта картина хорошо описывается формулой Ридберга). Самой известной и удобной для наблюдений является линия Бальмера Hα, имеющая длину волны 656 нанометров и лежащая в области видимого спектра. Например, на этой линии астрономы наблюдают за далекими галактиками и распознают облака молекулярного газа, которые в большинстве своем как раз состоят из водорода. Следующие серии линий (Пашена, Брэкета, Пфунда и так далее) целиком лежат в инфракрасном диапазоне, а серия Лаймана расположена в области ультрафиолетового излучения. Это несколько усложняет наблюдения.

В то же время у молекул сложных соединений есть другой способ излучать кванты света, в каком-то смысле даже более простой. Связан он с тем, что вращательная энергия молекулы квантуется, что также позволяет им излучать в линиях (кроме того, они могут излучать и  непрерывный спектр). Энергия таких квантов света не очень большая, поэтому их частота лежит уже в радиодиапазоне. Один из самых простых вращательных спектров принадлежит молекуле угарного газа CO, по ней астрономы тоже часто распознают облака холодного газа, когда не могут разглядеть в них водород. Методы радиоастрономии позволили найти в молекулярных облаках также метанол, этанол, формальдегид, синильную и муравьиную кислоту, а также другие элементы. Например, именно с помощью радиотелескопа ученые алкоголь в хвосте кометы Лавджоя.

Что можно найти в космосе

Проще всего методы спектроскопии применять для изучения химического состава звезд. В этом случае астрономы исследуют спектры поглощения, а не излучения элементов. В самом деле, свет от них легко наблюдать, особенно в видимом диапазоне. Правда, химический состав звезд сам по себе обычно не очень интересен: по большей части они состоят из водорода и гелия с небольшой примесью тяжелых элементов.

Более тяжелые элементы образуются во вспышках сверхновых, и их тоже можно наблюдать. Например, некоторые ученые утверждают, что после недавно слияния двух нейтронных звезд должны были образоваться огромные количества золота, платины и других элементов из последних строк таблицы Менделеева. Но так или иначе, очень сложные или органические соединения в звездах существовать не могут, поскольку они обязательно распадаются из-за больших температур.

Другое дело - облака холодного межзвездного газа. Они очень сильно разрежены и излучают гораздо слабее, чем звезды, зато сами по себе гораздо больше. И состав у них более интересный. В них можно найти огромное число самых разных молекул - начиная от простых двухатомных и заканчивая относительно сложными многоатомными органическими соединениями. Среди сложных молекул особенно стоит выделить «пребиотические» соединения, например, аминоацетонитрил , который может участвовать в образовании глицина, простейшей аминокислоты. Некоторые ученые предполагают, что в молекулярных облаках может образоваться и рибоза, один из основных кирпичиков органической жизни. Если такие соединения попадут в благоприятные условия, это уже будет ступенькой для возникновения жизни.

Изображение туманности Ориона M42, полученное Коуровской астрономической обсерваторией УрФУ. Красный цвет - это результат рекомбинации в линии излучения Hα на длине волны 656,3 нанометра.

Чуть ближе к планетам

К сожалению, для определения химического состава экзопланет метод спектроскопии применить сложно. Все-таки для этого нужно зарегистрировать свет от них, а звезда, вокруг которой вращается планета, мешает это сделать, поскольку она светит намного ярче. Пытаться наблюдать за такой системой - все равно что смотреть на свет спички на фоне прожектора.

Тем не менее, некоторую информацию об экзопланете можно получить, не измеряя спектр ее излучения напрямую. Хитрость заключается в следующем. Если у планеты есть атмосфера, она должна поглощать часть излучения звезды, причем в разных спектральных диапазонах по-разному. Грубо говоря, на одной длине волны планета будет казаться чуть меньше, а на другой длине - чуть больше. Это позволяет строить предположения о свойствах атмосферы, в частности, о ее химическом составе. Такой способ наблюдений особенно хорошо работает на горячих, близко расположенных к звездам планетах, потому что их радиус проще измерять.

Кроме того, химический состав планеты должен быть связан с составом газопылевого облака, из которого она образовалась. Например, в облаках с большим отношением концентраций атомов углерода к атомам кислорода образующиеся планеты будут состоять преимущественно из карбонатов. С другой стороны, химический состав звезды, образовавшейся из такого облака, также должен отражать его состав. Это позволяет строить некоторые предположения, основываясь на изучении спектра одной только звезды. Так, астрономы из Йельского университета проанализировали данные о химическом составе 850 звезд и обнаружили, что в 60 процентах систем концентрации магния и кремния в звезде указывают на то, что рядом с ней могут находиться каменистые планеты, похожие на Землю. В оставшихся 40 процентах химический состав звезд говорит нам о том, что состав планет вокруг них должен существенно отличаться от земного.

Вообще говоря, в последнее время прямая спектроскопия особенно горячих планет на фоне тусклых звезд все-таки стала возможна благодаря возросшей точности измерительных приборов. В этом случае уже можно искать в их свете следы различных химических элементов и сложных соединений. Например, с помощью ИК-спектрографа CONICA, установленного на телескопе VLT и объединенного с системой адаптивной оптики NAOS, ученым удалось измерить спектр экзопланеты HR 8799 c, которая вращается вокруг белого карлика и разогрета так сильно, что сама излучает свет. В частности, из анализа ее спектра следовало, что в атмосфере планеты содержится меньше, чем ожидалось, метана и угарного газа. Также совсем недавно астрономы измерили спектр другого «горячего юпитера», в его атмосфере оксид титана. Тем не менее, непосредственные измерения спектра менее горячих каменистых планет (на которых существование жизни более вероятно) до сих пор представляет большую сложность.


Изображение системы HR 8799. Планета HR 8799 c находится в правом верхнем углу

Jason Wang et al / NASA NExSS, W. M. Keck Observatory


Состав планеты можно также определить косвенно, рассчитав ее плотность. Для этого нужно знать радиус и массу планеты. Массу можно найти, наблюдая за гравитационным взаимодействием планеты со звездой или другими планетами, а радиус оценить по изменению блеска звезды при прохождении планеты по ее диску. Очевидно, газовые планеты должны иметь меньшую плотность по сравнению с каменистыми. Например, средняя плотность Земли равна примерно 5,5 грамма на кубический сантиметр, и для поиска обитаемых планет астрономы ориентируются именно на это значение. В то же время плотность «самого рыхлого горячего юпитера» составляет 0,1 грамма на кубический сантиметр.


«Невозможные» соединения

С другой стороны, экзопланеты можно изучать и вовсе не выходя из лаборатории, как бы странно это ни звучало. Речь идет о моделировании (в основном численном) химических и физических процессов, которые должны на них происходить. Из-за того что условия на экзопланетах могут быть самые экзотические (простите за каламбур), вещества на них могут образоваться тоже самые необычные, «невозможные» в привычных для нас условиях.

Большинство открытых экзопланет относится к «горячим юпитерам» - сильно разогретым из-за небольшого расстояния до звезды газовым гигантам. Конечно, это не обязательно означает, что такие планеты преобладают в звездных системах, просто их легко найти. Температура атмосферы таких гигантов может превышать тысячу градусов по Цельсию, и состоит она в основном из паров силикатов и железа (при такой температуре оно начинает испаряться, но еще не кипит). В то же время, давление внутри этих планет должно достигать огромных значений, при которых водород и другие привычные для нас газы переходят в твердые агрегатные состояния. Эксперименты по моделированию подобных экстремальных условий проводятся давно, однако впервые металлический водород только в январе этого года.

С другой стороны, в недрах каменистых планет также могут достигаться большие давления и температуры, а «зоопарк» химических элементов там может быть даже больше. Например, по некоторым оценкам, давление внутри каменистых планет с массами в несколько земных масс может достигать значений до 30 миллионов атмосфер (внутри Земли давление не превышает четырех миллионов атмосфер). С помощью компьютерного моделирования удалось выяснить , что в таких условиях начинают образовываться экзотические соединения магния, кремния и кислорода (которых в составе каменистых планет должно быть много). Например, при давлениях более 20 миллионов атмосфер стабильными становится не только привычный для нас оксид кремния SiO 2 , но и «невозможные» SiO и SiO 3 . Также интересно, что в недрах особенно массивных планет (до 20 масс Земли) может образоваться MgSi 3 O 12 - оксид, обладающий свойствами электрического проводника.

Нестандартные условия можно моделировать не только на компьютере, но и в лаборатории, пусть и не для такого большого диапазона давлений и температур. С помощью алмазной наковальни можно получить давления до 10 миллионов атмосфер, как раз соответствующие условиям в недрах планет, а разогреть образец до высоких температур можно лазером. Эксперименты по моделированию таких условий действительно активно проводятся в последнее время. Например, в 2015 году группа ученых, в состав которой входили российские исследователи, экспериментально наблюдали образование пероксида магния MgO 2 уже при давлениях около 1,6 тысяч атмосфер и температурах больше двух тысяч градусов Цельсия. Подробно об исследованиях поведения вещества при больших давлениях вы можете прочитать в .


Рентгеновская спектроскопия образца, состоящего из атомов магния и кислорода, при давлении около десяти тысяч атмосфер и температуре около двух тысяч Кельвин. Пунктиром выделена область с повышенным содержанием кислорода.

S. Lobanov et al / Scientific Reports

***

В УрФУ есть группа ученых, которые занимаются изучением протопланетного вещества в дальнем космосе и Солнечной системе. Мы попросили ведущего специалиста Коуровской астрономической обсерватории УрФУ Вадима Крушинского более подробно рассказать об изучении экзопланет.

N +1: Зачем мы изучаем экзопланеты?

Вадим Крушинский: Еще 25 лет назад нам было известно о существовании единственной планетной системы - Солнечной. Теперь же мы уверены в том, что планеты есть у огромного числа звезд, возможно, почти у каждой звезды во Вселенной. Прогресс технологий получения и обработки данных привел к тому, что найти свою экзопланету может даже продвинутый любитель астрономии. Открытие очередного «горячего юпитера» - это открытие целой планетной системы, просто мы видим только самую заметную ее часть. Планеты меньшего размера или находящиеся дальше от родительской звезды открываются гораздо реже, это эффект наблюдательной селекции.

Вадим Крушинский в составе группы ученых Уральского федерального университета работает над проектом по исследованию протопланетного вещества в дальнем космосе, Солнечной системе и на Земле.

Это один из шести прорывных научных проектов университета, им занимается стратегическая академическая единица (САЕ) - Институт естественных наук и математики УрФУ - вместе с академическими и индустриальными партнерами из России и других стран. От успеха исследователей зависят позиции университета в российских и международных рейтингах, прежде всего в предметных.

Единичный эксперимент не позволяет делать выводы о наблюдаемом явлении. Эксперимент должен быть повторен многократно и независимо. Каждая открытая экзопланетная система - это отдельный независимый эксперимент. И чем больше их известно, тем надежнее прослеживаются общие законы происхождения и эволюции планетных систем. Нам необходимо набирать статистику!

Что же можно узнать об экзопланетах, наблюдая за ними с таких больших расстояний?

Прежде всего нужно определить свойства родительской звезды. Это позволяет вычислить размеры планет, их массу и радиусы орбит. Зная светимость родительской звезды и радиус орбиты, можно оценить температуру поверхности экзопланеты. Кроме того, атмосферы планет имеют разную прозрачность в разных спектральных диапазонах (об этом писал еще Ломоносов). Для наблюдателя это выглядит как разный диаметр планеты при наблюдении в разных фильтрах. Это позволяет обнаружить атмосферу и оценить ее толщину и плотность. Свет родительской звезды, прошедший через атмосферу планеты во время транзита, несет информацию о составе ее атмосферы. А во время вторичного затмения, когда планета прячется за свою звезду, мы можем наблюдать изменения спектра, связанные с отражением от атмосферы и поверхности планеты. Так же, как и у Луны, у экзопланет можно наблюдать фазы. Если изменения блеска системы, вызванные этим эффектом, не постоянны, то это говорит о том, что альбедо планеты (способность отражать свет) меняется. Например, вследствие движения облаков в ее атмосфере.

Свойства экзопланет должны быть связаны со свойствами родительских облаков. Изучая материю на стадии звездообразования, мы вносим вклад в понимание эволюции планетных систем. К сожалению, Земля претерпела значительные изменения в ходе истории, и уже мало напоминает то протопланетное вещество, из которого когда-то родилась. Но совсем рядом с нами летают метеориты и кометы. Некоторые из них даже падают на Землю и попадают в лаборатории. До каких-то из них могут долететь космические аппараты. Прямо перед нами отличный объект исследования! Остается только доказать, что и другие планетные системы эволюционировали так же, как наша.

Можно ли найти жизнь на других планетах?

Для этого нужно обнаружить биомаркеры - проявления жизнедеятельности организмов. Лучшим биомаркером были бы передачи условного «Первого канала», но сойдет и наличие кислорода. Без жизни кислород на Земле был бы связан и исчез из атмосферы за десяток тысяч лет. Обнаружив кислород в атмосферах экзопланет, мы сможем утверждать, что не одиноки во Вселенной. Как его найти, было рассказано выше. Но вот только приборов с достаточной чувствительностью пока нет. Прорыв в этом направлении ожидается после запуска космического телескопа им. Джеймса Вебба (JWST).

Что могут сделать в этой области ученые из России и, в частности, из УрФУ?

Несмотря на то, что в плане изучения экзопланет Россия отстает от остального научного сообщества, у нас есть возможность сократить это отставание. Относительно малобюджетные программы по поиску экзопланетных систем (пилотный проект KPS Коуровской обсерватории УрФУ) позволят сделать первый шаг и помогут в наборе данных для статистического анализа. Высокоточные фотометрические измерения можно проводить и на имеющемся оборудовании, это позволяет искать атмосферы у некоторых экзопланет. Спектральные наблюдения во время транзитов и вторичных затмений относительно доступны для крупнейших телескопов России. Что нужно сделать для старта этих программ - найти заинтересованных людей и оплатить их работу. Немного вложиться в оборудование.

Второе направление - моделирование и интерпретация наблюдаемых эффектов. Это может быть как теоретическая работа, так и экспериментальная - исследование поведения и свойств образцов в условиях космоса и сравнение с наблюдаемыми эффектами. Для этого необходимо создание установки, имитирующей условия космического пространства. В качестве образцов можно использовать метеориты из коллекции УрФУ.

Дмитрий Трунин


Космохимия Космохимия- наука о химическом составе космических тел, законах распространённости и распределения химических элементов во Вселенной, процессах сочетания и миграции атомов при образовании космического вещества. Геохимия - наиболее изученная часть космохимии. Космохимия- наука о химическом составе космических тел, законах распространённости и распределения химических элементов во Вселенной, процессах сочетания и миграции атомов при образовании космического вещества. Геохимия - наиболее изученная часть космохимии.


Химия Земли В состав земной коры входят: O – 46.6 % Ca – 3.63 % Al – 8.13 % Na – 2.83 % Si – % K – 2.59 % Fe – 5.0 % Mg – 2.0 % Всего - 98,59%


Химический состав метеорита Химические анализы метеоритов, упавших на нашу планету, дали замечательные результаты. Если подсчитать среднее содержание во всех метеоритах наиболее распространенных на Земле элементов: железа, кислорода, кремния, магния, алюминия, кальция,- то на их долю падает ровно 94%, т. е. их в составе метеоритов равно столько же, сколько в составе земного шара.








Химия межзвёздного пространства Еще не так давно в науке допускалось, что межзвездное пространство представляет собой пустоту. Все вещество Вселенной сосредоточено в звездах, а между ними нет ничего. Лишь в пределах Солнечной системы, где-то по неведомым путям, блуждают метеориты и их загадочные собратья – кометы. Еще не так давно в науке допускалось, что межзвездное пространство представляет собой пустоту. Все вещество Вселенной сосредоточено в звездах, а между ними нет ничего. Лишь в пределах Солнечной системы, где-то по неведомым путям, блуждают метеориты и их загадочные собратья – кометы. Химия межзвездного пространства - удивительно сложна. В космосе были открыты простейшие радикалы: например, метин (CH), гидроксил (OH). Где есть гидроксил, там должна быть и вода, и она была действительно найдена в межзвездном пространстве. В космосе есть вода, органические молекулы (формальдегид), аммиак. Эти соединения, реагируя между собой, могут привести к образованию аминокислот.


Лунная химия Лунные камни особенные – на их составе сказывается недостаток кислорода. На Луне не было ни свободной воды, ни атмосферы. Все летучие соединения, возникшие при магматических процессах, улетели в космос. Каменные метеориты сложены простыми силикатами, число минералов в них едва достигает сотни. В лунных же породах минералов немного больше, чем в метеоритах, – вероятно, несколько сотен. А на поверхности Земли открыто больше 3 тыс. минералов. Это говорит о сложности земных химических процессов по сравнению с лунными.


Химический состав планет Меркурий – самая близкая к Солнцу планета Меркурий покрыт силикатными породами, сходными с земными. Состав атмосферы Венеры углекислого газа (СО2) около 97 %, азота (N2) не более 2 %, водяного пара (Н2О) около 1 %, кислорода (О2) не более 0,1 %.


Химический состав планет Атмосфера этой планеты состоит из углекислоты, есть немного азота, кислорода и водяного пара. Советские и американские ученые отправили автоматические исследовательские станции и на Марс. Марс – холодная безжизненная пыльная пустыня. Самая интересная, удивительная и загадочная планета с точки зрения химии – это Юпитер. На 98 % Юпитер состоит из водорода и гелия. Обнаружены также вода, сероводород, метан и аммиак.


Химический состав планет Атмосфера Урана состоит примерно на 83% из водорода, на 15% из гелия и на 2% из метана. Подобно другим газовым планетам, Уран имеет полосы облаков, которые очень быстро перемещаются. Строение и набор составляющих Нептун элементов, вероятно, подобны Урану: различные "льды" или отвердевшие газы с содержанием около 15% водорода и небольшого количества гелия Атмосфера Сатурна - в основном, водород и гелий.


МЕТАЛЛЫ В КОСМОСЕ Титан сегодня - важнейший конструкционный материал. Это связано с редким сочетанием легкости, прочности и тугоплавкости данного металла. На основе титана создано множество высокопрочных сплавов для авиации, судостроения и ракетной техники. Титан сегодня - важнейший конструкционный материал. Это связано с редким сочетанием легкости, прочности и тугоплавкости данного металла. На основе титана создано множество высокопрочных сплавов для авиации, судостроения и ракетной техники.


Фуллерены в космосе фуллерены разветвлённые цепочки углеводородов фуллерены разветвлённые цепочки углеводородов Фуллерены впервые найдены вне Млечного Пути Фуллерены впервые найдены вне Млечного Пути фуллерены были найдены в метеоритах фуллерены были найдены в метеоритах