Что означает термин белый карлик. Белые карлики

Во Вселенной существует множество различных звезд. Большие и маленькие, горячие и холодные, заряженные и не заряженные. В этой статье мы назовем основные виды звезд, а также дадим подробную характеристику Жёлтым и Белым карликам.

  1. Жёлтый карлик . Жёлтый карлик – тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000–6000 K. Подробнее об этом типе звезд нем смотрите ниже.
  2. Красный гигант . Красный гигант – это крупная звезда красноватого или оранжевого цвета. Образование таких звезд возможно как на стадии звездообразования, так и на поздних стадиях их существования. Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.
  3. Белый карлик . Белый карлик – это то, что остаётся от обычной звезды с массой, не превышающей 1,4 солнечной массы, после того, как она проходит стадию красного гиганта. Подробнее об этом типе звезд нем смотрите ниже.
  4. Красный карлик . Красные карлики – самые распространённые объекты звёздного типа во Вселенной. Оценка их численности варьируется в диапазоне от 70 до 90% от числа всех звёзд в галактике. Они довольно сильно отличаются от других звезд.
  5. Коричневый карлик . Коричневый карлик – субзвездные объекты (с массами в диапазоне примерно от 0,01 до 0,08 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.
  6. Субкоричневые карлики . Субкоричневые карлики или коричневые субкарлики – холодные формирования, по массе лежащие ниже предела коричневых карликов. Масса их меньше примерно одной сотой массы Солнца или, соответственно, 12,57 массы Юпитера, нижний предел не определён. Их в большей мере принято считать планетами, хотя к окончательному заключению о том, что считать планетой, а что – субкоричневым карликом научное сообщество пока не пришло.
  7. Черный карлик . Черные карлики – остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.
  8. Двойная звезда . Двойная звезда – это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс.
  9. Новая звезда . Звезды, светимость которых внезапно увеличивается в 10 000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызывая вспышку светимости.
  10. Сверхновая звезда . Сверхновая звезда – это звезда, заканчивающая свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.
  11. Нейтронная звезда . Нейтронные звезды (НЗ) – это звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, порядка 10-20 км в диаметре. Они состоят в основном из нейтральных субатомных частиц – нейтронов, плотно сжатых гравитационными силами. В нашей Галактике, по оценкам ученых, могут существовать от 100 млн до 1 млрд нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд.
  12. Пульсары . Пульсары – космические источники электромагнитных излучений, приходящих на Землю в виде периодических всплесков (импульсов). Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения. Когда Земля попадает в конус, образуемый этим излучением, то можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Некоторые нейтронные звёзды совершают до 600 оборотов в секунду.
  13. Цефеиды . Цефеиды – класс пульсирующих переменных звёзд с довольно точной зависимостью период-светимость, названный в честь звезды Дельта Цефея. Одной из наиболее известных цефеид является Полярная звезда. Приведенный перечень основных видов (типов) звезд с их краткой характеристикой, разумеется, не исчерпывает всего возможного многообразия звезд во Вселенной.

Жёлтый карлик

Находясь на различных стадиях своего эволюционного развития, звезды подразделяются на нормальные звезды, звезды карлики, звезды гиганты. Нормальные звезды, это и есть звезды главной последовательности. К таким, например, относится наше Солнце. Иногда такие нормальные звезды называются желтыми карликами .

Характеристика

Сегодня мы кратко расскажем о желтых карликах, которых еще называют желтыми звездами. Желтые карлики – это, как правило, звезды средней массы, светимости и температуры поверхности. Они являются звездами основной последовательности, располагаясь примерно в середине на диаграмме Герцшпрунга – Рассела и следуя за более холодными и менее массивными красными карликами.

По спектральной классификации Моргана-Кинана желтые карлики соответствуют в основном классу светимости G, однако в переходных вариациях соответствуют иногда классу К (оранжевые карлики) или классу F в случае с желто-белыми карликами.

Масса желтых карликов лежит зачастую в пределах от 0,8 до 1,2 массы Солнца. При этом температура их поверхности составляет в своем большинстве от 5 до 6 тысяч градусов по Кельвину.

Наиболее ярким и известным нам представителем из числа желтых карликов является наше Солнце.

Кроме Солнца, среди ближайших к Земле желтых карликов стоит отметить:

  1. Две компоненты в тройной системе Альфа Центавра, среди которых Альфа Центавра А по спектру светимости аналогично Солнцу, а Альфа Центавра В – типичный оранжевый карлик класса К. Расстояние до обеих компонент составляет чуть более 4-х световых лет.
  2. Оранжевый карлик – звезда Ран, она же Эпсилон Эридана, с классом светимости К. Расстояние до Рана астрономы оценили примерно в 10 с половиной световых лет.
  3. Двойная звезда 61 Лебедя, удаленная от Земли на чуть более 11 световых лет. Обе компоненты 61 Лебедя типичные оранжевые карлики класса светимости К.
  4. Солнцеподобная звезда Тау Кита, удаленная от Земли примерно на 12 световых лет, со спектром светимости G и интересной планетной системой, состоящей минимум из 5 экзопланет.

Образование

Эволюция желтых карликов весьма интересна. Продолжительность жизни желтого карлика составляет примерно 10 миллиардов лет.

Как и большинства звезд в их недрах протекают интенсивные термоядерные реакции, в которых в основном водород перегорает в гелий. После начала реакций с участием гелия в ядре звезды водородные реакции перемещаются все больше к поверхности. Это и становится отправной точкой в преобразовании желтого карлика в красный гигант. Результатом подобного преобразования может служить красный гигант Альдебаран.

С течением времени поверхность звезды будет постепенно остывать, а внешние слои начнут расширяться. На конечных стадиях эволюции красный гигант сбрасывает свою оболочку, которая образует планетарную туманность, а его ядро превратится в белый карлик, который далее будет сжиматься и остывать.

Подобное будущее ждет и наше Солнце, которое сейчас находится на средней стадии своего развития. Примерно через 4 миллиарда лет оно начнет свое превращение в красный гигант, фотосфера которого при расширении может поглотить не только Землю и Марс, но даже и Юпитер.

Время жизни жёлтого карлика составляет в среднем 10 миллиардов лет. После того, как сгорает весь запас водорода, звезда во много раз увеличивается в размере и превращается в красный гигант. самым планетарные туманности, а ядро коллапсирует в маленький, плотный белый карлик.

Белые карлики

Белые карлики – звезды, имеющие большую массу (порядка солнечной) и малый радиус (радиус Земли), что менее предела Чандрасекара для выбранной массы, являющиеся продуктом эволюции красных гигантов. Процесс производства термоядерной энергии в них прекращен, что приводит к особым свойствам этих звезд. Согласно различным оценкам, в нашей Галактике их количество составляет от 3 до 10 % всего звездного населения.

История открытия

В 1844 году немецкий астроном и математик Фридрих Бессель при наблюдении Сириуса обнаружил небольшое отклонение звезды от прямолинейного движения, и сделал предположение о наличии у Сириуса невидимой массивной звезды-спутника.

Его предположение было подтверждено уже в 1862 году, когда американский астроном и телескопостроитель Альван Грэхэм Кларк, занимаясь юстировкой самого крупного в то время рефрактора, обнаружил возле Сириуса неяркую звезду, которую впоследствии окрестили Сириус Б.

Белый карлик Сириус Б имеет низкую светимость, а гравитационное поле воздействует на своего яркого компаньона довольно заметно, что свидетельствует о том, что у этой звезды крайне малый радиус при значительной массе. Так впервые был открыт вид объектов, названный белыми карликами. Вторым подобным объектом была звезда Маанена, находящаяся в созвездии Рыб.

Как же образуются белые карлики?

После того как в стареющей звезде выгорит весь водород, ее ядро сжимается и разогревается, – это способствует расширению ее внешних слоев. Эффективная температура звезды падает, и она превращается в красного гиганта. Разреженная оболочка звезды, очень слабо связанная с ядром, со временем рассеивается в пространстве, перетекая на соседние планеты, а на месте красного гиганта остается очень компактная звезда, называемая белым карликом.

Долгое время оставалось загадкой, почему белые карлики, имеющие температуру, превосходящую температуру Солнца, по сравнению с размерами Солнца невелики, пока не выяснилось, что плотность вещества внутри них предельно высока (в пределах 10 5 – 10 9 г/см 3). Стандартной зависимости – масса-светимость – для белых карликов не существует, что отличает их от других звезд. В чрезвычайно малом объеме «упаковано» огромное количество вещества, из-за чего плотность белого карлика почти в 100 раз больше плотности воды.

Температура белых карликов остается практически постоянной, несмотря на отсутствие внутри них термоядерных реакций. Чем же это объясняется? По причине сильного сжатия электронные оболочки атомов начинают проникать друг в друга. Это продолжается до тех пор, пока между ядрами расстояние не становится минимальным, равным радиусу наименьшей электронной оболочки.

В результате ионизации электроны начинают свободно двигаться относительно ядер, а вещество внутри белого карлика приобретает физические свойства, которые характерны для металлов. В подобном веществе энергия к поверхности звезды переносится электронами, скорость которых по мере сжатия все больше увеличивается: некоторые из них двигаются со скоростью, соответствующей температуре в миллион градусов. Температура на поверхности и внутри белого карлика может резко отличаться, что не приводит к изменению диаметра звезды. Здесь можно привести сравнение с пушечным ядром – остывая, оно не уменьшается в объеме.

Угасает белый карлик крайне медленно: за сотни миллионов лет интенсивность излучения падает всего на 1%. Но в итоге он должен будет исчезнуть, превратившись в черного карлика, для чего могут потребоваться триллионы лет. Белые карлики вполне можно назвать уникальными объектами Вселенной. Воспроизвести в земных лабораториях условия, в которых они существуют, еще никому не удалось.

Рентгеновское излучение белых карликов

Температура поверхности молодых белых карликов, изотропных ядер звёзд после сброса оболочек, очень высока – более 2·10 5 К, однако достаточно быстро падает за счёт излучения с поверхности. Такие очень молодые белые карлики наблюдаются в рентгеновском диапазоне (например, наблюдения белого карлика HZ 43 спутником ROSAT). В рентгеновском диапазоне светимость белых карликов превышает светимость звёзд главной последовательности: иллюстрацией могут служить снимки Сириуса, сделанные рентгеновским телескопом «Чандра» – на них белый карлик Сириус Б выглядит ярче, чем Сириус А спектрального класса A1, который в оптическом диапазоне в ~10 000 раз ярче Сириуса Б.

Температура поверхности наиболее горячих белых карликов – 7·10 4 К, наиболее холодных – меньше 4·10 3 К.

Особенностью излучения белых карликов в рентгеновском диапазоне является тот факт, что основным источником рентгеновского излучения для них является фотосфера, что резко отличает их от «нормальных» звёзд: у последних в рентгене излучает корона, разогретая до нескольких миллионов кельвинов, а температура фотосферы слишком низка для испускания рентгеновского излучения.

В отсутствие аккреции источником светимости белых карликов является запас тепловой энергии ионов в их недрах, поэтому их светимость зависит от возраста. Количественную теорию остывания белых карликов построил в конце 1940-х годов профессор Самуил Каплан.

Белый карлик - звезда, в нашем космосе довольно распространенная. Ученые называют ее результатом эволюции звезд, финальным этапом развития. Всего есть два сценария видоизменения звездного тела, в одном случае завершающий этап - нейтронная звезда, в другом - черная дыра. Карлики - это окончательный эволюционный шаг. Вокруг них есть планетарные системы. Ученые смогли определить это, изучив обогащенные металлами экземпляры.

История вопроса

Белые карлики - звезды, привлекшие внимание астрономов в 1919. Впервые удалось открыть такое небесное тело ученому из Нидерландов Маанену. Для своего времени специалист сделал довольно нетипичное и неожиданное открытие. Увиденный им карлик был похож на звезду, но имел нестандартные маленькие размеры. Спектр, однако, был таков, словно бы это массивное и большое небесное тело.

Причины такого странного явления привлекали ученых довольно долгое время, поэтому было приложено немало усилий для изучения строения белых карликов. Прорыв совершился, когда высказали и доказали предположение обилия в атмосфере небесного тела разнообразных металлических структур.

Необходимо уточнить, что металлы в астрофизике - это всевозможные элементы, молекулы которых тяжелее водородных, гелиевых, а химический состав их более прогрессивен, нежели эти два соединения. Гелий, водород, как удалось установить ученым, в нашей вселенной распространены шире, нежели любые другие вещества. Отталкиваясь от этого, было решено все прочее обозначать металлами.

Развитие темы

Хотя впервые сильно отличающиеся размерами от Солнца белые карлики были замечены в двадцатых годах, только через половину века люди выявили, что наличие металлических структур в звездной атмосфере не является типичным явлением. Как выяснилось, при включении в атмосферу помимо двух самых распространенных веществ более тяжелых происходит их смещение в глубокие слои. Тяжелые вещества, оказавшись среди молекул гелия, водорода, со временем должны переместиться в ядро звезды.

Причин такого процесса удалось обнаружить несколько. Радиус белого карлика мал, такие звездные тела очень компактные - не зря они получили свое название. В среднем радиус сравним с земным, в то время как вес сходен с весом звезды, освещающей нашу планетарную систему. Такое соотношение габаритов и веса становится причиной исключительно большого гравитационного поверхностного ускорения. Следовательно, оседание тяжелых металлов в водородной и гелиевой атмосфере происходит всего лишь за несколько земных дней после попадания молекулы в общую газовую массу.

Возможности и продолжительность

Иногда характеристики белых карликов таковы, что процесс оседания молекул тяжелых веществ может затянуться надолго. Наиболее благоприятные варианты, с точки зрения наблюдателя с Земли, - это процессы, на которые уходят миллионы, десятки миллионов лет. И все же такие временные промежутки исключительно малы в сравнении с продолжительностью существования самого звездного тела.

Эволюция белого карлика такова, что большая часть наблюдаемых человеком в настоящий момент формирований уже насчитывает несколько сотен миллионов земных лет. Если сравнить это с самым медленным процессом поглощения металлов ядром, разница получается более чем существенная. Следовательно, выявление металла в атмосфере определенной наблюдаемой звезды позволяет с уверенностью заключить, что изначально тело не имело такого состава атмосферы, иначе все металлические включения давно пропали бы.

Теория и практика

Описанные выше наблюдения, а также собранная за долгие десятилетия информация о белых карликах, нейтронных звездах, черных дырах позволила предположить, что атмосфера получает металлические включения из внешних источников. Ученые сперва решили, что таковой является среда между звездами. Небесное тело перемещается сквозь такое вещество, аккрецирует среду на свою поверхность, тем самым обогащая атмосферу тяжелыми элементами. Но дальнейшие наблюдения показали, что такая теория несостоятельна. Как уточнили специалисты, если бы изменение атмосферы происходило именно таким путем, преимущественно карлик извне получал бы водород, так как среда между звездами сформирована в своей основной массе именно водородными и гелиевыми молекулами. Лишь малый процент среды приходится на долю тяжелых соединений.

Если бы сформированная из первичных наблюдений за белыми карликами, нейтронными звездами, черными дырами теория оправдала бы себя, карлики состояли бы из водорода как самого легкого элемента. Это не допускало бы существования даже гелиевых небесных тел, ведь гелий тяжелее, а значит, водородная аккреция полностью скрыла бы его от глаза внешнего наблюдателя. Исходя из наличия гелиевых карликов, ученые пришли к выводу, что межзвездная среда не может служить единственным и даже основным источником металлов в атмосфере звездных тел.

Как объяснить?

Ученые, занимавшиеся в 70-х годах прошлого столетия черными дырами, белыми карликами, предположили, что металлические включения могут объясняться падением комет на поверхность небесного тела. Правда, в свое время такие идеи были признаны слишком экзотичными и поддержки не получили. Во многом это объяснялось тем, что люди еще не знали о наличии иных планетных систем - известна была только наша «домашняя» Солнечная.

Существенный шаг вперед в исследовании черных дыр, белых карликов был сделан в конце следующего, восьмого десятилетия прошлого века. Ученые получили в свое распоряжение особенно мощные инфракрасные приборы для наблюдения за глубинами космоса, что позволило вокруг одного из известных астрономам белого карлика обнаружить инфракрасное излучение. Таковое было выявлено именно вокруг карлика, атмосфера которого содержала металлические включения.

Инфракрасное излучение, позволившее оценить температуру белого карлика, также сообщило ученым, что звездное тело окружено некоторым веществом, способным поглощать звездное излучение. Это вещество нагрето до конкретного температурного уровня, меньшего присущего звезде. Это позволяет постепенно перенаправлять поглощенную энергию. Излучение происходит в инфракрасном диапазоне.

Наука движется вперед

Спектры белого карлика стали объектом изучения передовых умов мира астрономов. Как оказалось, из них можно получить довольно объемную информацию об особенностях небесных тел. Особенно интересными были наблюдения за звездными телами с избыточным инфракрасным излучением. В настоящее время удалось выявить около трех десятков систем такого типа. Основной их процент изучался посредством мощнейшего телескопа «Спитцер».

Ученые, наблюдая за небесными телами, установили, что плотность белых карликов существенно меньше этого параметра, свойственного гигантам. Также было выявлено, что избыточное инфракрасное излучение объясняется наличием дисков, сформированных специфическим веществом, способным поглощать энергетическое излучение. Именно оно затем излучает энергию, но уже в ином диапазоне волн.

Диски расположены исключительно близко и в некоторой степени влияют на массу белых карликов (которая не может превышать предела Чандрасекара). Внешний радиус получил название обломочного диска. Было высказано предположение, что таковой сформировался при разрушении некоторого тела. В среднем радиус по размеру сравним с Солнцем.

Если обратить внимание на нашу планетарную систему, станет ясно, что относительно недалеко от «дома» мы может наблюдать сходный пример - это окружающие Сатурн кольца, размер которых также сравним с радиусом нашего светила. Со временем ученые установили, что эта особенность - не единственная из тех, что роднит карлики и Сатурн. К примеру, и планета, и звезды обладают очень тонкими дисками, которым несвойственна прозрачность при попытке просвечивания светом.

Выводы и развитие теории

Поскольку кольца белых карликов сравнимы с теми, что окружают Сатурн, стало возможным сформулировать новые теории, объясняющие наличие металлов в атмосфере этих звезд. Астрономам известно, что вокруг Сатурна кольца сформированы приливным разрушением некоторых тел, оказавшихся достаточно близко от планеты, чтобы на них повлияло ее гравитационное поле. В такой ситуации внешнее тело не может сохранять собственную гравитацию, что приводит к нарушению целостности.

Около пятнадцати лет назад была представлена новая теория, объяснившая образование колец белых карликов сходным образом. Предположили, что первоначально карлик представлял собой звезду в центре системы планет. Небесное тело с течением времени эволюционирует, на что уходят миллиарды лет, разбухает, теряет оболочку, и это становится причиной формирования карлика, постепенно остывающего. Кстати говоря, цвет белых карликов объясняется именно их температурой. У некоторых она оценивается в 200 000 К.

Система планет в ходе такой эволюции может выжить, что приводит к расширению внешней части системы одновременно с уменьшением массы звезды. В результате формируется крупная система астероиды и многие другие элементы выживают при эволюции.

Что дальше?

Прогресс системы может привести к ее нестабильности. Это приводит к бомбардировке камнями окружающего планеты пространства, и астероиды частично вылетают из системы. Некоторые из них, однако, перемещаются на орбиты, рано или поздно оказываясь в пределах солнечного радиуса карлика. Столкновения не происходит, но приливные силы приводят к нарушению целостности тела. Скопление таких астероидов приобретает форму, сходную с окружающими Сатурн кольцами. Тем самым вокруг звезды формируется диск обломков. Существенно отличается плотность белого карлика (порядка 10^7 г/см3) и его обломочного диска.

Описанная теория стала достаточно полным и логичным объяснением ряда астрономических явлений. Посредством нее можно понять, почему диски компактны, ведь звезда не может все время своего существования окружаться диском, радиус которого сравним с солнечным, иначе первое время такие диски были бы внутри ее тела.

Объяснив формирование дисков и их размер, можно понять, откуда берется своеобразный запас металлов. Он может оказаться на звездной поверхности, загрязнив карлик металлическими молекулами. Описанная теория, не противореча выявленным показателям средней плотности белых карликов (порядка 10^7 г/см3), доказывает, по какой причине металлы наблюдаются в атмосфере звезд, почему измерение химического состава возможно доступными человеку средствами и по какой причине распределение элементов сходно с тем, что свойственно нашей планете и другим изученным объектам.

Теории: а есть ли польза?

Описанная идея получила широкое распространение как база для объяснения, по какой причине оболочки звезд загрязнены металлами, почему появились обломочные диски. Кроме того, из нее вытекает, что вокруг карлика существует планетная система. Удивительного в таком выводе мало, ведь человечество установило, что большая часть звезд имеет собственные системы планет. Это свойственно как тем, что сходны с Солнцем, так и тем, что значительно больше его габаритами - а именно из них и формируются белые карлики.

Темы не исчерпаны

Даже если считать описанную выше теорию общепринятой и доказанной, некоторые вопросы для астрономов и по сей день остаются открытыми. Особенный интерес вызывает специфика переноса вещества между дисками и поверхностью небесного тела. Как предполагают некоторые, это объясняется радиационным излучением. Теории, призывающие таким образом описать перенос вещества, основаны на эффекте Пойнтинга-Робертсона. Это явление, под влиянием которого частицы медленно перемещаются по орбите вокруг молодой звезды, постепенно спирально смещаясь к центру и пропадая в небесном теле. Предположительно, этот эффект должен проявляться на обломочных дисках, окружающих звезды, то есть молекулы, которые присутствуют в дисках, рано или поздно оказываются в исключительной близости от карлика. Твердые вещества подвержены испарению, формируется газ - таковой в виде дисков был зафиксирован вокруг нескольких наблюдаемых карликов. Рано или поздно газ доходит до поверхности карлика, перенося сюда металлы.

Выявленные факты оцениваются астрономами как существенный вклад в науку, поскольку позволяют предположить, как сформированы планеты. Это важно, так как объекты для исследований, привлекающие специалистов, зачастую недоступны. К примеру, планеты, вращающиеся вокруг превышающих Солнце габаритами звезд, крайне редко можно изучить - это слишком сложно на том техническом уровне, который доступен нашей цивилизацией. Вместо этого, люди получили возможность изучения систем планет после превращения звезд в карлики. Если удастся развиваться в этом направлении, наверняка можно будет выявить новые данные о наличии систем планет и их отличительных характеристиках.

Белые карлики, в атмосфере которых выявлены металлы, позволяют составить представление о химическом составе комет и иных космических тел. Фактически иного способа для оценки состава у ученых просто нет. К примеру, изучая планеты-гиганты, можно составить представление только о внешнем слое, но нет никакой достоверной информации о внутреннем содержании. Это касается и нашей «домашней» системы, поскольку химический состав можно изучить лишь у того небесного тела, которое упало на поверхность Земли либо того, куда удалось приземлить аппарат для исследований.

Как все происходит?

Рано или поздно наша планетарная система также станет «домом» белого карлика. Как говорят ученые, звездное ядро располагает ограниченным объемом вещества для получения энергии, и рано или поздно термоядерные реакции исчерпываются. Газ уменьшается в объемах, плотность повышается до тонны на кубический сантиметр, в то время как во внешних слоях реакция по-прежнему протекает. Звезда расширяется, становится красным гигантом, радиус которого сравним с сотнями звезд, равных Солнцу. Когда внешняя оболочка прекращает «горение», в течение 100 000 лет происходит рассеивание вещества в пространстве, что сопровождается формированием туманности.

Ядро звезды, освободившись от оболочки, понижает температуру, что и приводит к формированию белого карлика. Фактически такая звезда - это высокоплотный газ. В науке карлики нередко именуют вырожденными небесными телами. Если бы наше светило сжалось и его радиус насчитывал бы лишь несколько тысяч километров, но вес бы полностью сохранился, то здесь также имел бы место белый карлик.

Особенности и технические моменты

Рассматриваемый тип космического тела способен светиться, но этот процесс объясняется иными механизмами, отличными от термоядерных реакций. Свечение называют остаточным, оно объясняется понижением температуры. Карлик сформирован веществом, ионы которого иногда холоднее 15000 К. Элементам характерны колебательные движения. Постепенно небесное тело становится кристаллическим, его свечение ослабевает, и карлик эволюционирует в коричневый.

Ученые выявили предел массы для такого небесного тела - до 1,4 веса Солнца, но не больше этой границы. Если масса превышает этот предел, звезда существовать не может. Это объясняется давлением вещества, находящегося в сжатом состоянии - оно меньше гравитационного притяжения, сжимающего вещество. Происходит очень сильное сжатие, которое приводит к появлению нейтронов, вещество нейтронизируется.

Процесс сжатия может привести к вырождению. В этом случае формируется нейтронная звезда. Второй вариант - продолжение сжатия, рано или поздно приводящее к взрыву.

Общие параметры и особенности

Болометрическая светимость рассматриваемой категории небесных тел относительно свойственной Солнцу меньше приблизительно в десять тысяч раз. Радиус карлика меньше солнечного в сто раз, в то время как вес сравним со свойственным основной звезде нашей системы планет. Для определения границы массы для карлика был рассчитан предел Чандрасекара. При его превышении карлик эволюционирует в другую форму небесного тела. Фотосфера звезды в среднем состоит из плотного вещества, оцененного в 105-109 г/см3. В сравнении с главной звездной последовательностью это плотнее приблизительно в миллион раз.

Некоторые астрономы считают, что лишь 3% всех звезд в галактике - это белые карлики, а некоторые убеждены, что к такому классу принадлежит каждая десятая. Оценки столь сильно разнятся о причине сложности наблюдения за небесными телами - они удалены от нашей планеты и слишком слабо светятся.

Истории и имена

В 1785 в списке двойных звезд появилось тело, наблюдениями за которым занимался Гершель. Звезду назвали 40 Эридана B. Именно она считается первой увиденной человеком из категории белых карликов. В 1910 Расселл заметил, что этому небесному телу свойственен крайне низкий уровень свечения, хотя цветовая температура довольно высокая. Со временем было решено, что небесные тела такого класса необходимо выделять в отдельную категорию.

В 1844 Бессель, исследуя информацию, полученную при слежении за Проционом В, Сириусом В, решил, что обе они время от времени смещаются с прямой линии, а значит, там есть близкие спутники. Такое предположение научному сообществу показалось маловероятным, так как не удалось увидеть никакого спутника, в то время как отклонения могли бы объясниться только небесным телом, масса которого исключительно велика (аналогична Сириусу, Проциону).

В 1962 Кларк, работая с наиболее крупным телескопом из существовавших в тот момент, выявил вблизи Сириуса очень тусклое небесное тело. Именно его и назвали Сириусом В, тем самым спутником, который задолго до этого предположил Бессель. В 1896 исследования показали, что Процион также имеет спутника - он получил название Процион В. Следовательно, идеи Бесселя полностью подтвердились.

Откуда берутся белые карлики?

Что станет со звездой в конце ее жизненного пути зависит от массы, которую звезда имела при рождении. Звезды, которые изначально имели большую массу, заканчивают свою жизнь как черные дыры и нейтронные звезды. Звезды малой или средней массы (с массами менее 8 масс Солнца) станут белыми карликами. Типичный белый карлик имеет приблизительно массу Солнца, а по размеру немного превосходит Землю. Белый карлик представляет собой одну из наиболее плотных форм материи, которую по плотности превосходят только нейтронные звезды и черные дыры.

Звезды средней массы, как наше Солнце, живут благодаря переработке водорода в их ядрах в гелий. Этот процесс происходит на Солнце в настоящий момент. Энергия, которую вырабатывает Солнце посредством термоядерного синтеза гелия из водорода, создает внутреннее давление. В следующие 5 миллиардов лет Солнце израсходует запас водорода в ядре.

Звезду можно сравнить со скороваркой. При нагревании герметичного контейнера в нем повышается давление. Похожая вещь происходит в Солнце, конечно, строго говоря, Солнце нельзя назвать герметичным контейнером. Гравитация действует на вещество звезды, пытаясь сжать его, а давление, создаваемое горячим газом в ядре пытается расширить звезду. Баланс между давлением и гравитацией очень тонкий.
Когда у Солнца закончится запас водорода, в этом балансе начнет доминировать гравитация и звезда начнет сжиматься. Однако при сжатии происходит нагревание и часть водорода, оставшаяся во внешних слоях звезды начинает гореть. Эта горящая оболочка водорода расширяет внешние слои звезды. Когда это произойдет, наше Солнце станет красным гигантом, оно станет таким большим, что Меркурий будет полностью поглощен. Когда звезда увеличивается в размерах, она охлаждается. Однако температура ядра красного гиганта увеличивается до тех пор, пока не станет достаточно высокой, чтобы загорелся гелий (синтезированный из водорода). В конце концов, гелий превратится в углерод и более тяжелые элементы. Стадия, в которой Солнце будет красным гигантом, займет 1 миллиард лет, в то время как стадия горения водорода занимает 10 миллиардов.

Шаровое скопление М4. Оптическое изображение с наземного телескопа(слева) и снимок телескопа Хаббла (справа). Белые карлики отмечены кружками. Ссылка:Harvey Richer (University of British Columbia, Vancouver, Canada), M. Bolte (University of California, Santa Cruz) and NASA/ESA

Мы уже знаем, что звезды средней массы как наше Солнце станут красными гигантами. Но что произойдет потом? Наш красный гигант будет производить углерод из гелия. Когда закончится гелий, ядро будет еще не достаточно горячим, чтобы запустить горение углерода. Что теперь?

Поскольку Солнце не будет достаточно горячим для того, чтобы пошел процесс горения углерода, за дело снова возьмется гравитация. При сжатии звезды высвободится энергия, которая приведет к дальнейшему расширению оболочки звезды. Теперь звезда станет еще больше, чем прежде! Радиус нашего Солнца станет больше, чем радиус орбиты Земли!

В этот период Солнце станет нестабильным и будет терять свое вещество. Это продолжится до тех пор, пока звезда полностью не сбросит свои внешние слои. Ядро звезды останется целым и станет белым карликом. Белый карлик будет окружен расширяющейся оболочкой из газа, которая называется планетарная туманность. Туманности называются планетарными, потому что первые наблюдатели считали их похожими на планеты Уран и Нептун. Существует несколько планетарных туманностей, которые можно увидеть в любительский телескоп. Примерно в половине из них в центре можно увидеть белый карлик, при использовании телескопа достаточно скромного размера.

Планетарная туманность является признаком перехода звезды средней массы из стадии красного гиганта в стадию белого карлика. Звезды, сравнимые по массе с нашим Солнцем, превратятся в белые карлики примерно за 75000 лет, постепенно сбрасываю свои оболочки. В конце концов, они, как и наше Солнце, будут постепенно охлаждаться и превратятся в черные глыбы углерода, это процесс займет примерно 10 миллиардов лет.

Наблюдения белых карликов

Существует несколько способов наблюдать белые карлики. Первый открытый белый карлик – звезда компаньон Сириуса, яркой звезды в созвездии большого пса. В 1844 году астроном Фридрих Бессель заметил у Сириуса слабые поступательные и попятные движения, как если бы вокруг него вращался невидимый объект. В 1863 оптики и конструктор телескопов Элван Кларк обнаружил этот таинственный объект. Звезда-компаньон была позже отождествлена с белым карликом. В настоящее время эта пара известна как Сириус А и Сириус B, где В – белый карлик. Орбитальный период этой системы 50 лет.

Стрелка указывает на белый карлик, Сириус B, рядом с большим Сириусом А. Ссылка:McDonald Observatory,NASA/SAO/CXC)

Поскольку белые карлики очень малы и, поэтому труднообнаружимы, двойные системы – один из способов их обнаружить. Как и в случае Сириуса, если звезда имеет необъяснимое движение определенного вида, можно обнаружить, что одиночная звезда на самом деле является кратной системой. При более подробном изучении можно определить, является ли звезда-компаньон белым карликом. Космический телескоп Хаббла с 2.4-метровым зеркалом и улучшенной оптикой успешно наблюдал белые карлики с помощью широкоугольной планетарной камеры. В августе 1995 с помощью этой камеры были проведены наблюдения более 75 белых карликов в шаровом скоплении M4 в созвездии Скорпиона. Эти белые карлики были настолько слабы, что самые яркие из них светили не ярче, чем лампочка 100 Вт находящаяся на расстоянии Луны. М4 находится на расстоянии 7000 световых лет от нас и является ближайшим к нам шаровым скоплением. Его возраст примерно 14 миллиардов лет, вот почему большая часть звезд этого скопления находится в завершающей стадии свой жизни.

Нейтронная звезда

Расчеты показывают, что при взрыве сверхновой с M ~ 25M остается плотное нейтронное ядро (нейтронная звезда) с массой ~ 1.6M . В звездах с остаточной массой M > 1.4M , не достигших стадии сверхновой, давление вырожденного электронного газа также не в состоянии уравновесить гравитационные силы и звезда сжимается до состояния ядерной плотности. Механизм этого гравитационного коллапса тот же, что и при взрыве сверхновой. Давление и температура внутри звезды достигают таких значений, при которых электроны и протоны как бы “вдавливаются” друг в друга и в результате реакции

после выброса нейтрино образуются нейтроны, занимающие гораздо меньший фазовый объем, чем электроны. Возникает так называемая нейтронная звезда, плотность которой достигает 10 14 - 10 15 г/см 3 . Характерный размер нейтронной звезды 10 - 15 км. В некотором смысле нейтронная звезда представляет собой гигантское атомное ядро. Дальнейшему гравитационному сжатию препятствует давление ядерной материи, возникающее за счет взаимодействия нейтронов. Это также давление вырождения, как ранее в случае белого карлика, но - давление вырождения существенно более плотного нейтронного газа. Это давление в состоянии удерживать массы вплоть до 3.2M .
Нейтрино, образующиеся в момент коллапса, довольно быстро охлаждают нейтронную звезду. Согласно теоретическим оценкам температура ее падает с 10 11 до 10 9 K за время ~ 100 с. Дальше темп остывания несколько уменьшается. Однако он достаточно высок по астрономическим масштабам. Уменьшение температуры с 10 9 до 10 8 K происходит за 100 лет и до 10 6 K - за миллион лет. Обнаружить нейтронные звезды оптическими методами довольно сложно из-за малого размера и низкой температуры.
В 1967 г. в Кембриджском университете Хьюиш и Белл открыли космические источники периодического электромагнит-ного излучения - пульсары. Периоды повторения импульсов боль-шинства пульсаров лежат в интервале от 3.3·10 -2 до 4.3 с. Согласно современным представлениям, пульсары - это вращающиеся нейтронные звезды, имеющие массу 1 - 3M и диаметр 10 - 20 км. Только компактные объекты, имеющие свойства нейтронных звезд, могут сохранять свою форму, не разрушаясь при таких скоростях вращения. Сохранение углового момента и магнитного поля при образовании нейтронной звезды приводит к рождению быстро вращающихся пульсаров с сильным магнитным полем B ~ 10 12 Гс.
Считается, что нейтронная звезда имеет магнитное поле, ось которого не совпадает с осью вращения звезды. В этом случае излучение звезды (радиоволны и видимый свет) скользит по Земле как лучи маяка. Когда луч пересекает Землю регистрируется импульс. Само излучение нейтронной звезды возникает за счет того, что заряженные частицы с поверхности звезды двигаются вовне по силовым линиям магнитного поля, испуская электромагнитные волны. Этот механизма радиоизлучения пульсара, впервые предложенный Голдом, показан на рис. 39.

Если пучок излучения попадает на земного наблюдателя, то радиотелескоп фиксирует короткие импульсы радиоизлучения с периодом, равным периоду вращения нейтронной звезды. Форма импульса может быть очень сложной, что обусловлено геометрией магнитосферы нейтронной звезды и является характерной для каждого пульсара. Периоды вращения пульсаров строго постоянны и точности измерения этих периодов доходят до 14-значной цифры.
В настоящее время обнаружены пульсары, входящие в двойные системы. Если пульсар вращается по орбите вокруг второго компонента, то должны наблюдаться вариации периода пульсара вследствие эффекта Допплера. Когда пульсар приближается к наблюдателю, регистрируемый период радиоимпульсов из-за допплеровского эффекта уменьшается, а когда пульсар удаляется от нас, его период увеличивается. На основе этого явления и были обнаружены пульсары, входящие в состав двойных звезд. Для впервые обнаруженного пульсара PSR 1913 + 16, входящего в состав двойной системы, орбитальный период обращения составил 7 часов 45 мин. Собственный период обращения пульсара PSR 1913 + 16 равен 59 мс.
Излучение пульсара должно приводить к уменьшению скорости вращения нейтронной звезды. Такой эффект также был обнару-жен. Нейтронная звезда, входящая в состав двойной системы, может быть и источником интенсивного рентгеновского излучения.
Структура нейтронной звезды массой 1.4M и радиусом 16 км показана на рис. 40.

I - тонкий внешний слой из плотно упакованных атомов. В областях II и III ядра расположены в виде объемно-центрированной кубической решетки. Область IV состоит в основном из нейтронов. В области V вещество может состоять из пионов и гиперонов, образуя адронную сердцевину нейтронной звезды. Отдельные детали строения нейтронной звезды в настоящее время уточняются.
Образование нейтронных звезд не всегда является следствием вспышки сверхновой. Возможен и другой механизм образования нейтронных звезд в ходе эволюции белых карликов в тесных двойных звездных системах. Перетекание вещества звезды-компаньона на белый карлик постепенно увеличивает массу белого карлика и по достижении критической массы (предела Чандрасекара) белый карлик превращается в нейтронную звезду. В случае, когда перетекание вещества продолжается и после образования нейтронной звезды, её масса может существенно увеличиться и в результате гравитационного коллапса она может превратиться в черную дыру. Это соответствует так называемому “тихому” коллапсу.
Компактные двойные звезды могут проявляться и как источники рентгеновского излучения. Оно также возникает за счет аккреции вещества, падающего с “нормальной” звезды на более компактную. При аккреции вещества на нейтронную звезду с B > 10 10 Гс вещество падает в район магнитных полюсов. Рентгеновское излучение модулируется её вращением вокруг оси. Такие источники называют рентгеновскими пульсарами.
Существуют рентгеновские источники (называемые барстерами), в которых периодически с интервалом от нескольких часов до суток происходят всплески излучения. Характерное время нарастания всплеска - 1 сек. Длительность всплеска от 3 до 10 сек. Интенсивность в момент всплеска может на 2 - 3 порядка превосходить светимость в спокойном состоянии. В настоящее время известно несколько сотен таких источников. Считается, что всплески излучения происходят в результате термоядерных взрывов вещества, накопившегося на поверхности нейтронной звезды в результате аккреции.
Хорошо известно, что на малых расстояниях между нуклонами (< 0.3·10 -13 см) ядерные силы притяжения сменяются силами оттал-кивания, т. е. противодействие ядерного вещества на малых расстояниях сжимающей силе тяготения увеличивается. Если плотность вещества в центре нейтронной звезды превышает ядерную плотность ρ яд и достигает 10 15 г/см 3 , то в центре звезды наряду с нуклонами и электронами образуются также мезоны, гипероны и другие более массивные частицы. Исследования поведения вещества при плотностях, превышающих ядерную плотность, в настоящее время находятся в начальной стадии и имеется много нерешенных проблем. Расчеты показывают, что при плотностях вещества ρ > ρ яд возможны такие процессы, как появление пионного конденсата, переход нейтронизованного вещества в твердое кристаллическое состояние, образование гиперонной и кварк-глюонной плазмы. Возможно образование сверхтекучего и сверхпроводящего состояний нейтронного вещества.
В соответствии с современными представлениями о поведении вещества при плотностях в 10 2 - 10 3 раз, превышающих ядерную (а именно о таких плотностях идет речь, когда обсуждается внутреннее строение нейтронной звезды), внутри звезды образуются атомные ядра вблизи границы устойчивости. Более глубокое понимание может быть достигнуто в результате исследования состояния вещества в зависимости от плотности, температуры, устойчивости ядерной материи при экзотических отношениях числа протонов к числу нейтронов в ядре n p /n n , учете слабых процессов с участием нейтрино. В настоящее время практически единственной возможностью исследования вещества при плотностях больших ядерной являются ядерные реакции между тяжелыми ионами. Однако, экспериментальные данные по столкновению тяжелых ионов дают пока недостаточно информации, т. к. достижимые значения n p /n n как для ядра - мишени, так и для налетающего ускоренного ядра невелики (~ 1 - 0.7).
Точные измерения периодов радиопульсаров показали, что скорость вращения нейтронной звезды постепенно замедляется. Это связано с переходом кинетической энергии вращения звезды в энергию излучения пульсара и с эмиссией нейтрино. Небольшие скачкообразные изменения периодов радиопульсаров объясняются накоплением напряжений в поверхностном слое нейтронной звезды, сопровождающимся “растрескиванием” и “разломами”, что и приводит к изменению скорости вращения звезды. В наблюдаемых временных характеристиках радиопульсаров содержится информация о свойствах “коры” нейтронной звезды, физических условиях внутри неё и о сверхтекучести нейтронного вещества. В последнее время обнаружено значительное число ра-диопульсаров с периодами меньшими 10 мс. Это требует уточнения представлений о процессах, происходящих в нейтронных звездах.
Другой проблемой является исследование нейтринных процессов в нейтронных звездах. Эмиссия нейтрино является одним из механизмов потери энергии нейтронной звездой в течении 10 5 - 10 6 лет после её образования.