История открытия структуры днк. Как открыли днк

25 апреля 1953 года в американском журнале Nature была опубликована статья Джеймса Уотсона и Френсиса Крика «Структура дезоксирибонуклеиновой кислоты». Публикация занимала чуть больше одной странички, в ней был всего один очень простой рисунок. Так, 50 лет назад, впервые была предложена модель пространственной структуры ДНК.

Бесспорно, разгадка строения молекулы ДНК вызвала революцию в естествознании и повлекла за собой целый ряд новых открытий, без которых нельзя представить не только современную науку, но и современную жизнь в целом. За открытием Уотсона и Крика последовал взрыв генетических исследований. Знание структуры ДНК помогло понять процесс репликации (удвоения) ДНК и, таким образом, установить, как генетическая информация передается от поколения к поколению. Впоследствии был открыт генетический код, несущий информацию о первичной структуре белков — основных компонентов всех клеток. Разгадка устройства наследственного аппарата клетки послужила точкой отсчета в развитии новой науки — молекулярной биологии. Появление таких ее методов, как полимеразная цепная реакция, молекулярное клонирование, секвенирование было бы немыслимо без знания структуры ДНК.

Вне всякого сомнения, данное открытие послужило значительным импульсом для развития генетики, апогеем которого явилась научная программа «Геном человека». Уотсон стал первым руководителем этого проекта, в рамках которого была полностью расшифрована наследственная информация Homo sapiens. Знание генома человека в перспективе позволит раскрыть причину многих заболеваний, создать лекарства для, так называемой, генотерапии, направленные на исправление «больных генов» или замену «испорченных» генов на «здоровые».

За прошедшие 50 лет стало ясно, что работа Уотсона и Крика по изучению структуры ДНК изменила всю биологию и оказалась важнейшей для медицины. С трудом можно назвать ту область естественных наук, на развитие которой не повлияло их открытие. В 1962 году Джеймс Уотсон, Френсис Крик, вместе с Морисом Уилкинсом, специалистом по рентгеноструктурному анализу, получили Нобелевскую премию. Это, пожалуй, самое выдающееся событие в истории естествознания XX века.

Кстати, еще одним значимым событием этого года является юбилей одного из «отцов» двойной спирали, Джеймса Уотсона, ему исполняется 75 лет. Трудно поверить, что на момент выхода в свет той самой статьи в журнале Nature, перевернувшей весь мир, ему было всего 25 лет. Сейчас профессор Уотсон руководит лабораторией Cold Spring Harbor в Нью-Йорке.

Открытие ДНК

Более пятидесяти лет назад было сделано замечательное научное открытие. 25 апреля 1953 года была опубликована статья о том, как устроена самая загадочная молекула – молекула дезоксирибонуклеиновой кислоты.

Сокращенно её называют ДНК. Эта молекула встречается во всех живых клетках всех живых организмов. Обнаружили ее ученые более ста лет назад. Но тогда никто не знал, как эта молекула устроена и какую роль играет в жизни живых существ.

Окончательно разгадать тайну удалось английскому физику Френсису Крику и американскому биологу Джеймсу Уотсону.
Их открытие было очень важным.

И не только для биологов, которые узнали наконец, как устроена молекула, управляющая всеми свойствами живого организма.
Одно из крупнейших открытий человечества было сделано так, что совершенно невозможно сказать, какой науке это открытие принадлежит, – так тесно слились в нем химия, физика и биология.

Этот сплав наук и есть самая яркая черта открытия Крика и Уотсона.

История открытия ДНК

Ученых давно интересовала тайна главного свойства всех живых организмов – размножение.

Почему дети – идет ли речь о людях, медведях, вирусах – похожи на своих родителей, бабушек и дедушек? Для того, чтобы открыть тайну, биологи исследовали самые разные организмы.

И ученые выяснили, что за сходство детей и родителей отвечают особые частицы живой клетки – хромосомы. Они похожи на маленькие палочки. Небольшие участки палочки-хромосомы назвали генами. Генов очень много, и каждый отвечает за какой-нибудь признак будущего организма.

Если говорить о человеке, то один ген определяет цвет глаз, другой – форму носа… Но из чего состоит ген и как он устроен, этого ученые не знали. Правда, было уже известно: в хромосомах содержится ДНК и ДНК имеет какое-то отношение к генам.

Разгадать тайну гена хотели разные ученые: каждый смотрел на эту тайну с точки зрения своей науки. Но чтобы узнать, как устроен ген, маленькая частица ДНК, надо было узнать, как устроена и из чего состоит сама молекула.
Химики, которые исследуют химический состав веществ, изучали химический состав молекулы ДНК.

Физики стали просвечивать ДНК рентгеновскими лучами, как обычно они просвечивают кристаллы, чтобы узнать, как эти кристаллы устроены. И выяснили, что ДНК похожа на спираль.

Биологи интересовались загадкой гена, конечно, больше всех.

И Уотсон решил заняться проблемой гена. Для того, чтобы поучиться у передовых биохимиков и побольше узнать о природе гена, он отправился из Америки в Европу.
В то время Уотсон и Крик еще не знали друг друга. Уотсон, проработав некоторое время в Европе, никак существенно не продвинулся в выяснении природы гена.

Но на одной из научных конференций он узнал, что физики изучают строение молекулы ДНК с помощью своих, физических методов.

Узнав это, Уотсон понял, что тайну гена ему помогут раскрыть физики, и отправился в Англию, где устроился работать в физическую лабораторию, в которой исследовали биологические молекулы.

Здесь-то и произошла встреча Уотсона и Крика.

Как физик крик заинтересовался биологией

Крик вовсе не интересовался биологией. До тех пор, пока ему на глаза не попалась книжка известного физика Шредингера "Что такое жизнь с точки зрения физики?".

Шредингер заметил, что "размножение" генов напоминает рост кристалла, и предложил ученым считать ген кристаллом. Это предложение заинтересовало Крика и других физиков. Вот почему.

Кристалл – очень простое по структуре физическое тело: в нем все время повторяется одна и та же группа атомов. А устройство гена считали очень сложным, раз их так много и все они разные. Если гены состоят из вещества ДНК, а молекула ДНК устроена так же, как кристалл, то получается: она одновременно и сложная и простая.

Как же так?
Уотсон и Крик понимали: физики и биологи слишком мало знают о молекуле ДНК. Правда, кое-что было известно о ДНК химикам.

Как уотсон помог химикам, а химики – крику

Химики знали, что в состав молекулы ДНК входят четыре химических соединения: аденин, тимин, гуанин и цитозин.

Их обозначили по первым буквам – А, Т, Г, Ц. Причем аденина было столько же, сколько тимина, а гуанина – сколько цитозина. Почему? Этого химики понять не могли.

Они догадывались: это как-то связано со структурой молекулы.

Но как, не знали. Химикам помог биолог Уотсон.
Уотсон привык к тому, что в живой природе многое встречается парами: пара глаз, пара рук, пара ног, существуют, например, два пола: мужской и женский… Ему казалось, что и молекула ДНК может состоять из двух цепочек. Но если ДНК похожа на спираль, как выяснили физики при помощи рентгена, то как в этой спирали две цепочки держатся друг за друга?

Уотсон предположил, что при помощи А, Г, Ц и Т, которые, как руки, протянуты друг к другу. Вырезав из картона контуры этих химических соединений, Уотсон долго прикладывал их то так, то эдак, пока вдруг не увидел: аденин прекрасно соединяется с тимином, а гуанин с цитозином.

Уотсон рассказал об этом Крику.

Тот быстро сообразил, как должна выглядеть двойная спираль на самом деле – в пространстве, а не на рисунке.

Оба ученых начали строить модель ДНК.
Как это – "строить"? А вот как. Из молекулярного конструктора, который напоминает детский конструктор-игрушку. В молекулярном конструкторе деталями служат шарики-атомы, которые пристегиваются друг к другу кнопочками в том порядке, в каком расположены атомы в веществе.

Молекулярный конструктор придумал другой ученый – химик Полинг. Он строил модели молекул белков и выяснил, что в них обязательно должны быть участки, похожие на спирали.

Очень скоро это подтвердили физики той лаборатории, где работал Крик. Важная биологическая проблема была решена теоретическим путем.

Способ Полинга так понравился Крику, что он предложил Уотсону построить модель ДНК при помощи молекулярного конструктора. Вот так была создана модель знаменитой Двойной спирали ДНК, которую вы можете увидеть на рисунке.
И что замечательно: из-за того, что А в одной цепи может "склеиваться" только с Т в другой, а Г – только с Ц, автоматически выполняется "химическое" правило, по которому количество А равно количеству Т, а количество Г равно количеству Ц.

Но самое о главное, что, глядя на Двойную спираль ДНК, сразу понятно, как решить загадку размножения генов. Достаточно "размотать" косичку ДНК, и каждая цепочка сможет достроить на себе новую так, чтобы А склеивалось с Т, а Г – с Ц: был один ген – стало два. Из-за того, что размеры пар А-Т и Г-Ц одинаковы, молекула ДНК по структуре в самом деле напоминает кристалл, как предполагали физики.

И в то же время этот "кристалл" может содержать самые разные сочетания А, Т, Ц, Г, и поэтому все гены разные.
Решение проблемы гена Уотсоном и Криком привело к тому, что буквально за 2–3 года сформировалась целая новая область естествознания, которую назвали молекулярной биологией.

Часто ее называют физико-химической биологией.

Важность открытия ДНК

Вопрос о том, что и как записано в ДНК, ускорил расшифровку генетического кода.

Осознание того, что гены — это ДНК, универсальный носитель генетической информации, привело к появлению генной инженерии. Сегодня уже студенты университетов расшифровывают чередование нуклеотидов в ДНК, соединяют гены разных организмов, переносят их между видами, родами и значительно более удаленными таксонами. На базе генной инженерии возникла биотехнология, которую известный фантаст С.

Лем определил как использование закономерностей биогенеза в производстве.

Вспомним, что говорил о природе генов В.Л.

Иоганнсен, человек, который в 1909 году дал само имя гена: "Свойства организмов обусловливаются особыми, при известных обстоятельствах отделимыми друг от друга и в силу этого до известной степени самостоятельными единицами или элементами в половых клетках, которые мы называем генами.

С тех пор ситуация существенно изменилась.

Мы убедились, что, кроме атомов и молекул, в клетке ничего нет. И подчиняется она тем же физическим закономерностям, что и неживые объекты, в чем смогли убедиться физики, устремившиеся в биологию в 40-х годах именно в поисках каких-то принципиально новых, неизвестных физике законов природы.

Все реакции клеточного метаболизма осуществляются под контролем биокатализаторов — ферментов, структура которых записана в ДНК генов.

Передается эта запись в цепи переноса информации ДНК РНК БЕЛОК.

Сначала информация, записанная в виде чередования дезоксирибонуклеотидов на одной из двух комплементарных цепей в ДНК гена, переписывается на одноцепочечную молекулу информационной рибонуклеиновой кислоты – иРНК (она же мРНК от англ.

messenger — переносчик). Это процесс транскрипции. На следующем этапе по матрице иРНК строится последовательность аминокислотных остатков полипептида. Тем самым создается первичная структура будущей молекулы белка. Это процесс трансляции. Первичная структура определяет способ складывания молекулы белка и тем самым определяет ее ферментативную или какую-либо иную, например структурную или регуляторную, функцию.

Эти представления зародились в начале 40-х годов, когда Дж.

Бидл и Э. Тейтум выдвинули свой знаменитый лозунг "Один ген — один фермент"*. Он, подобно политическим лозунгам, разделил научное сообщество на сторонников и противников высказанной гипотезы о равенстве числа генов и числа ферментов в клетке.

Аргументами в возникшей дискуссии служили факты, полученные при разработке так называемых систем ген-фермент, в которых изучали мутации генов, определяли их расположение внутри генов и учитывали изменения ферментов, кодируемых этими генами: замены аминокислотных остатков в их полипептидных цепях, их влияние на ферментативную активность и т.д. Теперь мы знаем, что один фермент может быть закодирован в нескольких генах, если он состоит из разных субъединиц, то есть из разных полипептидных цепей.

Знаем, что есть гены, которые вообще не кодируют полипептидов. Это гены, кодирующие транспортные РНК (тРНК) или рибосомные РНК (рРНК), участвующие в синтезе белка.

В своей первоначальной форме принцип "Один ген — один фермент" представляет скорее исторический интерес, однако заслуживает памятника, поскольку он стимулировал создание целой научной области — сравнительной молекулярной биологии гена, в которой гены — единицы наследственной информации фигурируют как самостоятельные предметы исследования.

Кроме того, разработка многочисленных систем ген-фермент помогла сформулировать вопрос: что и как записано в генетическом коде?

На этот вопрос в общей форме ответил Ф.

Крик со своими коллегами в 1961 году. Оказалось, что код триплетен — каждая кодирующая единица-кодон состоит из трех нуклеотидов. В каждом гене триплеты считываются с фиксированной точки, в одном направлении и без запятых, то есть кодоны ничем не отделены друг от друга.

Последовательность кодонов определяет последовательность аминокислотных остатков в полипептидах.

Таким образом, вследствие специфической организации генетического кода кодонам-нонсенсам отводится особая роль — терминаторов трансляции. Поэтому, возникая мутационным путем, они, как и мутации типа сдвиг рамки считывания, проявляются значительно чаще и четче, чем мутации-миссенсы, изменяющие смысл кодонов.*

* Капица С.П., Курдюмов С.П., Малинецкий Г.Г.

Синергетика и прогнозы будущего.- М.,2001. – С. 97.

Нонсенсы и сдвиги считывания часто встречаются в так называемых псевдогенах, которые были открыты в начале 80-х годов в результате изучения нуклеотидных последовательностей в геномах высших эукариот.

Псевдогены очень похожи на обычные гены, но их проявление надежно "заперто" четко проявляющимися мутациями: сдвигами считывания и нонсенсами. Псевдогены представляют собой резерв эволюционного процесса. Их фрагменты используются при возникновении новых генов.

Доказательства роли ДНК в наследственности
Противодействие ДНК и хромосом влияниям внешней среды
Ферментативные функции РНК, вакцины
Что такое ДНК, содержание в клетках
Участие в наследственности, свойства молекул
Способы получения ДНК, биосинтез
Этапы клонирования ДНК, хим.

состав
Биологическая рольДНК
ДНК, РНК-содержащие вирусы
Репарация, рекомбинация, репликация, типы, синтез ДНК

Дезоксирибонуклеиновая кислота (ДНК) - один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов.

Основная роль ДНК в клетках - долговременное хранение информации о структуре РНК и белков.

Расшифровка структуры ДНК (1953 г.) стала одним из поворотных моментов в истории биологии.

В научной литературе, посвященной изучению ДНК чаще всего можно встретить имена Дж. Уотсона и Френсиса Крика, как ученых, создавших в 1953 году модель структуры молекулы ДНК.

Однако, сама молекула была открыта намного раньше и не этими учеными. Имя – же первооткрывателя упоминается далеко не в каждом учебнике, справочнике или энциклопедии.

Первенство открытия дезоксирибонуклеиновой кислоты приписывается молодому швейцарскому врачу Иоганну Фридриху Мишеру. В 1869-м году, работая в Германии, он занимался изучением химического состава клеток животных. В качестве объекта своих исследований он выбрал клетки лейкоцитов. Лейкоциты ученый выделял из гнойного материала, т.к.

именно в гное очень много этих белых кровяных телец, выполняющих защитную функцию в организме, и уничтожающих микробы. Из местной хирургической больницы ему поставляли повязки, снятые со свежих гнойных ран. Мишер отмывал лейкоциты из ткани бинтов, а затем выделял из отмытых клеток молекулы белков. В процессе исследований, ему удалось установить, что кроме белка, в лейкоцитах содержится еще какое-то неизученное вещество.

Оно выделялось в виде осадка нитевидной или хлопьеобразной структуры при создании кислой среды. При подщелачивании раствора, осадок растворялся. Исследуя препарат лейкоцитов под микроскопом, Мишер обнаружил, что в процессе отмывания лейкоцитов разбавленной соляной кислотой, от них остаются одни ядра. На основании этого, он сделал заключение о том, что в ядрах клеток содержится неизвестное вещество, и назвал его нуклеином, от латинского слова nucleus, что в переводе означает «ядро».

При более подробном изучении, Мишер разработал целую систему выделения и очистки нуклеинов.

Выделенное соединение он подверг обработке эфиром и другими органическими растворителями, и убедился, что это не жировое соединение, т.

к. оно не растворялось в этих веществах. Не имели нуклеины и белковой природы, т.к. при обработке ферментами, разлагающими белки, они не претерпели никаких изменений.

Химический анализ, в те времена, был несовершенен, неточен и трудоемок.

Медленно, но верно, ученый провел его и определил, что нуклеин состоит из углерода, водорода, кислорода и фосфора. Фосфорные органические соединения тогда еще были практически не известны, поэтому Мишер сделал заключение, что открыл неизвестный науке класс соединений, содержащихся внутри клетки.

Статью о своем новом открытии он хотел разместить в журнале «Медико-химические исследования», который выпускался его учителем, одним из основателей биохимии Феликсом Хоппе-Зейлером.

Но он, прежде чем печатать материал, решил проверить его данные в своей лаборатории. На это исследование ушел целый год, и только в 1871-м году, в одном из номеров журнала, работа Мишера была опубликована. Она сопровождалась двумя статьями самого Хоппе-Зейлера и его сподвижника, с подтверждением данных о составе и свойствах нуклеинов.

После возвращения в Швейцарию, Мишер принял предложение занять место заведующего кафедрой физиологии в Базельском университете.

Там он продолжил свои исследования. На новом месте ученый использовал для опытов более приятный, и не менее богатый нуклеином материал – молоки лососевых рыб (они до сих пор используются для этих же целей). На берегу богатого лососем Рейна, протекающего через Базель, у него не было недостатка в исследуемом материале.

Ученому показалось открытое им соединение таким простым и единообразным, что он никак не мог предположить, что именно в нем может храниться все разнообразие наследственных признаков живых организмов. Существующие в те времена методы биохимического анализа, еще не позволяли обнаружить существенных отличий нуклеинов человека от нуклеинов лосося и, тем более распознать столь сложную структуру, которая и до сих пор полностью не распознана.

МОСКВА, 25 апр — РИА Новости, Татьяна Пичугина. Ровно 65 лет назад британские ученые Джеймс Уотсон и Фрэнсис Крик опубликовали статью о расшифровке структуры ДНК, заложив основы новой науки — молекулярной биологии. Это открытие изменило очень многое в жизни человечества. РИА Новости рассказывает о свойствах молекулы ДНК и о том, почему она так важна.

Во второй половине XIX века биология была совсем молодой наукой. Ученые только приступали к исследованию клетки, а представления о наследственности, хотя и были уже сформулированы Грегором Менделем, не получили широкого признания.

Весной 1868 года молодой швейцарский врач Фридрих Мишер приехал в Университет города Тюбингена (Германия), чтобы заняться научной работой. Он намеревался узнать, из каких веществ состоит клетка. Для экспериментов выбрал лейкоциты, которые легко получить из гноя.

Отделяя ядро от протоплазмы, белков и жиров, Мишер обнаружил соединение с большим содержанием фосфора. Он назвал эту молекулу нуклеином ("нуклеус" на латыни — ядро).

Это соединение проявляло кислотные свойства, поэтому возник термин "нуклеиновая кислота". Его приставка "дезоксирибо" означает, что молекула содержит H-группы и сахара. Потом выяснилось, что на самом деле это соль, но название менять не стали.

В начале XX века ученые уже знали, что нуклеин представляет собой полимер (то есть очень длинную гибкую молекулу из повторяющихся звеньев), звенья сложены четырьмя азотистыми основаниями (аденином, тимином, гуанином и цитозином), а нуклеин содержится в хромосомах — компактных структурах, которые возникают в делящихся клетках. Их способность передавать наследственные признаки продемонстрировал американский генетик Томас Морган в опытах на дрозофилах.

Модель, объяснившая гены

А вот что делает в ядре клетки дезоксирибонуклеиновая кислота, сокращенно ДНК, долго не понимали. Считалось, что она играет какую-то структурную роль в хромосомах. Единицам наследственности — генам — приписывали белковую природу. Прорыв совершил американский исследователь Освальд Эвери, опытным путем доказавший, что генетический материал передается от бактерии к бактерии посредством ДНК.

Стало ясно, что ДНК нужно изучать. Но как? В то время ученым был доступен только рентген. Чтобы просвечивать им биологические молекулы, их приходилось кристаллизовать, а это сложно. Расшифровкой структуры белковых молекул по рентгенограммам занимались в Кавендишской лаборатории (Кембридж, Великобритания). Работавшие там молодые исследователи Джеймс Уотсон и Френсис Крик не располагали собственными экспериментальными данными по ДНК, поэтому они воспользовались рентгенограммами коллег из Королевского колледжа Мориса Уилкинса и Розалинды Франклин.

Уотсон и Крик предложили модель структуры ДНК, точно соответствующую рентгенограммам: две параллельные цепочки закручены в правую спираль. Каждая цепочка складывается произвольным набором азотистых оснований, нанизанных на остов их сахаров и фосфатов, и удерживается водородными связями, протянутыми между основаниями. Причем аденин соединяется только с тимином, а гуанин — с цитозином. Это правило называют принципом комплементарности.

Модель Уотсона и Крика объясняла четыре главных функции ДНК: репликацию генетического материала, его специфику, хранение информации в молекуле и ее способность мутировать.

Ученые опубликовали свое открытие в журнале Nature 25 апреля 1953 года. Через десять лет им вместе с Морисом Уилкинсом присудили Нобелевскую премию по биологии (Розалинда Франклин скончалась в 1958 году от рака в возрасте 37 лет).

"Теперь, более полувека спустя, можно констатировать, что открытие структуры ДНК сыграло в развитии биологии такую же роль, как в физике — открытие атомного ядра. Выяснение строения атома привело к рождению новой, квантовой физики, а открытие строения ДНК привело к рождению новой, молекулярной биологии", — пишет Максим Франк-Каменецкий, выдающийся генетик, исследователь ДНК, автор книги "Самая главная молекула".

Генетический код

Теперь оставалось узнать, как эта молекула действует. Было известно, что ДНК содержит инструкции для синтеза клеточных белков, которые выполняют всю работу в клетке. Белки — это полимеры, состоящие из повторяющихся наборов (последовательностей) аминокислот. Причем аминокислот — всего двадцать. Виды животных отличаются друг от друга набором белков в клетках, то есть разными последовательностями аминокислот. Генетика утверждала, что эти последовательности задаются генами, которые, как тогда считали, служат первокирпичиками жизни. Но что такое гены, никто в точности не представлял.

Ясность внес автор теории Большого взрыва физик Георгий Гамов, сотрудник Университета Джорджа Вашингтона (США). Основываясь на модели двухцепочечной спирали ДНК Уотсона и Крика, он предположил, что ген — это участок ДНК, то есть некая последовательность звеньев — нуклеотидов. Поскольку каждый нуклеотид — это одно из четырех азотистых оснований, то нужно просто выяснить, как четыре элемента кодируют двадцать. В этом состояла идея генетического кода.

К началу 1960-х установили, что белки синтезируются из аминокислот в рибосомах — своего рода "фабриках" внутри клетки. Чтобы приступить к синтезу белка, к ДНК приближается фермент, распознает определенный участок в начале гена, синтезирует копию гена в виде маленькой РНК (ее называют матричной), затем уже в рибосоме из аминокислот выращивается белок.

Выяснили также, что генетический код — трехбуквенный. Это значит, что одной аминокислоте соответствуют три нуклеотида. Единицу кода назвали кодоном. В рибосоме информация с мРНК считывается кодон за кодоном, последовательно. И каждому из них соответствует несколько аминокислот. Как же выглядит шифр?

На этот вопрос ответили Маршалл Ниренберг и Генрих Маттеи из США. В 1961 году они впервые доложили свои результаты на биохимическом конгрессе в Москве. К 1967-му генетический код полностью расшифровали. Он оказался универсальным для всех клеток всех организмов, что имело далеко идущие последствия для науки.

Открытие структуры ДНК и генетического кода полностью переориентировало биологические исследования. То, что у каждого индивида уникальная последовательность ДНК, кардинально изменило криминалистику. Расшифровка генома человека дала антропологам совершенно новый метод изучения эволюции нашего вида. Недавно изобретенный редактор ДНК CRISPR-Cas позволил сильно продвинуть вперед генную инженерию. По всей видимости, в этой молекуле хранится решение и самых злободневных проблем человечества: рака, генетических заболеваний, старения.


Более пятидесяти лет назад было сделано замечательное научное открытие. 25 апреля 1953 года была опубликована статья о том, как устроена самая загадочная молекула – молекула дезоксирибонуклеиновой кислоты. Сокращенно её называют ДНК. Эта молекула встречается во всех живых клетках всех живых организмов. Обнаружили ее ученые более ста лет назад. Но тогда никто не знал, как эта молекула устроена и какую роль играет в жизни живых существ.

Окончательно разгадать тайну удалось английскому физику Френсису Крику и американскому биологу Джеймсу Уотсону.
Их открытие было очень важным. И не только для биологов, которые узнали наконец, как устроена молекула, управляющая всеми свойствами живого организма.
Одно из крупнейших открытий человечества было сделано так, что совершенно невозможно сказать, какой науке это открытие принадлежит, – так тесно слились в нем химия, физика и биология. Этот сплав наук и есть самая яркая черта открытия Крика и Уотсона.

История открытия ДНК

Ученых давно интересовала тайна главного свойства всех живых организмов – размножение. Почему дети – идет ли речь о людях, медведях, вирусах – похожи на своих родителей, бабушек и дедушек? Для того, чтобы открыть тайну, биологи исследовали самые разные организмы.

И ученые выяснили, что за сходство детей и родителей отвечают особые частицы живой клетки – хромосомы. Они похожи на маленькие палочки. Небольшие участки палочки-хромосомы назвали генами. Генов очень много, и каждый отвечает за какой-нибудь признак будущего организма. Если говорить о человеке, то один ген определяет цвет глаз, другой – форму носа... Но из чего состоит ген и как он устроен, этого ученые не знали. Правда, было уже известно: в хромосомах содержится ДНК и ДНК имеет какое-то отношение к генам.

Разгадать тайну гена хотели разные ученые: каждый смотрел на эту тайну с точки зрения своей науки. Но чтобы узнать, как устроен ген, маленькая частица ДНК, надо было узнать, как устроена и из чего состоит сама молекула.
Химики, которые исследуют химический состав веществ, изучали химический состав молекулы ДНК. Физики стали просвечивать ДНК рентгеновскими лучами, как обычно они просвечивают кристаллы, чтобы узнать, как эти кристаллы устроены. И выяснили, что ДНК похожа на спираль.

Биологи интересовались загадкой гена, конечно, больше всех. И Уотсон решил заняться проблемой гена. Для того, чтобы поучиться у передовых биохимиков и побольше узнать о природе гена, он отправился из Америки в Европу.
В то время Уотсон и Крик еще не знали друг друга. Уотсон, проработав некоторое время в Европе, никак существенно не продвинулся в выяснении природы гена.

Но на одной из научных конференций он узнал, что физики изучают строение молекулы ДНК с помощью своих, физических методов. Узнав это, Уотсон понял, что тайну гена ему помогут раскрыть физики, и отправился в Англию, где устроился работать в физическую лабораторию, в которой исследовали биологические молекулы. Здесь-то и произошла встреча Уотсона и Крика.

Как физик крик заинтересовался биологией

Крик вовсе не интересовался биологией. До тех пор, пока ему на глаза не попалась книжка известного физика Шредингера "Что такое жизнь с точки зрения физики?".

В этой книжке автор высказал предположение, что хромосома похожа на кристалл. Шредингер заметил, что "размножение" генов напоминает рост кристалла, и предложил ученым считать ген кристаллом. Это предложение заинтересовало Крика и других физиков. Вот почему.

Кристалл – очень простое по структуре физическое тело: в нем все время повторяется одна и та же группа атомов. А устройство гена считали очень сложным, раз их так много и все они разные. Если гены состоят из вещества ДНК, а молекула ДНК устроена так же, как кристалл, то получается: она одновременно и сложная и простая. Как же так?
Уотсон и Крик понимали: физики и биологи слишком мало знают о молекуле ДНК. Правда, кое-что было известно о ДНК химикам.

Как уотсон помог химикам, а химики – крику

Химики знали, что в состав молекулы ДНК входят четыре химических соединения: аденин, тимин, гуанин и цитозин. Их обозначили по первым буквам – А, Т, Г, Ц. Причем аденина было столько же, сколько тимина, а гуанина – сколько цитозина. Почему? Этого химики понять не могли.

Они догадывались: это как-то связано со структурой молекулы. Но как, не знали. Химикам помог биолог Уотсон.
Уотсон привык к тому, что в живой природе многое встречается парами: пара глаз, пара рук, пара ног, существуют, например, два пола: мужской и женский... Ему казалось, что и молекула ДНК может состоять из двух цепочек. Но если ДНК похожа на спираль, как выяснили физики при помощи рентгена, то как в этой спирали две цепочки держатся друг за друга? Уотсон предположил, что при помощи А, Г, Ц и Т, которые, как руки, протянуты друг к другу. Вырезав из картона контуры этих химических соединений, Уотсон долго прикладывал их то так, то эдак, пока вдруг не увидел: аденин прекрасно соединяется с тимином, а гуанин с цитозином.

Уотсон рассказал об этом Крику. Тот быстро сообразил, как должна выглядеть двойная спираль на самом деле – в пространстве, а не на рисунке. Оба ученых начали строить модель ДНК.
Как это – "строить"? А вот как. Из молекулярного конструктора, который напоминает детский конструктор-игрушку. В молекулярном конструкторе деталями служат шарики-атомы, которые пристегиваются друг к другу кнопочками в том порядке, в каком расположены атомы в веществе.

Молекулярный конструктор придумал другой ученый – химик Полинг. Он строил модели молекул белков и выяснил, что в них обязательно должны быть участки, похожие на спирали. Очень скоро это подтвердили физики той лаборатории, где работал Крик. Важная биологическая проблема была решена теоретическим путем.

Способ Полинга так понравился Крику, что он предложил Уотсону построить модель ДНК при помощи молекулярного конструктора. Вот так была создана модель знаменитой Двойной спирали ДНК, которую вы можете увидеть на рисунке.
И что замечательно: из-за того, что А в одной цепи может "склеиваться" только с Т в другой, а Г – только с Ц, автоматически выполняется "химическое" правило, по которому количество А равно количеству Т, а количество Г равно количеству Ц. Но самое о главное, что, глядя на Двойную спираль ДНК, сразу понятно, как решить загадку размножения генов. Достаточно "размотать" косичку ДНК, и каждая цепочка сможет достроить на себе новую так, чтобы А склеивалось с Т, а Г – с Ц: был один ген – стало два. Из-за того, что размеры пар А-Т и Г-Ц одинаковы, молекула ДНК по структуре в самом деле напоминает кристалл, как предполагали физики.

И в то же время этот "кристалл" может содержать самые разные сочетания А, Т, Ц, Г, и поэтому все гены разные.
Решение проблемы гена Уотсоном и Криком привело к тому, что буквально за 2–3 года сформировалась целая новая область естествознания, которую назвали молекулярной биологией. Часто ее называют физико-химической биологией.

Важность открытия ДНК

Вопрос о том, что и как записано в ДНК, ускорил расшифровку генетического кода. Осознание того, что гены - это ДНК, универсальный носитель генетической информации, привело к появлению генной инженерии. Сегодня уже студенты университетов расшифровывают чередование нуклеотидов в ДНК, соединяют гены разных организмов, переносят их между видами, родами и значительно более удаленными таксонами. На базе генной инженерии возникла биотехнология, которую известный фантаст С. Лем определил как использование закономерностей биогенеза в производстве.

Вспомним, что говорил о природе генов В.Л. Иоганнсен, человек, который в 1909 году дал само имя гена: "Свойства организмов обусловливаются особыми, при известных обстоятельствах отделимыми друг от друга и в силу этого до известной степени самостоятельными единицами или элементами в половых клетках, которые мы называем генами.

С тех пор ситуация существенно изменилась. Мы убедились, что, кроме атомов и молекул, в клетке ничего нет. И подчиняется она тем же физическим закономерностям, что и неживые объекты, в чем смогли убедиться физики, устремившиеся в биологию в 40-х годах именно в поисках каких-то принципиально новых, неизвестных физике законов природы. Все реакции клеточного метаболизма осуществляются под контролем биокатализаторов - ферментов, структура которых записана в ДНК генов. Передается эта запись в цепи переноса информации ДНК РНК БЕЛОК.

Сначала информация, записанная в виде чередования дезоксирибонуклеотидов на одной из двух комплементарных цепей в ДНК гена, переписывается на одноцепочечную молекулу информационной рибонуклеиновой кислоты – иРНК (она же мРНК от англ. messenger - переносчик). Это процесс транскрипции. На следующем этапе по матрице иРНК строится последовательность аминокислотных остатков полипептида. Тем самым создается первичная структура будущей молекулы белка. Это процесс трансляции. Первичная структура определяет способ складывания молекулы белка и тем самым определяет ее ферментативную или какую-либо иную, например структурную или регуляторную, функцию.

Эти представления зародились в начале 40-х годов, когда Дж. Бидл и Э. Тейтум выдвинули свой знаменитый лозунг "Один ген - один фермент"* . Он, подобно политическим лозунгам, разделил научное сообщество на сторонников и противников высказанной гипотезы о равенстве числа генов и числа ферментов в клетке. Аргументами в возникшей дискуссии служили факты, полученные при разработке так называемых систем ген-фермент, в которых изучали мутации генов, определяли их расположение внутри генов и учитывали изменения ферментов, кодируемых этими генами: замены аминокислотных остатков в их полипептидных цепях, их влияние на ферментативную активность и т.д. Теперь мы знаем, что один фермент может быть закодирован в нескольких генах, если он состоит из разных субъединиц, то есть из разных полипептидных цепей. Знаем, что есть гены, которые вообще не кодируют полипептидов. Это гены, кодирующие транспортные РНК (тРНК) или рибосомные РНК (рРНК), участвующие в синтезе белка.

В своей первоначальной форме принцип "Один ген - один фермент" представляет скорее исторический интерес, однако заслуживает памятника, поскольку он стимулировал создание целой научной области - сравнительной молекулярной биологии гена, в которой гены - единицы наследственной информации фигурируют как самостоятельные предметы исследования.

Великобритания

Дезоксирибонуклеиновая кислота (ДНК) - один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов.

Основная роль ДНК в клетках - долговременное хранение информации о структуре РНК и белков. Расшифровка структуры ДНК (1953 г.) стала одним из поворотных моментов в истории биологии.

В научной литературе, посвященной изучению ДНК чаще всего можно встретить имена Дж. Уотсона и Френсиса Крика, как ученых, создавших в 1953 году модель структуры молекулы ДНК. Однако, сама молекула была открыта намного раньше и не этими учеными. Имя – же первооткрывателя упоминается далеко не в каждом учебнике, справочнике или энциклопедии.

Первенство открытия дезоксирибонуклеиновой кислоты приписывается молодому швейцарскому врачу Иоганну Фридриху Мишеру. В 1869-м году, работая в Германии, он занимался изучением химического состава клеток животных. В качестве объекта своих исследований он выбрал клетки лейкоцитов. Лейкоциты ученый выделял из гнойного материала, т.к. именно в гное очень много этих белых кровяных телец, выполняющих защитную функцию в организме, и уничтожающих микробы. Из местной хирургической больницы ему поставляли повязки, снятые со свежих гнойных ран. Мишер отмывал лейкоциты из ткани бинтов, а затем выделял из отмытых клеток молекулы белков. В процессе исследований, ему удалось установить, что кроме белка, в лейкоцитах содержится еще какое-то неизученное вещество. Оно выделялось в виде осадка нитевидной или хлопьеобразной структуры при создании кислой среды. При подщелачивании раствора, осадок растворялся. Исследуя препарат лейкоцитов под микроскопом, Мишер обнаружил, что в процессе отмывания лейкоцитов разбавленной соляной кислотой, от них остаются одни ядра. На основании этого, он сделал заключение о том, что в ядрах клеток содержится неизвестное вещество, и назвал его нуклеином, от латинского слова nucleus, что в переводе означает «ядро».

При более подробном изучении, Мишер разработал целую систему выделения и очистки нуклеинов. Выделенное соединение он подверг обработке эфиром и другими органическими растворителями, и убедился, что это не жировое соединение, т. к. оно не растворялось в этих веществах. Не имели нуклеины и белковой природы, т.к. при обработке ферментами, разлагающими белки, они не претерпели никаких изменений.

Химический анализ, в те времена, был несовершенен, неточен и трудоемок. Медленно, но верно, ученый провел его и определил, что нуклеин состоит из углерода, водорода, кислорода и фосфора. Фосфорные органические соединения тогда еще были практически не известны, поэтому Мишер сделал заключение, что открыл неизвестный науке класс соединений, содержащихся внутри клетки.

Статью о своем новом открытии он хотел разместить в журнале «Медико-химические исследования», который выпускался его учителем, одним из основателей биохимии Феликсом Хоппе-Зейлером. Но он, прежде чем печатать материал, решил проверить его данные в своей лаборатории. На это исследование ушел целый год, и только в 1871-м году, в одном из номеров журнала, работа Мишера была опубликована. Она сопровождалась двумя статьями самого Хоппе-Зейлера и его сподвижника, с подтверждением данных о составе и свойствах нуклеинов.

После возвращения в Швейцарию, Мишер принял предложение занять место заведующего кафедрой физиологии в Базельском университете. Там он продолжил свои исследования. На новом месте ученый использовал для опытов более приятный, и не менее богатый нуклеином материал – молоки лососевых рыб (они до сих пор используются для этих же целей). На берегу богатого лососем Рейна, протекающего через Базель, у него не было недостатка в исследуемом материале.

В 1874-м году Мишер опубликовал статью, в которой утверждал, что нуклеины, обнаруженные им в молоках лососевых рыб, явно связаны с процессом оплодотворения. При этом он никак не связал их с наследственностью. Ученому показалось открытое им соединение таким простым и единообразным, что он никак не мог предположить, что именно в нем может храниться все разнообразие наследственных признаков живых организмов. Существующие в те времена методы биохимического анализа, еще не позволяли обнаружить существенных отличий нуклеинов человека от нуклеинов лосося и, тем более распознать столь сложную структуру, которая и до сих пор полностью не распознана.

Сегодня понятия "генетика" и "ДНК" в нашем сознании неразделимы. И наверняка многие вспомнят имена Уотсона и Крика при упоминании спиральной структуры этой основы нашей наследственности. Но не все знают, что сама была открыта совсем не ими, и не всегда она была главной молекулой жизни. Кто открыл ДНК, каково ее значение и другие аспекты - тема данной статьи.

Холодный замок

В лаборатории, где работал Фридрих Мишер, было мало света и очень холодно. Ведь она была оборудована в замке Хоэтюбинген герцога Вюртембергского Именно низкая температура стала удачным стечением обстоятельств, позволивших свершиться в 1869 году открытию, названному впоследствии одним из самых крупных событий XIX-XX века в науке генетике. Сегодня в этом замке работает музейная экспозиция, а та самая кухня называется «Колыбель биохимии». Кто открыл ДНК и что этому предшествовало?

Случайный биохимик

Иоганн Фридрих Мишер (1844-1895) родился в семье потомственных врачей в швейцарском городе Базель. Там же 23-летний Фридрих закончил медицинский факультет университета. Но, вопреки ожиданиям семьи, врачом он не стал. Его интересовали исключительно живые клетки и процессы, которые в них происходят. И молодой ученый оказался в той самой лаборатории в компании сорока таких же новаторов, которые под началом основателя биохимии Феликса Хоппе-Зейлера (1825-1895) изучали клетки крови человека. Это была одна из первых, в то время единственная в Европе, биохимическая лаборатория, которую основал в 1818 году выдающийся химик, давший название гемоглобину и карбоксигемоглобину крови.

Странный осадок

История открытия ДНК весьма любопытна. Молодому Фридриху Мишеру досталось изучать лейкоциты (белые клетки крови). Из местной больницы ему привозили бинты в крови и гное, которые он промывал и исследовал белки лейкоцитов. Именно тогда он и заметил, что в пробирках после выделения белков всегда остается какой-то белый осадок в виде хлопьев. Изучая свою находку под микроскопом, Мишер заметил, что после промывания от лейкоцитов оставались только ядра. Вывод напрашивался сам собой: вещество находится в ядре. Вот кто открыл ДНК, только назвал он вещество нуклеином (от латинского слова ядро - nucleus).

Пытливый исследователь

Ученый менял способы промывки лейкоцитов, реагенты и способы очистки. Так выяснилось, что это вещество - не белок и не жир. Биохимия только зарождалась, химический анализ был делом непростым, долгим и очень трудоемким. Но Фридрих Мишер провел его и выяснил, что составляющие ДНК - это углерод, кислород и азот. Но что более странно - в веществе присутствовал в больших концентрациях фосфор. На тот момент химия не знала соединений подобного состава, и Мишер понял, что он открыл что-то особенное. Гоппе-Зейлер (наставник) поддержал его, и в 1871 году труды были опубликованы и сопровождались рецензией уважаемого химика того времени. Дальнейшее изучение показало кислотные свойства вещества, и именно тогда оно стало называться нуклеиновой кислотой. Хотя, по правде, первооткрывателю это не нравилось, и в своих работах он продолжал называть ДНК нуклеином.

Рыбалка на благо науки

Возвратившись в Базель, и заняв пост заведующего кафедры физиологии университета, в котором учился, Мишер продолжил научные изыскания. Объектом для изучения ДНК он выбрал молоки лосося. Кстати, и сегодня молоки лососевых используются для получения ДНК в больших количествах. В Рейне в те времена лосось водился в избытке, и Фридрих совмещал приятное времяпровождение с удочкой с работой по добыче материала для исследований. В своих работах о молоках (1874 г.) он и не предполагал роли ДНК в наследовании признаков, а связывал это вещество с процессами оплодотворения. От изучения молок лососевых он перешел к изучению их физиологии.

Позже ученый приступил к исследованию вопросов здорового рациона для заключенных тюрем. Он даже написал поваренную книгу. Затем он основал институт анатомии и физиологии (Базель), внес вклад в изучение роли кровяных клеток в дыхании. А про его нуклеотид надолго забыли.

Крах протеиновой теории наследственности

В XIX веке в науке господствовала теория, что материальными носителями являются белки. О роли такой простой субстанции, как ДНК, в данном вопросе не догадывались. И только в 1944 году об открытии Мишера вспомнили. Другой медик, американский, Освальд Эвери (1877-1955) своими опытами показал генетическое значение ДНК. Опыты Эвери и его соавторов Колина Маклауда и Маклина Маккарти в Рокфеллеровском институте медицинских исследований (Нью-Йорк) наглядно доказали, что именно ДНК, а не белки, являются носителями генетической информации.

От тысячелетий к десяткам лет

Тысячелетия понадобились науке для понимания основы наследственности. Но для расшифровки молекулы ДНК, механизмов матричного синтеза и построения геномной карты понадобились всего лишь десятки лет. Опыты, которые начал Ф. Гриффит (1928), продолжили не только Эвери с соавторами. Молекулярная биология родилась в момент представления миру модели структуры ДНК - двойной закрученной спирали (1953). Имена авторов этой модели - Джеймс Уотсон и получившие Нобелевскую премию за вою модель структуры ДНК. Кто открыл само вещество и исследовал его, многие источники просто умалчивают.

Трагедии и судьбы

В истории открытия ДНК немало тайн, загадок и обиженных ученых. Например, Эрвин Чаргафф (1905-2002) до самой кончины считал, что Уотсон и Крик украли его Нобелевскую премию. И хотя он прославился своими или комплементарности нуклеотидов в цепочке ДНК), Уотсона и Крика он называл не иначе как шарлатанами. Еще одна тайна и трагедия связана с именем Розалин Франклин (1920-1958) - английского ученого-биолога. Именно ее работы по рентгеноструктурному анализу нуклеиновых кислот показал Уотсон Крику, когда их осенила идея о двойной спирали.

Подведем итог

Открытие дезоксирибонуклеиновой кислоты, ее состава и структуры не только дало толчок движению человеческой мысли. Эти открытия перевели научную теорию в область специфических экспериментов и практического применения. Сегодня мы расшифровали геном человека, нашли способы выявления наследственных патологических заболеваний плода в период внутриутробного развития, научились определять родство и виновников преступлений по ДНК-анализам. Получили возможность выращивать помидоры с генами холодоустойчивости лосося, разноцветные сосны, которые меняют цвет при взаимодействии с загрязняющими веществами, и (прото невозможно не упомянуть) вырастили светящихся поросят.

С открытием дезоксирибонуклеиновой кислоты мечты фантастов о бессмертии и модернизации человечества перестают быть сказкой, а переходят всего лишь в плоскость времени. А ведь все это случилось благодаря тому, что Иоганн Фридрих Мишер продолжал свою работу в лаборатории, несмотря на замерзшие руки.