Лабораторная установка разделения изотопных систем. Как обогащают уран: метод центрифужного разделения изотопов

Комитет образования и науки Курской области Курчатовский филиал Областного бюджетного образовательного учреждения среднего профессионального образования "Курский государственный политехнический колледж"

Курсовая работа

по дисциплине: "Эксплуатация оборудования" на тему: "Разделение изотопов урана. Переработка обогащенного гексафторида урана"

Курчатов 2013

Введение

Разделение изотопов урана

1 Газодиффузионное разделение

2 Термодиффузионное разделение

3 Жидкостная термодиффузия

4 Центрифужное разделение

5 Аэродинамическое разделение

6 Электромагнитное разделение

7 AVLIS (испарение с использованием лазера)

8 Химическое разделение

9 Эффузия газов

10 Организация каскада разделения изотопов

Гексафторид урана

1 Требования к качеству гексафторида урана

2 Переработка обогащённого гексафторида урана

3 Водные методы переработки обогащённого урана

3.1 АДУ-процесс

3.2 АУК-процесс

4 Безводные методы переработки обогащённого урана

4.1 Восстановление гексафторида урана водородом

5 ВОУ-НОУ процесс

Заключение

Литература

Введение

Разделение изотопов урана является основой ядерного топливного цикла. В природном уране содержится 0,71% изотопа 235 U. Для реакторов АЭС необходим уран, обогащенный изотопом 235 U до (2,7-5) %, в оружейном уране содержание 235 U - 90%. Стоимость добычи урана из извлекаемых запасов, где содержание урана не менее чем в 10 3 раз превышает среднее в литосфере, 80 долл. США за килограмм элементного урана. Требуется ~ 6 кг природного урана (480 долл. США) для получения 1 кг урана с обогащением 3,2% и обеднением отвала до 0,2%. При этом услуги по обогащению обходятся в (350-400 долл. США) за 4,3 кг ЕРР (условные единицы работы разделения) и составляют 45% стоимости обогащенного урана. Масштаб производства в США - тысячи тонн обогащенного урана в год со стоимостью услуг по обогащению ~ 1 млрд долл. в год. При широкомасштабном производстве обогащенного урана совершенствование методов разделения изотопов урана является актуальной и очень не простой задачей Россия занимает лидирующее положение в центробежной технологии обогащения урана. Разработаны и внедряются в производство машины нового поколения. В настоящее время проблем с ядерным топливом в России нет, и в ближайшем будущем не предвидится. Это даёт возможность разрабатывать новые технологии обогащения без излишней спешки и избежать дорогостоящих ошибок в определении оптимальной технологии, тщательно изучая физико-химические процессы, отрабатывая элементную базу для получения надёжных данных о перспективности метода и по стоимости единицы работы разделения, и по уровню инвестиций в строительство промышленного предприятия, и по глубине извлечения 235 U.

Изотопы урана:

Уран имеет 14 изотопов, при этом только три из них встречаются в природе. Примерный изотопный состав природного урана следующий:

U 238 -> (4.51 миллиарда лет, альфа-распад) -> Th 234

Th 234 -> (24.1 дней, бета-распад) -> Pa 234

Pa 234 -> (6.75 часов, бета-распад) -> U 234

Обычно U-234 существует в равновесии с U-238, распадаясь и образуясь с одинаковой скоростью. Однако распадающиеся атомы U-238 существуют некоторое время в виде тория и протактиния, поэтому могут химически или физически отделиться от руды (выщелачиваться подземными водами). Поскольку U-234 обладает относительно коротким временем полураспада, весь этот изотоп, находящийся в руде, образовался в последние несколько миллионов лет. Примерно половину радиоактивности природного урана составляет вклад U-234.обладает периодом полураспада 23.9 миллиона лет и не встречается в природе в значительных количествах. Он накапливается, если уран облучается нейтронами в реакторах, и потому используется как "сигнализатор" отработанного уранового ядерного топлива.

В природном уране только один, относительно редкий, изотоп подходит для изготовления ядра атомной бомбы или поддержания реакции в энергетическом реакторе. Степень обогащения по U-235 в ядерном топливе для АЭС колеблется в пределах 2-4.5%, для оружейного использования - минимум 80%, а более предпочтительно 90%.

Чистый U-238 имеет удельную радиоактивность 0.333 микрокюри/г.

Важная область применения этого изотопа урана - производство плутония-239. Плутоний образуется в ходе нескольких реакций, начинающихся после захвата атомом U-238 нейтрона. Любое реакторное топливо, содержащее природный или частично обогащенный по 235-му изотопу уран, после окончания топливного цикла содержит в себе определенную долю плутония.и U-232: Этот изотоп урана с периодом полураспада 162 000 лет не встречается в природе. Его можно получить из тория-232, облучением нейтронами, наподобии производства плутония:


Практически важное соединение урана - гексафторид урана UF 6 . Это единственное стабильное и легколетучее соединение урана, использующееся при разделении его изотопов - газовой диффузии и центрифугировании. В этом аспекте его применения важно и то, что фтор имеет всего один изотоп (это не вносит дополнительной усложняющей разницы в массах) и то, что UF 6 - стехиометрическое соединение (состоящее в точности из 6 атомов фтора и 1 атома урана).

При комнатной температуре оно представляет собой бесцветные кристаллы, а при нагреве до 56 °С сублимируется (испаряется без перехода в жидкую фазу).металл радиоактивность

Приблизительные энергетические эффективности указанных методов по отношению к газовой диффузии:

1. Разделение изотопов

Изотопы - химические элементы с одинаковым количеством протонов (одинаковым зарядом) и разным количеством нейтронов. У чётных атомов изотопов может быть много, у нечётных обычно не более двух.

Уникальность гексафторида урана заключается в том, что фтор не имеет изотопов т.е. молекулярная масса гексафторида урана зависит только от массы изотопов самого урана. Второй немаловажный фактор - газообразное состояние гексафторида урана уже при 56оС при атмосферном давлении.

Для выяснения места технологии разделения изотопов необходимо напомнить, что технология урана подразумевает передел рудного сырья в уранилнитрат, уранилнитрат через стадию оксидов и тетрафторида превращается в гексафторид, гексафторид разделяется на гексафторд урана-235 и гексафторид урана-238, а затем из гексафторида обогащенного изотопом U235 производится диоксид урана для ТВЭлов.

Исходный ядерно-чистый гексафторид урана, содержащий 99,3% гексафторида урана-238 и 0,7% гексафторида урана-235. Необходимо из этой смеси выделить гексафторид изотопа урана-235.

Существует множество методов разделения изотопов:

Газодиффузионный;

Центрифугирование;

Дистилляция (ректификация)

Электромагнитный

Термодиффузионный

Изотопный обмен

Лазерное разделение

Это не далеко полный список всех методов разделения изотопов, на практике сейчас применяется только три первых метода. Остальные методы не носят промышленного масштаба и используются только в экспериментальных работах, хотя часто являются более качественными нежели многотоннажные промышленные способы.

Газодиффузионным и центрифужным методом обычно разделяют изотопы тяжелых элементов (U 235 от U2 38), дистилляция или ректификафия применяется для разделения изотопов лёгких (обычно H 1 от Н 2 и Н 3 или Li 6 от Li 7).

Коэффициент разделения α=1,003 для газодиффузионных машин, и α=1,3 для центрифужных машин.

1 Газодиффузионное разделение изотопов

Первым удачным способом позволившим получит уран обогащённый изотопом U 235 , был способ газодиффузионного разделения.

Теоретически способ газодиффузионного разделения основан на зависимости скорости диффузии отдельных молекул от их веса.

Из формулы видно, что чем меньше вес молекулы тем больше её скорость. Т.е. лёгкие молекулы диффундируют дальше тяжёлых. Тогда можно представить коэффициент разделения, как отношение скоростей диффузии в следующем виде:


Зная, что масса гексафторида урана-238 равняется 352 г/моль а масса гексафторида урана-325 равняется 349 можно вычислить теоретический коэффициент разделения:  = 1,0043

Реально  = 1,003

Рассмотрим устройств газодиффузионной машины. Основной элемент представляет собой пористую перегородку (рис. 1) в которой происходит диффузия гексафторида урана. Как уже отмечалось, лёгкие молекулы имеют более длинный диффузионный пробег, и проникают за перегородку, тяжелые частицы перегородку не проходят.

Рис.1 Пористая перегородка

Разделитель представляет собой трубку из прессованного никелевого порошка с диаметром пор 1-10 мкм, наружная поверхность трубки покрывается непосредственно разделительной мембраной, диаметр пор которой составляет уже 0,03 мкм. Именно слой разделительной мембраны и задерживает некоторую часть тяжёлых молекул гексафторида урана-238. Мембраны представляют собой пленки с образованными травлением порами. Например, азотная кислота протравливает сплав 40/60 Au/Ag (Ag/Zn); либо электролитическим травлением алюминиевой фольги можно получить хрупкую алюминиевую мембрану. Составные барьеры собираются из маленьких дискретных элементов, упакованных в относительно толстую пористую перегородку.

Газ - гексафторид урана поступает в диффузионную машину и разделяется на две фракции. Одна фракция прошла через пористую перегородку и потеряла часть тяжёлых молекул, т.е. обогатилась лёгкими. Другая фракция через пористую перегородку не прошла, в отличие от части лёгких молекул, т.е перед перегородкой осталась фракция обеднённая лёгким изотопом.

Схематично газодиффузионную машину можно представить следующим образом:

Рис.2 Устройство газодиффузионной машины

Поступающий в газодиффузионную машину газ прогоняется барабаном через разделительные трубки. Предварительно газ нагревают до 75оС, давление 40-80 мм.рт.ст. Поскольку диффузия идёт с выделением тепла, то машину необходимо охлаждать.

Основные недостатки газодиффузионного метода разделения изотопов:

Недостаточная степень разделения

Разрушение Ni-перегородки. Гексафторид урана медленно реагирует с металлическим никелем по формуле:

Ni + UF 6 = UF 4 + NiF 2

В разделительном элементе постепенно происходит накапливание тетрафторида урана, который впоследствии удаляют, промыванием в трифториде хлора:

UF 4 тв + ClF 3 ж = UF 6 газ + ClF газ

3.Периодичность процесса из-за выключения на регенерацию.

Большие энергозатраты.

Большой расход охлаждающей воды

Большие производственные площади. Цеха по разделению изотопов занимают огромные площади в несколько гектар, обслуживающий персонал по цеху передвигается на велосипедах.

Ввиду всех перечисленных недостатков, в настоящее время большинство разделительных заводов переходит на новую технологию разделения изотопов - центрифугирование.

.2 Термодиффузия

Термодиффузия осуществляется в газовой или жидкой фазах в противоточной колонне, вдоль оси которой расположена нагретая металлическая нить (или трубка), а наружная стенка охлаждается. Перепад температур вызывает диффузионный поток, что приводит к появлению разности концентраций <#"655758.files/image007.gif">

Давление газа в гравитационном поле зависит от его молекулярной массы, расстояния над точкой измерения и ускорения свободного падения.


Перепишем это уравнение для центробежного поля. Заменим давление на концентрацию, Ускорение свободного падения на центростремительное ускорение, высоту на радиус.


Тогда коэффициент разделения запишется, как отношение концентрации тяжёлого изотопа к лёгкому:


Таким образом если в диффузионных машинах коэффициент разделения зависел от отношения масс гексафторида урана-235 иурана-238, то в центрифугах он зависит от разности масс. Нетрудно посчитать, что в центрифугах коэффициент разделения равен 1,3.  = 1,3

Только на центрифугах возможно получать гексафторид урана обогащенный U 235 до 98%.

Коэффициент разделения зависит от двух факторов:

От разности масс изотопов

От скорости вращения центрифуги

Рассмотрим устройство центрифужной машины.

Рис. 4. Устройство центрифуги для разделения изотопов

Центрифуга представляет собой цилиндр диаметром 15см, высотой 0,5м. В герметичном кожухе находится вращающийся ротор. В этот ротор подается газ (UF6). За счет центробежной силы, в сотни тысяч раз превышающей поле тяготения Земли, газ начинает разделяться на "тяжелую" и "легкую" фракции. На дне центрифуги имеется корундовая игла для снижения трения, во время вращения центрифуга приподнимается "взлетает" и вращается без соприкосновения с частями кожуха. Скорость вращения достигает 100 тыс. об/мин. Легкие и тяжелые молекулы начинают группироваться в разных зонах ротора, но не в центре и по периметру, а в верху и в низу. Это возникает из-за конвекционных потоков - крышка ротора имеет подогрев и возникает противоток газа. Вверху и в низу цилиндра установлены две небольших трубочки - заборника. В нижнею трубку попадает обедненная смесь, в верхнюю - смесь с большей концентрацией атомов 235U. Эта смесь попадает в следующую центрифугу, и так далее, пока концентрация 235-го урана не достигнет нужного значения. Цепочка центрифуг называется каскад.

1.5 Аэродинамическое разделение

Аэродинамическое разделение разработано в ЮАР (процесс UCOR, использующий вихревые трубки с давлением 6 бар) и Германии (используются искривленные сопла, работающие с давлением 0,25-0,5 бар).

Единственная страна, применявшая этот метод на практике - ЮАР, где было произведено 400 кг оружейного урана на предприятии в Валиндабе, закрытом в конце восьмидесятых. Коэффициент разделения ~1,015, энергозатраты ~3300 кВт-ч/МПП-кг.

6 Электромагнитное разделение

Метод электромагнитного разделения основан на различном действии магнитного поля на одинаково электрически заряженные частицы различной массы. По сути дела такие установки, называемые калютронами, являются огромными масс-спектрометрами. Ионы разделяемых веществ, двигаясь в сильном магнитном поле, закручиваются с радиусами, пропорциональными их массам и попадают в приемники, где и накапливаются. Этот метод позволяет разделять любые комбинации изотопов, обладает очень высокой степенью разделения. Обычно достаточно двух проходов для получения степени обогащения выше 80% из бедного вещества (с исходным содержанием желаемого изотопа менее 1%). Однако электромагнитное разделение плохо приспособлено для промышленного производства: большая часть веществ осаждается внутри калютрона, так что его приходится периодически останавливать на обслуживание. Остальные недостатки - большое энергопотребление, сложность и дороговизна технического обслуживания, низкая производительность. Основная сфера применения метода - получение небольших количеств чистых изотопов для лабораторного применения. Тем не менее, во время второй мировой войны была построена установка Y-12, вышедшая с января 1945 на мощность 204 грамм 80% U-235 в день. Из-за высоких накладных расходов Y-12 был закрыт в 1946 г.

Схематическое изображение электромагнитного разделительного устройства (рис.5); точки показывают направление магнитного поля, перпендикулярное плоскости рисунка.

Внимания заслуживают методы, пока промышленно неприменяемые:

Испарение с использованием лазера

Химическое разделение

Разделение изотопов при помощи светового давления

Фотохимические реакции электронно-возбужденных частиц

Двухступенчатое возбуждение атомов и молекул

Селективная фотопредиссоциация

Возбуждение молекул излучением инфракрасного диапазона

Изотопный эффект в химических реакциях, протекающих в термодинамически неравновесных условиях

Конденсация газа колебательно-возбужденных молекул

Изотопный эффект в химических реакциях, протекающих в магнитном поле

Разделение при адсорбции

Селективная диффузия, стимулированная лазерным излучением

Резонансное управление процессами на поверхности лазерным излучением

Лазерная химия на поверхности раздела двух сред

Лазерное стимулирование химических реакций на границе раздела двух жидкостей

1.7 AVLIS (испарение с использованием лазера)

Различные изотопы поглощают свет с немного различной длиной волны. При помощи точно настроенного лазера можно избирательно ионизировать атомы какого-то определенного изотопа. Получившиеся ионы можно легко отделить, допустим, магнитным полем. Такая технология имеет чрезвычайную эффективность, однако в промышленных масштабах пока не применяется. Технология, разрабатываемая в США, но до сих пор не развита далее опытных образцов. Имеет большой недостаток, а именно трудность в перестройке аппаратуры с одного изотопа на другой.

Рис.6. Лазерное разделение изотопов.

1.8 Химическое разделение

Химическое разделение использует разницу в скорости протекания химических реакций с различными изотопами. Лучше всего оно работает при разделении легких элементов, где разница значительна. В промышленном производстве применяются реакции, идущие с двумя реактивами, находящимися в различных фазах (газ/жидкость, жидкость/твердое вещество, несмешивающиеся жидкости). Это позволяет легко разделять обогащенный и обедненный потоки. Используя дополнительно разницу температур между фазами, достигается дополнительный рост коэффициента разделения. Химическое разделение урана разрабатывалось в Японии и Франции, но, как и AVLIS, никогда не использовалось. Французкий метод Chemex использует противоток в высокой колонне двух несмешиваемых жидкостей, каждая содержащая растворенный уран. Японский метод Asahi использует реакцию обмена между водным раствором и мелкоизмельченной смолой, через которую медленно просачивается раствор. Оба способа нуждаются в катализаторах для ускорение процесса концентрации. Процесс Chemex нуждается в электричестве на уровне 600 кВт-ч/МПП-кг.

Ирак разрабатывал эту технологию (в виде смешанного производства Chemex/Asahi) для обогащения U-235 до 6-8% и последующем дообогащением в калютроне.

1.9 Эффузия газов

изотоп уран гексафторид термодиффузия

Эффузия газов основана на том, что при молекулярном истечении (эффузии)

смеси изотопно замещенных молекул <#"655758.files/image015.gif">

10 Организация каскада разделения изотопов

Уже говорилось о том, что для разделения изотопов необходимо большое количество разделительных машин (центрифужных или диффузионных).

Одну диффузионную машину можно схематично представить на схеме (рис.7) следующим образом:


Сбоку входит исходная смесь. Через перегородку проходит частично обогащённый лёгким изотопом газ, вниз уходит частично обеднённый легким изотопом (тяжёлый) газ. Для достаточного разделения необходимо соединить в каскад сотни таких машин (рис.8).

Рис.8 Разделительный каскад.

Верхняя часть каскада называется стадией обогащения, нижняя стадией обеднения.

Для получения гексафторида урана с содержанием U 235 не менее 90% необходим каскад из 600 стадий разделения.

Разделение изотопов один из наиболее дорогих операций в технологии урана, приведём примерные цены на килограмм урана в долларах США, в зависимости от степени обогащения (цены значительно зависят от объёмов производства и спроса):прир - 27$2% - 130$5% - 440$90% - 10000$

Всего на заводах СССР было получено около 600 тонн урана обогащенного на 90%по изотопу U 235 .

После разделительных заводов. Обеднённый уран идёт на захоронение. В нашей стране накопилось более 100 тыс. Тонн обеднённого урана. Обеднённый гексафторид урана закачивается в специальные контейнеры, если эти контейнеры поставить на железнодорожные платформы то такой эшелон займёт всю дорогу от Москвы до Владивостока. Отвальный гексафторид урана представляет некоторую экологическую опасность и уже разработаны схемы по его конверсии, ведь гексафторид урана огромный источник так необходимого производству фтороводорода и фтора.

В Табл.3 на примере трех видов изотопов проведено сравнение методов разделения изотопов для водорода, углерода и урана.

2. Гексафторид урана

ПДК - 0,015 мг/м3

Производство UF 6 - главная и неразрывная часть ЯТЦ. Через UF 6 проходит весь уран, добываемый из недр. Также как и весь регенерируемый уран после переработки на РХЗ для возвращения в ЯТЦ проходит снова фторирование и последующее дообогащение.

Для проведения цепной ядерной реакции необходим изотоп U235, которого в природном уране содержится лишь 0,72%.

Рис. 9. Фазовая диаграмма состояния UF 6 .

1 Требования к качеству UF 6

Существует две марки гексафторида урана в зависимости от степени обогащения по изотопу U 235 . 6 - коммерческий - природный или содержанием до 3% U 235 6 - обогащенный (регенерированный, оружейный).

При концентрации лёгкого изотопа менее 3% уран считается ядерно безопасным, т.е у него нет критической массы способной с самопроизвольной цепной реакции. Коммерческий уран является обычным химическим реактивом, имеющим свободную рыночную стоимость. Все торговые операции с оружейным ураном запрещены по закону о нераспространении ядерного оружия.

2.2 Переработка обогащённого гексафторида урана

После газодиффузионного завода обогащённый изотопом U235 гексафторид урана необходимо переработать до диоксида урана, а из диоксида изготовить ТВЭЛы ядерных реакторов. ТВЭЛы бывают металлические, оксидные, силицированные и др. Их изготовление очень сложный и наукоёмкий процесс, к исходным веществам предьявляются повышенные требования по чистоте. Металлические ТВЭЛы используются для наработки плутония; оксидные - применяются в энергетических реакторах. Обогащение гексафторида урана является одной из ключевых стадий всей ядерно-химической технологии. Методы переработки обогащённого гексафторида урана делятся на два стандартных типа:

Водные методы переработки

а) Гидролиз с нитратом алюминия

б) Аммонийдиуранатный процесс (АДУ)

в) Аммонийуранлкарбонатный процесс (АУК).

Безводные методы переработки

Восстановление гексафторида урана водородом.

Также разработан т.н. ВОУ-НОУ процесс позволяющий переводить оружейный высокообогащённый уран (ВОУ) в энергетический низкообогащённый уран (НОУ).

2.3 Водные методы переработки

Первой стадией переработки является гидролиз гексафторида урана водой до уранилфторида. Гидролиз происходит с большим выделением тепла по уравнению:

UF 6 + 2H 2 O = UO 2 F 2 + 4HF

Этот процесс можно осуществить путём барботажа газообразного гексафторида урана через воду или смешением жидкого гексафторида под давлением с водой. В обоих случаях предусматривается отвод тепла от аппаратов гидролиза. В результате гидролиза получается водный раствор UO 2 F 2 и HF с концентрацией урана 100 г/л. На отечественных заводах применяется метод гидролиза гексафтоида урана с использованием нитрата алюминия. Этот способ позволяет уже на начальной стадии связать F-ион в прочное соединение и вывести его из растворов на стадии экстракции. Химизм процесса описывается следующей схемой:

UF 6 + 2H 2 O = UO 2 F2 + 4HF 2 F 2 + Al(NO 3) 3 = UO 2 (NO 3) 2 + AlF 2 NO 3

HF + 2Al(NO 3) 2 = 2AlF 2 NO 3 + 4HNO 36 + 3Al(NO 3) 2 + 2H 2 O = UO 2 (NO 3) 2 + AlF 2 NO 3 + 4HNO 3

Комплексы AlF 2 NO 3 и AlF(NO 3) 2 подавляют диссациирующие действие F-иона на процесс экстракции урана и защищают аппаратуру от коррозионной нестойкости. В результате гидролиза получается водный раствор UO 2 F 2 и HF с концентрацией U 100 г/л. В процессе гидролиза идет бурное выделение тепла. После гидролиза нужно проводить контроль содержания U и HF.

Таблица 10.Растворимость UF 6 в H 2 O в зависимости от концентрации HF

Конц. UO2F2 %


По аппаратурному оформлению различают два метода гидролиза: барботажный и струйный. Барботажный метод заключается в подаче гексафторида урана в раствор через газоподводную трубку в аппарат с мешалкой. Струйный метод - более современный и производительный. По струйному методу гексафторид урана подаётся в верхнюю часть вертикального аппарата, а водный раствор тангенциально вводится через стенку и по винтовой траектории опускается вниз.

Рис.10. Барботаж UF6 Рис.11.Струйный метод

Производительность струйного метода:25 кг/ч по UF 6 , 50 л/ч по H 2 O; давление: 4 атм.; t=104 °C. Экстракцию проводят в экстракторах ящечного типа. Операция состоит из 8 ступеней экстракции и 4-х ступеней реэкстракции. В качестве экстрагента используется 30% раствор ТБФ в керосине. На экстракцию подаётся раствор с концентрацией урана 20-30 г/л, концентрация азотной кислоты 180-220 г/л. Соотношение органической фазы к водной 1/(3-4). Концентрация урана в органической фазе составляет 70-90 г/л. Экстракцию ведут противоточным методом. Реэкстракцию проводят слабым раствором азотной кислоты при рН=1. Из полученных растворов нитрата уранила проводят осаждение полиураната аммония.

2 (NO 3) 2 + NH 4 OH → (NH 4) 2 U 4 O 13 + NH 4 NO 3

Прокаливанием из полиураната аммония получается закись-окись урана. Прокаливание проводят в горизонтальных вращающихся печах. Температура в печи 690 о -730 о С.

(NH 4) 2 U 4 O 13 → U 3 O 8 + NH 3 +N 2 +H 2 O

Восстановление проводится большим избытком водорода в горизонтальных вращающихся печах при температуре 650 о -750 о С.

U 3 O 8 + H 2 →UO 2 + H 2 O

Схема водного гидролиза гексафторида урана с использованием нитрата алюминия приведена на рис.12.

Рис.12. Технологическая схема водного гидролиза UF 6 .

В случае некондиции произведённых таблеток, их можно вновь прокалить до U 3 O 8 . Закись-окись урана растворяют в азотной кислоте, а полученный таким образом азотнокислый уранил перечищают экстракцией на трибутилфосфате. Затем из очищенного уранилнитрата осаждают аммиаком полиуранат аммония, прокаливают его до закиси-окиси и восстанавливают снова до диоксида урана.

3.1 АДУ-процесс

Своим названием АДУ-процесс обязан аммонийдиуранату, являющемуся исходным продуктом для получения многих соединений, в том числе и керамического UO 2 .

Обычно под АДУ-процессом подразумевают классическую схему получения керамического UO 2 из UF 6 (гидролиз UF 6 в воде или в растворе аммиака - осаждение полиураната аммония - сушка - прокалка - восстановление).

АДУ-процесс реализуемый во фторидных системах, предназначен для переработки UF 6 , содержащего повышенную концентрацию 235 U либо обедненного по изотопу 235 U. Получаемый порошок UO 2 с содержанием до 5% U используется для изготовления таблетированного топлива энергетических реакторов типа ВВР, а порошок UO2, обедненный по изотопу 235 U, - для топлива зоны воспроизводства реакторов на быстрых нейтронах.

Осаждение полиураната аммония ведётся большим избытком аммиака по следующей схеме:

HF + NH 4 OH = NH 4 F + H 2 O

UO 2 F 2 + 6NH 4 OH = (NH 4) 2 U 2 O 7 + 4NH 4 F + 3H 2 O

при недостатке аммиака возможна реакция.

UO 2 F 2 + 3NH 4 OH = (NH 4) 3 UO 2 F 5 + 3HF + 3H 2 O

Извлечение урана в осадок составляет более 99,5%. Для осаждения можно использовать агитаторы с мешалками, а фильтрацию осуществлять на барабанных вакуумных фильтрах. Отфильтрованный осадок полиураната аммония содержит несколько процентов фтора. Его дальнейшая переработка заключается в термической диссоциации до U 3 O 8 и последующем восстановлением до диоксида урана. Процесс удобно проводить в печах кипящего слоя. Последующая переработка UO 2 заключается в холодном прессовании и затем спекании образцов в атмосфере водорода при температуре 1750 о С. Ввиду того, что из полиураната аммония получается мелкодисперсный диоксид циркония, прессованные образцы имеют очень высокую плотность - не менее 95% от теоретической, т.е ~10 г/см3.

3.2 АУК-процесс

АУК-процесс берёт своё название от аммонийуранилкарбоната Промышленный способ получения керамического UO 2 из UF 6 осуществляется через промежуточное соединение (NH 4) 4 UO 2 (CO 3) 3 .

Аммонийуранилкарбонат образуется по реакции:

6 + 5H 2 O + 10NH 3 + 3CO 2 → (NH 4) 4 UO 2 (CO 3) 3 + 6NH 4 F.

(NH 4) 4 → 4 NH 3 + 3CO 2 + 1,75 H 2 O +UO 3 ∙ 0,25 H 2 O .

Конечным продуктом прокаливания является U3O8 (на воздухе) и UO2 (в водороде). Разложение (NH 4) 4 протекает ступенчато, сначала до моногидрата триоксида урана с постепенной потерей воды в дальнейшем. Процесс дегидратации можно представить следующим образом:

UO 3 ∙H 2 O → UO 3 ∙0,65H 2 O → UO 3 ∙ 0,5H 2 O → UO 3 ∙ 0,25H 2 O.

Соединение UO 3 ∙ 0,25H 2 O образуется в качестве промежуточного продукта при прокалке в атмосфере всех газов и существует вплоть до температуры 653К.

3(UO 3 ∙ 0,25H 2 O) + H 2 → U 3 O 8 + 1,75 H 2 O + 74,8 кДж.

В соответствии с данными рентгенодифракционного анализа продукт этой реакции идентифицирован как U 3 O 8 . Конечным продуктом восстановлением является порошок UO 2 .

4 Безводные методы переработки обогащённого урана

4.1 Восстановление UF6 водородом

Гексафторид урана водородом восстанавливают до тетрафторида и фтороводорода, далее тетрафторид сплавлением с кальцием восстанавливают до металлического урана и дифторида кальция.

Взаимодействие гексафторида урана в водородом описывается уравнением:

UF 6 + H 2 = UF 4 + 2HF + 16,5 кДж/моль

Реакция протекает со значительной убылью свободной энергии. Однако энергия активации реакции восстановления UF 6 водородом очень велика и для успешного проведения процесса необходим подвод тепла. Восстановление гексафторида водородом - реакция первого порядка.

Для реализации рассматриваемого процесс существует два метода подвода тепла: либо через стенку, либо в реактор впрыскивают небольшое количество фтора, который взаимодействуя с водородом выделяет достаточное количество тепла. Аппаратура для восстановления гексафторида урана водородом делится на два типа по способу подвода тепла:

Реактор с горячими стенками;

Реактор с холодными стенками.

Разбавление гексафторида азотом, вплоть до эквимолярного состава газов на входе, не снижает эффективности процесса. Уменьшение избытка H2 приводит к повышению удельного веса UF4. Существенным недостатком процесса восстановления гексафторида урана водородом в реакторе с горячей стенкой, является перегрев стенок за счёт тепла реакции, особенно в первых по ходу газа зонах. Это приводит к сплавлению твёрдого материала, в связи с чем необходимо периодически прекращать работу и очищать стенки. Обычно реактор работает 78 часов, а затем останавливается на чистку. Для воспрепятствования накапливания на стенках мягкого порошка UF 4 необходима вибрация реактора.

Выход был найден в виде совместной подачи в реактор UF6 и F 2 . За счёт тепла реакции сжигания водорода во фторе.

H 2 + F 2 = 2HF + 30,6 кДж/моль

в факеле возбуждается реакция восстановления гексафторида урана водородом. На Рис.13 представлена конструкция аппарата с горячими стенками.

Рис. 13. Аппарат с горячими стенками для восстановления гексафторида урана.

Реактор представляет собой вертикальную трубу (рис.13), в верхний фланец реакторавмонтирована форсунка для смешения реакционных газов и впрыска их в зону реактора. Обогрев трёхступенчатый.

Такой способ, проводимый в реакторе с холодными стенками, вполне удовлетворителен, как со стороны эксплуатационных характеристик, так и со стороны качества производимого тетрафторида урана. Однако необходимость сжигания F 2 в значительно дешёвый HF снижает экономическую эффективность такого способ переработки.

Рассмотрение тех или иных химических реакций в системе начинают с термодинамического анализа, который позволяет оценить наиболее вероятные варианты химических превращений, их последовательность и глубину, влияние основных внешних факторов (температуры, давления) на протекание процессов.

В газовых методах гидролиз UF 6 проводят при повышенных температурах (обычно при 473-973 К). Поэтому правильнее этот процесс назвать пирогидролизом. В реальных процессах в присутствии водорода приходится считаться с существованием двух многоступенчатых цепочек превращений UF6, ведущих к образованию твердых промежуточных соединений.

Цепочка превращений UF 6 → UO 2 F 2 → UO 2:

6 + 2H 2 O = UO 2 F 2 + 4HF 2 F 2 + H 2 = UO 2 + 2HF 2 F 2 + H 2 O = UO 3 + 2HF 3 + H 2 = UO 2 + H 2 O 2 F 2 + 2/3H 2 O +1/3H 2 = UO 2,67 + 2HF 2,67 + 2/3H 2 = UO 2 + 2/3H 2 O 2 F 2 + H 2 = 1/2UO 2 + 1/2UF 4 + H 2 O

/2UF 4 + H 2 O = 1/2UO 2 + 2HF

Цепочка превращений UF 6 → UF 4 →UO 2:

6 + H 2 = UF 4 + 2HF, 4 + 2H 2 O = UO 2 + 4HF.

Суммарной реакцией взаимодействия гексафторида урана со смесью водорода и водяного пара является реакция:

UF 6 + 2H 2 O + H 2 = UO 2 + 6HF.

Термодинамический анализ взаимодействия в системе UF 6 - H 2 O - H 2 состоит в определении основных термодинамических параметров и определении условий протекания процесса. Оценивая влияние температуры на общий характер протекания химических реакций в процессах газовой конверсии UF 6 , можно отметить, что увеличение температуры должно способствовать обесфториванию и постепенному переходу от уранилфторидного продукта реакции конверсии к оксидным системам. В связи с тем, что реакции обесфторивания протекают с увеличением объема системы, снижение общего давления в системе должно способствовать получению оксидов урана с меньшим содержанием остаточного фтора.

Цепочка превращений при кислородно-водородной конверсии гексафторида урана.

Цепочка превращения:

UF 6 + H 2 = UF 4 + 2HF,

UF 4 + 2H 2 O = UO 2 + 4HF,

H 2 + O 2 = 2H 2 O,

или 6 + 2H 2 O = UO 2 F 2 + 4HF, 2 F 2 + H 2 = UO 2 + 2HF,

или 2 F 2 + H 2 O = UO 3 + 2HF

UO 3 + H 2 = UO 2 + H 2 O

Суммарная реакция восстановительного гидролиза в кислородно-водородном пламени может быть записана в следующем виде:

UF 6 (г) + Н 2 изб + О 2 изб → UO 2 тв + 6HF + Н 2 О остаточная

Ход изменений энергии Гиббса при повышении температуры, протекающих при гидролизе гексафторида урана парами воды, благоприятно сказывается на глубине прохождения гидролиза и последующей реакции восстановления уранилфторида водородом. Необходимо отметить что, гидролиз уранилфторида до триоксида обратим и при относительно высоких температурах протекает в прямом направлении.

В продуктах реакции пламенного реактора (температура около 1300°С) обнаружены UО 2 , UO 3 , UF 4 , U(OH) 4 , Н 2 О, UО 2 F 2 . Основным элементом, загрязняющим конечный продукт, был фтор, содержание которого составляло 4-8%.

Содержание фтора в продукте, полученном пламенным пирогидролизом, значительно снижалось при термической обработке его в водороде при 1000°С и достигало значения менее 3·10-3, что вполне удовлетворительно. Подача исходных продуктов организована следующим образом. Три газа (UF 6 , O 2 и F 2) поступают по центральной трубке, a H 2 - по кольцевому зазору; F 2 подают только в самом начале для инициирования процесса взаимодействия UF 6 с водородом.

5 ВОУ-НОУ процесс

Технология ВОУ-НОУ включает операции по переводу высокообогащённого урана (ВОУ) в низкообогащённый уран (НОУ). Необходимость такой конверсии возникла в середине 1990-х годов вследствие двустороннего разоружения США и России. Наработанный ранее высокообогащенный (90%) уран необходимо переводить в низкообогащенный (1,6 - 4,4%), пригодный для использования в мирных целях для изготовления ТВЭлов для ВВЭР. Поставленная задача решается методом разбавления высокообогащенного урана низкообогащенным через стадию фторирования. Поскольку гексафторид урана газообразное соединение, то таким образом достигается равномерная гомогенизация смеси. Преимуществами такого смешения является являются менее затратная организация обеспечения ядерной безопасности и требуемой точности дозирования смешиваемых продуктов, оперативность управления процессом смешивания. Промышленная технологическая схема такого производства представлена на рис.14.

Рис.14 Технологическая схема процесса ВОУ-НОУ.

К НОУ предъявляются высокие требования по чистоте. В нем, в частности, должно быть гарантировано содержание

плутония < 0,05 Бк/г U

нептуния < 0,01 Бк/г U

урана -234 < 10 000 мкг/г U - 235

урана -236 < 5 000 мкг/г U - 235

Исходя из этих треобований, в технологическую схему перевода оружейного урана из элементного состояния в его гексафторид и разбавления низкообогащенным ураном были введены две дополнительные операции:

во-первых, была введена стадия экстракционной очистки оксидов высокообогащенного урана от плутония, продуктов деления и легирующих добавок.

во-вторых, была организованна наработка из природного урина гексафторида урана-разбавителя с 1,5% содержанием урана-235 с пониженным содержанием изотопов урана-234 и урана-236 .Из рис. 1 видно, что важнейшим элементом в технологии переработки оружейного урана в ядерное энергетическое топливо является процесс фторирования оксидов высокообогащенного урана. На фторирование поступает порошкообразная закись-окись урана (октаоксид триурана) и фтор, предварительно прошедший очистку от фтористого водорода методом селективной сорбции последнего на гранулах фторида натрия. Реакция фторирования протекает при температуре 350 -г 400 °С. Процесс фторирования осуществляют в непрерывном режиме в период переработки одной партии при противотоке твердой и газообразной фаз реагентов. Твердые порошкообразные остатки от фторирования, в которых концентрируются нелетучие фториды продуктов распада радионуклидов, продукты коррозии (фториды Fe, Ni , Си), а также нелетучие фториды плутония, в микроскопических количествах присутствующего в уране, после переработки одной или нескольких партий оксидов урана выгружаются из реактора и направляются для извлечения урана. Газовая фаза, выходя из реактора,проходит двухступенчатую фильтрацию от уносимой твердой фазы и поступает на десублимацию полученного гексафторида урана из газового потока. Кроме того, на первой технологической цепочке перед десублимацией газовый поток проходит сорбционную колонну, в которой селективно улавливается плутоний, который подвергся возгонке вместе с гексафторидом урана, по реакции

Собранный в десублиматоре гексафторид урана при размораживании десублиматора подвергается вакуумной тренировке с целью удаления из него неконденсирующихся газов и примеси фтористого водорода, после чего гексафторид урана пере- конденсируется из десублиматора в транспортные емкости и отправляется потребителю (заводу по разделению изотопов).

Технологические газы после десублиматора, содержащие в основном неконденсирующие газы F2, 02 и другие, проходят очистку от гексафторида урана путем улавливания его на гранулах фтористого натрия по реакции:

F 6 + 2 Na F = U F 6 2 Na F ,

а затем направляются на нейтрализацию фтора и санитарную очистку в систему газоочистки Аппаратурное оформление технологических процессов на установке определяется свойствами перерабатываемых материалов и реагентов, главными из которых являются;

высокая химическая токсичность фтора, фтороводорода, гексафторида урана и других летучих и нелетучих фторидов, участвующих в технологическом процессе. По химической опасности большинство из них относятся к веществам 1 класса;

высокая радиотоксичность высокообогащенного урана и других нуклидов, присутствующих в нем: следовые количества плутония, урана-232 и продуктов их распада; это относит перерабатываемый материал по радиоопасности к веществам класса А;

высокообогащенный уран является ядерно-опасным, т. е. при определенных условиях возможно возникновение самопроизвольной цепной реакции распада (СЦР).

Вопросы ядерной безопасности на установке решены тем, что все технологическое и вспомогательное оборудование, включая: реактор-фторатор, бункер, десублиматор, сорбционные колонны, санфильтры - имеют либо ядернобезопасную геометрию, либо ограничения по объему и загрузке аппаратов и величине одновременно перерабатываемой партии высокообогащенного урана

Заключение

Несмотря на то, что уран низкого обогащения - ценное сырье для производства высокообогащенного урана, газодиффузионные установки низкого обогащения невозможно легко переделать для производства урана высокого обогащения. Высокое обогащение требует много меньших по размеру ступеней, из-за резкого снижения коэффициента обогащения и проблем с критичностью (накопление критической массы урана) у больших по размеру блоков.

Огромные размеры обогатительной системы ведут к длительному времени заполнения ее материалом (обогащаемым веществом), до начала выхода продукта. Обычно это время установления равновесия составляет 1-3 месяца. Технология газовой диффузии широко использовалась во множестве стран, даже Аргентина создала действующее обогатительное предприятие для своей тайной оружейной программы (в настоящее время прекращенной). В 1979 году более 98% всего урана производилось с использованием этого процесса. К середине 1980-х эта доля сократилась до 95% с освоением метода центрифугирования.

Доминирующий способ разделения изотопов для новых производств, хотя уже существующие мощности - по большей части газодиффузионные. Каждая центрифуга обеспечивает гораздо больший коэффициент разделения, чем одна газовая ступень. Требуется много меньше ступеней, всего около тысячи, правда стоимость каждой центрифуги гораздо выше.

Газовое центрифугирование требует ~1/10 часть энергии, требующейся газовой диффузии (его энергопотребление 100-250 кВт-ч/МПП-кг) и обеспечивает более легкое наращивание масштаба производства.

Из развивающихся ядерных стран этой достаточно сложной технологией владеют Пакистан и Индия.

Многие страны заявляют о программах создания или развития парка энергетических ядерных реакторов. Согласно прогнозу Всемирной ядерной ассоциации, к 2020 году установленные мощности АЭС в мире увеличатся с текущих 360 ГВт (2007г.) до 446 ГВт. Поэтому увеличится потребность в обогащении урана, поскольку большинство существующих и планируемых к строительству реакторов используют в качестве топлива уран, обогащенный до 3,5-4 % по изотопу 235 U.

В целом, развитие европейских обогатительных компаний имеет твердую основу в виде надежной технологии, значительных существующих мощностей и надежной производственной базы центрифуг.

Литература

1. Громов Б.В. Введение в химическую технологию урана, М.Госатомиздат, 1978.

Справочник по ядерной энерготехнологии: пер. с англ./ Ф.Ран, А.Адамантиадес, Дж.Кентон, Ч.Браун; под.ред. В.А.Легасова. -М.:Энергоатомиздат, 1989.-752с.

Галкин Н.П., Майоров А.А., Верятин И.Д Химия и технология фтористых соединений урана, М.:Госатомиздат, 1961.

Ч.Харрингтон, А.Рюэле Технология производства урана, М.:Госхимиздат, 1961.

В.С.Емельянов, А.И.Евстюхин Металлургия ядерного горючего, М.:Атомиздат, 1968.

Жиганов А.Н, Гузеев В.В., Андреев Г.Г. Технология диоксида урана, как керамического ядерного топлива, Томск, 2003.

Шевченко В.Б, Судариков Б.Н. Технология урана. - М.:Госатомиздат, 1961.

Майоров А.А., Браверманн И.Б. Технология получения порошков керамической двуокиси урана. М.:Энергоатомиздат, 1985.

Смайли С. Аппаратурное оформление гетерогенных процессов в технологии урана.-М.:Госатомиздат, 1963.

Химия актиноидов, под ред Дж.Каца, Г.Сиборга, Л.Морсс. Том 1. М."Мир",1991.

Петерсон З, Уаймер Р. Химия в атомной промышленности.-М.:Атомиздат, 1967.

Разделение изотопов - технологический процесс изменения изотопного состава вещества, состоящего из смеси различных изотопов одного химического элемента . Из одной смеси изотопов на выходе процесса получают две смеси: одна с повышенным содержанием требуемого изотопа (обогащенная смесь), другая с пониженным (обедненная смесь).

Основное применение процесса разделения изотопов - обогащение урана изотопом 235 U для производства ядерного топлива, оружейных радиоактивных материалов и прочих применений, связанных с использованием радиоактивных веществ.

Промышленную работу по разделению изотопов измеряют в единицах работы разделения (ЕРР). Для определённого изменения изотопного состава определённой исходной смеси требуется одинаковое количество ЕРР, независимо от технологии разделения изотопов.

Энциклопедичный YouTube

    1 / 5

    ✪ НЕПТУНИЙ 237 - НАРАБОТКА НЕПТУНИЯ ИЗ СОЛЕЙ УРАНА. РАДИОАКТИВНЫЙ РАСПАД НИТРАТА НЕПТУНИЛА

    ✪ СХК получил контракт на производство стабильных изотопов

    ✪ Химия 8 Простые и сложные вещества Состав веществ

    ✪ 10. Химические элементы

    ✪ урок 2. Методы познания в химии. Техника безопасности на уроках химии.

    Субтитры

Общие принципы

Разделение изотопов (например извлечение 6 Li , 235 U , ) всегда сопряжено со значительными трудностями, ибо изотопы , представляющие собой мало отличающиеся по массе вариации одного элемента , химически ведут себя практически одинаково. Но - скорость прохождения некоторых реакций отличается в зависимости от изотопа элемента, кроме того, можно использовать различие в их физических свойствах - например в массе .

Как бы то ни было, различия в поведении изотопов настолько малы, что за одну стадию разделения, вещество обогащается на сотые доли процента и повторять процесс разделения приходится снова и снова - огромное количество раз. Технологически это осуществляется последовательным пропуском разделяемого объема изотопов через однотипные ячейки, производящие разделение, - каскады. Для получения необходимого разделения, каскадов может несколько тысяч последовательно, а для получения необходимого объема, десятки и сотни тысяч таких последовательных групп каскадов включенных параллельно.

На производительность подобной каскадной системы влияют две причины: степень обогащения на каждой из ступеней и потери искомого изотопа в отходном потоке.

Поясним второй фактор. На каждой из стадий обогащения поток разделяется на две части - обогащённую и обеднённую нужным изотопом. Поскольку степень обогащения чрезвычайно низка, суммарная масса изотопа в отработанной породе может легко превысить его массу в обогащённой части. Для исключения такой потери ценного сырья обеднённый поток каждой последующей ступени попадает снова на вход предыдущей.

Исходный материал не поступает на первую стадию каскада. Он вводится в систему сразу на некоторую, n-ю ступень. Благодаря этому с первой ступени выводится в утиль сильно обеднённый по основному изотопу материал.

Основные используемые методы разделения изотопов

  • Электромагнитное разделение
  • Газовая диффузия
  • Газовая или жидкостная термодиффузия
  • Аэродинамическая сепарация
  • Лазерное разделение изотопов
  • Химическое обогащение
  • Фотохимическое разделение

В любом случае, количество произведённого обогащённого материала зависит от желаемой степени обогащения и обеднения выходных потоков. Если исходное вещество имеется в большом количестве и дёшево, то производительность каскада можно увеличить за счёт отбрасывания вместе с отходами и большого количества неизвлёченного полезного элемента (пример - производство дейтерия из обычной воды). При необходимости достигается большая степень извлечения изотопа из материала-сырца (например, при обогащении урана).

Электромагнитное разделение

Метод электромагнитного разделения основан на одинаковой силе взаимодействия магнитного поля и одинаково электрически заряженных частиц. Однако при одинаковой силе действия частицы различной массы будут вести себя по разному. Например, траектория одинаково заряженных ионов, движущихся в магнитном поле, будет зависеть от их массы. Поставив ловушки в соответствующих местах установки, можно собирать соответствующие изотопы. По сути дела такие установки, называемые калютронами, являются огромными масс-спектрометрами . В них ионы разделяемых веществ, двигаясь в сильном магнитном поле, закручиваются с радиусами, пропорциональными их массам и попадают в приёмники, где и накапливаются.

Этот метод позволяет разделять любые комбинации изотопов, обладает очень высокой степенью разделения. Обычно достаточно двух проходов для получения степени обогащения выше 80 % из бедного вещества (с исходным содержанием желаемого изотопа менее 1 %). Однако электромагнитное разделение плохо приспособлено для промышленного производства: большая часть веществ осаждается внутри калютрона, так что его приходится периодически останавливать на обслуживание. Остальные недостатки - большое энергопотребление, сложность и дороговизна технического обслуживания, низкая производительность. Основная сфера применения метода - получение небольших количеств чистых изотопов для лабораторного применения. Тем не менее, во время второй мировой войны была построена установка Y-12 , вышедшая с января 1945 на мощность 204 грамма 80 % U-235 в день.

Эффективность . Завод, производящий 50 кг высокообогащённого урана в год за счет электромагнитного разделения (calutron ), по оценкам будет потреблять свыше 50 МВт электричества.

Газовая диффузия

Этот метод использует различие в скоростях движения различных по массе молекул газа. Понятно, что он будет подходить только для веществ, находящихся в газообразном состоянии.

При различных скоростях движения молекул, если заставить их двигаться через тонкую трубочку, более быстрые и лёгкие из них обгонят более тяжёлые. Для этого трубка должна быть настолько тонка, чтобы молекулы двигались по ней поодиночке. Таким образом, ключевой момент здесь - изготовление пористых мембран для разделения с типовыми размерами пор десятки - сотни нанометров. Они должны не допускать утечек, выдерживать большое избыточное давление и обладать стойкостью к фторсодержащим средам. Существовало несколько методов получения пористых мембран, например:

  • Спекание металлических или полимерных порошков при таких условиях, что между крупинками порошка оставались нормированные зазоры.
  • Вытравливание одного металла из сплава двух металлов при определенных условиях обеспечивало пористую структуру.
  • Электролитическое оксидирование алюминия образует пористую структуру оксида алюминия.

Мембраны обычно изготавливались в виде трубок длиной до нескольких метров. Из нескольких сотен трубок собирали один каскад разделения.

Для некоторых лёгких элементов степень разделения может быть достаточно велика, но для урана - только 1.00429 (выходной поток каждой ступени обогащается в 1.00429 раза). Для получения больших степеней обогащения иногда соединяли последовательно несколько тысяч каскадов разделения. Учитывая, что один типовой промышленный каскад занимал площадь до 100м 2 и более, то газодиффузионные обогатительные предприятия были циклопические по размерам. Относительно большие потери давления на мембранах и размеры установок определяли огромные энергозатраты компрессоров. Кроме того, завод содержал огромные количества технологического гексафторида: иногда от пуска завода до получения первого продукта на выходе проходило несколько недель, в течение которых гексафторид последовательно заполнял объемы всех каскадов. Это обстоятельство предъявляло очень серьезные требования к надежности оборудования, ведь отказ даже одного каскада мог вызвать остановку всей цепочки. Чтобы минимизировать ущерб от технологических остановок каскады снабжались автоматикой контроля работоспособности и обхода проблемного каскада.

Термодиффузия

В этом случае опять же, используется различие в скоростях движения молекул. Более лёгкие из них при существовании разницы температуры имеют свойство оказываться в более нагретой области. Коэффициент разделения зависит от отношения разницы массы изотопов к общей массе и больший для лёгких элементов. Несмотря на свою простоту, в этом методе требуются большие энергозатраты для создания и поддержания нагрева. На заре ядерной эры существовали промышленные установки на базе термодиффузии. В настоящее время самостоятельно широко не применяется, однако идея термодиффузии используется для увеличения эффективности газовых центрифуг .

Газовое центрифугирование

Идею центрифужной сепарации начали активно разрабатывать во время Второй Мировой войны. Однако трудности оптимизации технологии задержали её развитие, а в западных странах даже был вынесен вердикт о экономической бесперспективности метода. В СССР промышленное внедрение центрифужной технологии началось также только после промышленного освоения газовой диффузии.

Если газообразную смесь изотопов пропускать через высокоскоростные газовые центрифуги , то центробежная сила разделит более лёгкие или тяжёлые частицы на слои, где их и можно будет собрать. Большое преимущество центрифугирования состоит в зависимости коэффициента разделения от абсолютной разницы в массе, а не от отношения масс. Центрифуга одинаково хорошо работает и с лёгкими, и с тяжёлыми элементами. Степень разделения пропорциональна квадрату отношения скорости вращения к скорости молекул в газе. Отсюда очень желательно как можно быстрее раскрутить центрифугу. Типичные линейные скорости вращающихся роторов - 250-350 м/с, и более 600 м/с в усовершенствованных центрифугах. Разница давлений у оси центрифуги и у внешней стенки может достигать десятков тысяч раз, поэтому центрифужные каскады работают при невысоких давлениях во избежание конденсации гексафторида. Для улучшения сепарации термодиффузией в центрифугах создается градиент температур в несколько десятков градусов вдоль оси центрифуги.

Типичный коэффициент сепарации - 1.01 - 1.1. По сравнению с газодиффузионными установками этот метод имеет уменьшенное энергопотребление, большую лёгкость в наращивании мощности. В настоящее время газовое центрифугирование - основной промышленный метод разделения изотопов в России.

Аэродинамическая сепарация

Этот способ можно рассматривать как вариант центрифугирования, но вместо закручивания газа в центрифуге, он завихряется при выходе из специальной форсунки, куда подаётся под давлением. Эта технология, основанная на вихревом эффекте , использовалась ЮАР и Германией.

Проблемы технологии заключались в том что радиус форсунки около 100 мкм, при этом суммарная длина форсунки на каждом промышленном каскаде разделения исчислялась сотнями и тысячами метров. Такая длина набиралась кусками по нескольку десятков-сотен сантиметров. Помимо трудностей изготовления форсунок существовала проблема газа-разбавителя, например гелия. Разбавитель позволял удерживать гексафторид урана в газообразной фазе при больших давлениях на входе в форсунки, необходимых для создания высокоскоростного потока в форсунке. На выходе производства разбавитель и гексафторид необходимо было разделять. Большие давления определяли значительные энергозатраты.

Лазерное разделение изотопов (ЛРИ)

Лазерное разделение не является самостоятельным методом, но используется для улучшения характеристик электромагнитного или химического методов разделения. Метод основан на избирательной ионизации одного из изотопов электромагнитным излучением (например, светом лазера). Избирательность ионизации основана на резонансном (узкополосном) поглощении света атомами, разные изотопы имеют разный спектр поглощения излучения. Это значит что можно подобрать такие параметры облучения при которых преимущественно ионизируются атомы заданного изотопа. Дальше ионизированные атомы могут быть отделены, например, в магнитном поле (AVLIS (англ.) русск. ). Кроме того, ионизация атомов может менять скорость химических реакций, например, облегчая распад некоторых химических соединений (MLIS (англ.) русск. ).

Лазерная технология разделения развивается с 1970-х годов многими странами и считается перспективной, однако все ещё не вышла за рамки исследовательских работ. В 90-х годах прошлого века в США существовала программа исследования лазерного обогащения с электромагнитной сепарацией на экспериментальной установке, однако она была закрыта. В настоящее время в США осуществляется программа исследования на демонстрационной установке одного из вариантов лазерного обогащения с химической сепарацией под названием SILEX (англ.) русск. . Технология разработана в 1992 году австралийской компанией Silex. С 2006 года работы по технологии Silex ведёт компания Global Laser Enrichment LLC. Получена лицензия на строительство завода в Уилмингтоне (штат Северная Каролина).

Химическое обогащение

Химическое обогащение использует разницу в скорости протекания химических реакций с различными изотопами. Лучше всего оно работает при разделении лёгких элементов, где разница значительна. В промышленном производстве применяются реакции, идущие с двумя реактивами, находящимися в различных фазах (газ/жидкость, жидкость/твёрдое вещество, несмешивающиеся жидкости). Это позволяет легко разделять обогащённый и обеднённый потоки. Используя дополнительно разницу температур между фазами, достигается дополнительный рост коэффициента разделения. На сегодня химическое разделение - самая энергосберегающая технология получения тяжёлой воды. Кроме производства дейтерия, оно применяется для извлечения 6 Li. Во Франции и Японии разрабатывались методы химического обогащения урана, так и не дошедшие до промышленного освоения.

Дистилляция

Дистилляция (перегонка) использует различие в температурах кипения различных по массе изотопов. Обычно чем меньше масса атома - тем ниже температура кипения этого изотопа . Лучше всего это работает опять же, на лёгких элементах. Дистилляция успешно применяется как завершающая стадия в производстве тяжёлой воды.

ИЗОТОПОВ РАЗДЕЛЕНИЕ - выделение отдельных изотопов из естеств. их смеси или обогащение смеси отдельными изотопами. Первые попытки И. р. сделаны Ф. У. Астоном (F. W. Aston, 1949) и др. гл. обр. для обнаружения изотопов у стабильных элементов, точного измерения массы их атомов и относит. содержания (см. Mасс-спектроскопия ).В 30-х гг. фундам. исследования в области потребовали выделения отдельных изотопов в кол-вах порядка неск. мг (дейтерий производился в промышл. масштабах). Дальнейшее развитие методов И. р. обусловлено развитием , для к-рой требовался уран, обогащённый 235 U и др. (см. Ядерное горючее ),а также применением в физике, химии, биологии и др. метода изотопных индикаторов .
Классификация и характеристики методов . И. р. основано на различиях физ. и хим. свойств изотопов и их соединений. Эти различия, обусловленные разницей масс атомов, для большинства элементов невелики, что обычно приводит к необходимости многократного повторения единичной операции. Во всякой разделит. установке исходная смесь делится не менее чем на 2 фракции, одна из к-рых обогащается концентрируемым изотопом за счёт других. Эффективность работы разделит. установки определяется её производительностью G и коэф. разделения a. Так, при разделении бинарной смеси:

Где С" и 1-С" - доли лёгкого и тяжёлого изотопов во фракции, обогащённой лёгким изотопом; С"" и 1-С"" - в тяжёлой фракции. Если a-1Ъ1, что имеет место для большинства методов (см. ниже), то обычно пользуются коэф. обогащения e=a-1. Повышение а обычно связано с уменьшением G . Поэтому методы, обеспечивающие большие a, не всегда оказываются экономически выгодными. Выбор метода определяется свойствами элемента, содержанием в смеси концентрируемого изотопа, заданной степенью разделения q=a N (N - число ступеней разделения). Различают молекулярно-кинетич., физико-хим. и электромагн. методы И. р. Первые два метода основаны на различии ср. статистич. свойств изотопных соединений, обусловленном разницей масс изотопов. Для этих методов е, как правило, невелики, а G могут быть большими. Электромагн. методы основаны на разл. поведении изотопов в электрич. и магн. полях. Как правило, эти методы позволяют получить высокие значения а при малых G в 1 цикле И. р.
Молекулярно-кинетические методы . Газовая диффузия через пористые перегородки (фильтры). Газообразное соединение прокачивается через пористую перегородку. При достаточно низких давлениях, когда длина свободного пробега молекул значительно превышает ср. диаметр пор (молекулярное течение, кнудсеновская или эффузия, см. Динамика разреженных газов ),каждый компонент смеси газов движется независимо от др. под действием градиента . Скорость движения пропорц. частоте столкновений молекул с поверхностью пор, т. е. ср. тепловой скорости молекул:

Здесь Т - темп-pa, R - газовая постоянная, М - масса молекулы. Т. к. при М 1 2 , то часть смеси, прошедшая через фильтр, обогащается лёгким изотопом. При истечении в абс. вакуум достигается макс. значение:

Для большинства элементов

где DМ=М 2 - М 1 . Т. к. диффузия через фильтр происходит в пространство, заполненное тем же газом при пониженном давлении, то реальный коэф. обогащения e
Рис. 1. Схема газодиффузионной установки.

При этом DM/2M=3/2.350=0,0043. Для получения из природного U с обогащением по 235 U порядка 4% требуется от 1000 до 1500 ступеней (рис. 1). Газодиффузионные заводы для промышл. разделения изотопов U действуют в СССР , США, Франции, Англии и Китае .
Macc-диффузия (диффузия в потоке пара) . Различие скоростей диффузии 2-х изотопов в потоке 3-го (разделительного) газа приводит к частичному разделению изотопной смеси; эффект И. р. при диффузии в струю пара был открыт Г. Герцем (Н. Hertz) в 1922. Коэф. обогащения:

где D 13 , D 23 - коэф. диффузии изотопов в 3-й газ. В качестве него используют нары, к-рые можно затем легко сконденсировать и отделить от смеси изотопов. Умножение элементарного эффекта возможно при увеличении потока пара. Процесс можно проводить в каскадах разделительных насосов (Герц) или в противоточных цилиндрич. колоннах (рис. 2).

Рис. 2. Масс-диффузионная колонна.

В колонне, цилиндрич. сосуде, перегороженном вдоль оси пористой диафрагмой, газообразная изотопная смесь движется навстречу потоку вспомогат. пара. Вследствие перепада концентраций газа и пара в поперечном сечении цилиндра и большего коэф. диффузии для более лёгких молекул происходит обогащение лёгким изотопом части газа, прошедшего сквозь поток пара в левую часть цилиндра. Обогащённая часть выводится из верхней части цилиндра вместе с осн. потоком пара, а оставшаяся в первой половине часть газа движется вдоль диафрагмы и выводится из аппарата. Цилиндрич. пористая диафрагма служит для предотвращения перемешивания обогащённой и обеднённой смеси и для создания регулируемых извне вертикальных потоков газа. Т. о., первичный эффект И. р. возникает при диффузии смеси в радиальном потоке пара. Противоточное движение в вертикальном направлении переводит радиальный эффект И. р. в осевой и обеспечивает умножение эффекта, зависящее от высоты колонны .
Термодиффузия . Перепад темп-ры в газе или жидкости вызывает диффузию, приводящую к частичному И. р. Если поток, вызванный термодиффузией, уравновешен противоположным ему потоком, обусловленным диффузией, то первичный коэф. обогащения определяется ф-лой:

где a т - постоянная термодиффузии, зависящая от характера межмолекулярного взаимодействия и относит. разности масс молекул. В большинстве газовых смесей в холодной области возрастает концентрация тяжёлого газа, в горячей - лёгкого. Для умножения обычно малого первичного эффекта применяется противоточная термодиффузионная колонна, состоящая из охлаждаемой снаружи вертикальной трубки, внутри к-рой помещается нагреваемая металлич. нить или трубка меньшего диаметра (рис. 3). Разность темп-р вызывает непрерывно идущее поперечное термодиффузионное разделение и одновременно создаёт вертикальную конвекцию газовой смеси: лёгкий изотоп, обогащаемый около нагретой трубки (T 1), уносится восходящим конвектизным потоком к верхнему концу колонны, а тяжёлый - увлекается вниз.

Рис. 3. Термодиффузионная колонна с кольцевым зазором.

При достаточной длине колонны можно достичь почти полного разделения смеси. Методом термодиффузии получены изотопы (концентрация > 99%): 3 Не, 13 С, 15 N, 18 O, 20 Ne, 21 Ne, 22 Ne, 35 С1, 37 С1, 36 Аr, 38 Аr, 84 Кr, 86 Кr, 136 Хе . Термодиффузия в жидком UF 6 применялась в США для обогащения природного урана изотопом 235 U до концентрации 1%. Для промышл. И. р. метод термодиффузии неэффективен.
Электролиз воды . При электролизе воды или водных растворов электролитов скорость электролиза D 2 O меньше, чем Н 2 О. В результате в электролите растёт концентрация D (a=6-8). Электролиз воды был первым промышл. методом получения D 2 O (электролизный завод в Норвегии в 40-х гг. производил тонны D 2 O в год). Для получения чистой D 2 O применяют электролитич. каскад из 15 ступеней в сочетании с изотопным обменом (см. ниже) на первых 3 ступенях. Электролиз требует значит. затрат электроэнергии (на 1 кг D 2 O 125000 кВт.ч). Электролиз можно применять для отделения Т от Н (a=14). Для др. элементов электролиз неэффективен, т. к. a@l .
Миграция ионов . При прохождении электрич. тока через электролит (водный раствор, расплав соли) более подвижные ионы концентрируются у катода. Первичный эффект обогащения (для большинства элементов e<10 -2) может быть умножен в противоточных ячейках .
Центрифугирование . В центрифуге, вращающейся с большой скоростью, более тяжёлые частицы иод влиянием центробежной силы концентрируются у периферии, более лёгкие - у оси ротора. Во вращающемся газе устанавливается равновесное распределение n=n 0 ехр(Mw 2 r 2 /2RT), где w - угловая скорость, r - радиус вращения, п 0 - плотность при r=0. В смеси двух идеальных газов с молекулярными массами M 1 и M 2 , помещённой во вращающийся полый цилиндр (ротор), распределение устанавливается для каждого газа независимо. Поэтому макс. коэф. разделения в радиальном направлении:

где v - линейная скорость вращения ротора радиуса r 0 . Т. к. a 0 зависит от DM, метод наиболее пригоден для И. р. тяжёлых элементов, где DМ выше. Для умножения первичного эффекта применяется противоточная циркуляция смеси внутри ротора, преобразующая радиальное обогащение в аксиальное и позволяющая производить отбор обогащённой и обеднённой фракций вблизи торцевых крышек ротора. Разделит. мощность центрифуги ограничена макс. теоретич. значением: rD(DMv 2 /2RT) 2 pz/2, где r - плотность, D - коэф. взаимной диффузии изотопов, z - длина ротора. В разделит. каскадах применяется параллельное соединение центрифуг в ступени. Центрифуги использовались впервые Линдеманом и Астоном в 1919, в дальнейшем для частичного И. р. Cl, Br, Xe, U. Программы развития метода центрифугирования для обогащения U есть в странах Европы, в США и Японии . Для обогащения 235 U используют эффект разделения, создаваемый центробежными силами при искривлении потока UF 6 (разделит, сопло в ФРГ, вихревая трубка в ЮАР). Для увеличения первичного эффекта к UF 6 добавляют лёгкий вспомогат. газ (Н 2 или Не), увеличивающий скорость UF 6 в потоке смеси. При этом возрастают и действующие на UF 6 центробежные силы и e 0 в 4-8 раз выше, чем в случае газовой диффузии .
Физико-химические методы
Ректификация (дистилляция, фракционная перегонка). Метод основан на различии в равновесном изотопном составе жидкой и газообразной фаз. В большинстве случаев в паре концентрируется лёгкий изотоп. Коэф. разделения е можно оценить из полуэмпирич. ур-ния Бигелейзена:

где А - константа, зависящая от строения молекулы. Эффект разделения умножается в ректификац. колоннах благодаря противотоку фаз. Ректификация применяется для произ-ва обогащённых изотопов лёгких элементов (D, 10 В, 11 В, 13 С, 15 N, 18 0). Наиб, эффективная низкотемпературная ректификация, напр, в смесях H 2 -D 2 ; 13 Co- 12 Co и др.
Изотопный обмен основан на хим. реакциях, при к-рых происходит термодинамически равновесное перераспределение изотопов к--л. элемента между реагирующими веществами. Так, напр., при контакте НСl с НВr, в к-рых первонач. содержание дейтерия в водороде было одинаковым, в результате обменной реакции в НСl содержание D будет неск. выше, чем в НВr. Применение неск. каскадов позволяет получать дейтерий и обогащённые отд. изотопами смеси для др. лёгких элементов (6 Li, 7 Li, 10 B, 11 В, 13 С, 15 N, 18 O). Разрабатывается метод обогащения 235 U с использованием ионообменной реакции между U в смоле и U в растворе (e 0 =1,5.10 -3) . Достоинства молекулярно-кинетич. и физ--хим. методов: возможность экономичного И. р. в промышл. масштабах и практически полное использование вещества в 1 цикле разделения. Недостатки: необходимость газовой фазы (не все элементы образуют стойкие газообразные соединения); значит. кол-во смеси; неуниверсальность установок; разделит. каскады и колонны должны содержать значит. кол-ва концентрируемых изотопов. Лит.: 1) Атомная наука и техника в СССР, М., 1977; 2) Виллани С., Обогащение урана, М., 1983; 3) Розен А. М., Теория разделения изотопов в колоннах, М., 1960; 4) Шемля М., Перье Ж., Разделение изотопов, пер. с франц., М., 1980; 5) Рабинович Г. Д., Разделение изотопов и других смесей термодиффузией, М., 1980; 6) Андреев Б. М., Зельвенский Я. Д., Kатальнков C. Г., Разделение стабильных изотопов физико-химическими методами, М., 1982; 7) Ehrfeld W., Elements of flow and diffusion processes in separation nozzles, B.- , 1983. А. А. Сазыкин .
Электромагнитные методы
Собственно электромагнитный метод основан на том же принципе, что и масс-спектрометр .Любой масс-спектрометр является миниатюрной установкой для И. р. Для получения больших кол-в изотопов служат крупные установки (амер. термин калютроны), работающие по принципу масс-спектрометра Демпстера (рис. 4) .


Рис. 4. Принципиальная схема электромагнитного сепаратора.

В однородном магн. поле с напряжённостью Н расстояние d между фокусами соседних изотопов с массами М и M+DM и Ze (дисперсия) составляет:

Здесь ZeV - энергия иона (все величины выражены в системе единиц СГСЕ), а ширина фокуса каждого изотопа (аберрация):

где j - угол раствора ионного пучка в плоскости, перпендикулярной Н. И. р. возможно только при dН - при j<2(DM/M) 1/2 . Для увеличения j и обеспечения тем самым большей производительности разделит, установки применяют неоднородные (т. н. безаберрационные) магн. поля , с помощью к-рых удаётся хорошо фокусировать пучки ионов с j@(25-30)° и энергией ионов 25-40 кэВ. Производительность Q разделит. установки (в идеальном случае) связана с силой тока I пучка однозарядных ионов выражением:

Q=0,89AС 0 I (г/сутки). (11)

Здесь А - ат. масса разделяемого элемента, С 0 - относит. концентрация выделяемого изотопа в исходной смеси (I в А) . Промышл. установки позволяют накапливать до неск. десятков г изотопов в сутки. При этом коэф. обогащения в 1 цикле разделения a=C/C 0 ~ 10- 10 3 (С - относит, концентрация изотопа в обогащённой смеси). Типичные размеры вакуумной камеры (в м): 3.1,5.0,4. Ток I определяется гл. обр. фокусировкой пучка, к-рая в безаберрационном магн. поле зависит от компенсации пространств. заряда пучка. Если бы расталкивание ионов пучка собств. пространств. зарядом не было скомпенсировано, то обусловленная им аберрация пучка могла бы быть меньше дисперсии лить при очень малом I. В действительности возможна нейтрализация пространств. заряда электронами, образуемыми самим пучком в остаточном газе камеры (давление р=10 -5 мм рт. ст.). Если бы ток I был постоянным во времени, то компенсация пространств. заряда, установившись (для этого достаточно ~10 -4 с), сохранялась бы. Этому, однако, препятствуют колебат. процессы как в самом пучке, так и в ионном источнике. Вследствие этого плотность ионного тока (при определ. условиях) колеблется так быстро, что вызывает динамич. декомпенсацию пространств. заряда, резко нарушающую процесс И. р. Исследование динамич. декомпенсации позволило осуществить И. р. разл. элементов при макс. токе (для элементов ср. масс - до неск. сотен мА). В ионном источнике пары рабочего вещества ионизуются в газовом разряде, горящем в продольном магн. поле. Возникающие ионы извлекаются из разряда электрич. полем, ускоряются и поступают в разделит. камеру в виде сформированного ионного пучка. Вследствие неполной паров и наличия в пучке ионов с разл. кратностью заряда коэф. использования рабочего вещества обычно ~20-50%. В приёмнике ионов пучки изотопов попадают на стенки изотопных "карманов" и оседают на них в виде нейтральных атомов. Распыление накопленного вещества и отражение ионов от стенок карманов обусловливают неполное улавливание вещества, переносимого ионным пучком. Накопленное вещество извлекается из приёмника хим. методами. Коэф. улавливания и извлечения вещества ~50-80%. Т. о., коэф. использования вещества в 1 цикле И. р. от 10 до 40%. Электромагн. методом осуществляется разделение как стабильных, так и радиоактивных изотопов. Для разделения тяжёлых элементов иногда применяются установки с меньшей производительностью, но с повышенной дисперсией, в к-рых коэф. разделения а достигает 1000. В одной из таких установок с поворотом пучка на 225° в магн. поле d= 20 мм на 1% относит. разности масс и e=1000 для U и Рu при I=10 мА. Существует двухкаскадный масс-сепаратор, в к-ром фокус пучка ионов изотопа в конце первого каскада служит источником пучка для 2-го каскада; полный угол отклонения пучка ~250°; для 235 U e=1400. Существуют калютроны с уменьшенной производительностью (на ~50%), по с увеличенной (в 1,5 раза) дисперсией, с углом поворота пучка на 255°. Для разделения стабильных изотопов применяются также малые установки с углом поворота пучка 60° и 90°. В случае короткоживущих изотопов ( T 1/2 /W Если при этом на смесь ионов действует переменное электрич. поле с частотой w, то энергию поглощают ионы, находящиеся в с полем: W=w. При этом r H возрастает, что позволяет отделить эти ионы от других (см. Циклотронный резонанс ). Для реализации метода требуется протяжённый столб плазмы диаметром 2r Hмакс. Для И. p. U при H=1 Тл и kT=10 эВ приемлема плотность плазмы n~10 12 -10 13 ионов.см -3 . Для И. р. К при n=10 10 -10 11 ионов.см -3 при обогащении 41 К a=10 .
Плазменное разделение . Используется вращение плазмы под действием силы Лоренца или магн. сжатие плазмы бегущей высокочастотной волной. В плазменной центрифуге могут быть получены высокие центробежные ускорения (до 10 8 м/с 2), но при очень высокой темп-ре (напр., 50 000 К). Для изотопов Кr, Аr, Ne, U a@1,1-1,3.
Оптические методы . Основаны на изотопич. сдвиге спектральных линий поглощения электромагн. излучения. Если длина волны К падающего на изотопную смесь атомов или молекул монохроматич. света совпадает с линией поглощения одного из изотопов, то свет поглощают только атомы этого изотопа, переходя в возбуждённое состояние.

Рис. 5. Принцип лазерного И. р. с использованием молекул: 1 - основное состояние молекул; 2- колебательные уравнения; 3 - электронные уровни; 4 - одноступенчатый фотолиз; 5, 6 - двухступенчатый фотолиз; 7 - многофотонная диссоциация; 8, 9 - разделение изотопов происходит в результате химической реакции.

Возбуждённые атомы отделяют от невозбуждённых фотохим. и физ.. методами (фотоионизация, фотолиз). Ввиду избирательности поглощения значение а может быть высоким. Достигнутая в первичном акте селективность на практике может ухудшаться из-за обмена энергией возбуждения или зарядами при столкновении с др. изотопом, вторичных хим. реакций и др. Первые опыты К. Цубера (К. Zuber, 1935, фотохим. окисление) дали для обогащения 200 Hg и 202 Hg a@4. Для оптич. И. р. используются лазеры. Лазерное излучение можно применять для селективного возбуждения электронных уровней атомов или колебат. уровней молекул (рис. 5). Если электронный уровень выше порога диссоциации, для распада молекулы достаточно одного фотона (одноступенчатый фотолиз); пример - обогащение D и 13 С при фотолизе формальдегида. При возбуждении на уровень (электронный или колебательный) ниже порога диссоциации необходим второй фотон с l, достаточной для диссоциации (двухступенчатый фотолиз); примеры: обогащение 14 N, 15 N и 10 В, 11 В, при фотолизе NH 3 и ВС1 3 под действием ИК-излучения СO 2 -лазера и прошедшего через оптич. фильтр УФ-излучения искры или лампы-вспышки; фотолиз UF 6 с помощью ИК-излучения (l=16 мкм) и УФ-лазеров . Для многоатомных молекул возможна многофотонная диссоциация под действием только ИК-излучения; примеры: обогащение изотопами при воздействии излучения СO 2 -лаэера на SF 6 (32 S, 34 S), CF 3 (13 C, 12 C), BC1 3 (10 B, 11 B), SiF 4 (28 Si, 29 Si, 30 Si), CC1 4 (13 C, 35 C1, 37 C1) и др. При возбуждении на электронный или колебат. уровень выше порога хим. реакции возможно ускорение реакции; примеры: обогащение 14 N, 15 N в реакции N 2 +O 2 и 10 В, 11 В в реакции BC1 3 +H 2 S. Для И. р. с использованием ат. паров металла необходимы лазер на красителях и УФ-лазер. Первый (излучающий обычно в видимой части спектра) производит селективное возбуждение одного изотопа, второй - ионизацию возбуждённых атомов.

Рис. 6. Схема лазерного обогащения 235 U фотоионизацией: 1 - излучение возбуждающего лазера; 2 - излучение ионизирующего лазера; 3 - поток атомных паров; 4-коллектор ионов; 5 - конденсатор пара.

Полученные ионы отклоняются электромагн. полем к коллектору. Нейтральные пары собирают на др. коллекторе. Процесс лазерной фотоионизации атомов применён для изучения И. p. Rb, Li, Ca, Nd, Sm, Eu, Cd, Dy, Er, Yb, U. Достоинства лазерного И. р.: универсальность, возможность воздействия только на 1 изотоп (в США есть программа разработки лазерной технологии обогащения природного урана методом фотоионизации паров 235 U (рис. 6). Лит.: Импульсные СО 2 -лазеры и их применение для разделения изотопов, М., 1983; Басов Н. Г. и др., Новые методы разделения изотопов, "УФН", 1977, т. 121, с. 427; Карлов Н. В. и др., Селективная фотоионизация атомов и ее применение для разделения изотопов и спектроскопии, "УФН", 1979, т. 127, с. 593. А. А. Сазыкин .

О запуске первого советского спутника 4 октября 1957 года с ликованием узнал весь мир. А событие, произошедшее 4 ноября того же года в Верх-Нейвинске, долго оставалось тайной для самых лучших разведок мира. Там был пущен опытный завод, на котором обогащать уран стали методом центрифужного разделения изотопов.

Александр Емельяненков

На заре создания ядерных вооружений одной из основных ключевых проблем стало разделение изотопов урана. Этот тяжелый радиоактивный металл встречается в природе в виде смеси двух основных изотопов. Основную долю (чуть меньше 99,3%) составляет уран-238. Содержание более легкого изотопа — урана-235 — составляет всего 0,7%, но именно он необходим для создания ядерного оружия и работы реакторов.

Разделить изотопы совсем не просто. Их химические свойства идентичны (в конце концов, это один и тот же химический элемент), а разница в атомной массе составляет чуть более 1%, так что физические методы для разделения должны иметь очень высокую избирательность. Этот вопрос в 1950-х стал одним из решающих моментов, которые определили успех советской ядерной отрасли и заложили основу для современной конкурентоспособности российской ядерной промышленности на мировом рынке.


Сквозь сито

Самым простым методом разделения является газовая диффузия — «продавливание» газообразного сырья (гексафторид урана) сквозь мелкопористую мембрану, при этом различные изотопы диффундируют сквозь поры с различной скоростью. Именно газовая диффузия стала первым методом, который использовался для получения промышленных количеств урана-235 на первых обогатительных комбинатах. В США разработки в области газовой диффузии для Манхэттенского проекта велись под началом лауреата Нобелевской премии Гарольда Юри. В СССР до 1954 года этим направлением руководил академик Борис Константинов, потом его сменил Исаак Кикоин.

Поначалу, как это нередко бывает, метод газовой диффузии казался доступнее в реализации. Но он требовал огромных затрат электроэнергии — Саяно-Шушенская ГЭС и первая очередь Белоярской атомной, как теперь выясняется, строились прежде всего для этих целей. Кроме общей дороговизны и низкого КПД, метод газовой диффузии был небезопасен для работающих — главным образом из-за высоких температур и шума в цехах. Плюс большие объемы химически активных смесей под давлением, а это потенциальные выбросы и загрязнение окружающей среды. Между тем альтернатива газодиффузионному методу была известна с конца XIX века — это центрифужный метод, сулящий весьма значительную экономию: когда в 1958 году завод в Верх-Нейвинске вышел на расчетный режим, оказалось, что энергопотребление на единицу разделения в 20 (!) раз меньше диффузионного метода, а себестоимость — вдвое меньше. Правда, на пути создания центрифуг конструкторов поджидали многочисленные технологические сложности.


Электромагнитное разделение. Основано на движении заряженных частиц (ионов) в магнитном поле. В зависимости от массы частиц кривизна их траектории при этом различна, и даже небольшая разница в атомной массе ядер изотопов урана дает возможность их разделения. Такие установки, называемые калютронами, использовались в американском Манхэттенском проекте, поскольку позволяли получить очень высокую степень обогащения урана за считанные проходы. Однако калютроны очень громоздки, дороги в обслуживании, потребляют много энергии и имеют низкую производительность, так что сейчас для промышленного обогащения урана не используются.

Немецкие корни

Истоки советской технологии центрифуг берут свое начало в нацистской Германии, где в рамках атомного проекта велись эксперименты по разделению урана. Один из участников этого проекта, инженер-физик Геронт Циппе, оказался среди других немецких военнопленных, отправленных в СССР. Под началом Макса Штеенбека, своего соотечественника и тестя, Циппе до 1954 года занимался экспериментальными исследованиями — сначала в Лаборатории «А» в Сухуми (будущий Сухумский физико-технический институт), а последние два года — в особом конструкторском бюро на Кировском заводе в Ленинграде.

Как свидетельствуют участники и очевидцы тех событий, немецкие ученые не знали отказа в материалах для исследований. И режим у них был почти такой же, как у наших секретных атомщиков, которых столь же плотно опекало ведомство Берии. В июле 1952 года специальным постановлением правительства Штеенбека и его помощников перевели из Сухумского института в Ленинград, в ОКБ Кировского завода. Да еще усилили группу выпускниками политехнического института с профильной кафедры ядерных исследований. Была поставлена задача изготовить и испытать два агрегата по схеме Циппе-Штеенбека. За дело взялись горячо, однако уже в первом квартале 1953-го работу прекратили, не доводя до испытаний: стало ясно, что предложенная конструкция не годится для серийного производства.


Газовая диффузия. Использует разницу в скоростях движения молекул газа, содержащего различные изотопы урана (гексафторид урана). Различная масса обуславливает различную скорость молекул, так что легкие проходят мембрану с тонкими порами (по диаметру сравнимыми с размерами молекул) быстрее тяжелых. Метод прост в реализации и использовался на заре атомной отрасли в СССР, в США используется до настоящего времени. Степень обогащения каждой ступени очень мала, так что необходимы тысячи ступеней. Это приводит к огромному потреблению энергии и высокой стоимости разделения.

Центрифуга Циппе была не первой советской машиной подобного назначения. Еще во время войны в Уфе другой немец, Фриц Ланге, бежавший из Германии в 1936 году, изготовил громоздкий аппарат на подшипнике. Однако специалисты, знакомые с перипетиями атомного проекта в СССР и США, отмечают одно безусловное достижение группы Штеенбека — оригинальную конструкцию опорного узла: ротор опирался на стальную иглу, а эта игла — на подпятник из сверхтвердого сплава в масляной ванне. И вся эта хитроумная конструкция удерживалась специальной магнитной подвеской в верхней части ротора. Его раскрутка до рабочей скорости также производилась посредством магнитного поля.


В то время как проект группы Штеенбека потерпел фиаско, в феврале того же 1953 года была выведена на рабочие обороты газовая центрифуга с жестким ротором конструкции советского инженера Виктора Сергеева. За год до этого Сергеев с группой специалистов из особого КБ Кировского завода, где он тогда работал, был командирован в Сухуми для ознакомления с экспериментами Штеенбека и его команды. «Именно тогда он задал Штеенбеку технический вопрос о расположении отборников газа в виде трубок Пито, — приоткрыл важные подробности ветеран центрифужного производства ПО «Точмаш» Олег Чернов, хорошо знавший Сергеева и работавший вместе с ним. — Вопрос был сугубо техническим и содержал, по сути, подсказку, как сделать конструкцию центрифуги работоспособной». Но доктор Штеенбек проявил категоричность: «Они станут тормозить поток, вызывать турбулентность, и никакого разделения не будет!» Спустя годы, работая над мемуарами, он об этом пожалеет: «Идея, достойная того, чтобы исходить от нас! Но мне она в голову не приходила…»


Газовое центрифугирование с помощью быстро вращающегося ротора закручивает поток газа таким образом, что молекулы, содержащие более тяжелые изотопы урана, центробежная сила отбрасывает к внешним краям, а более легкие — ближе к оси цилиндра. Центрифуги объединяют в каскады, подавая с выхода каждой ступени частично обогащенный материал на вход следующей ступени — так удается получать уран даже очень высокой степени обогащения. Центрифуги просты в обслуживании, надежны и характеризуются умеренным энергопотреблением. Метод используется в России и странах Европы.

По словам Олега Чернова, Циппе перед отъездом в Германию имел возможность ознакомиться с опытным образцом центрифуги Сергеева и гениально простым принципом ее работы. Оказавшись на Западе, «хитрый Циппе», как его нередко называли, запатентовал конструкцию центрифуги в 13 странах. Первые лица в советском атомном ведомстве, узнав о таком интеллектуальном коварстве, шум поднимать не стали — если следовать официальной версии, «чтобы не вызывать подозрений и повышенного интереса к этой теме у военно-технической разведки США». Пусть, мол, думают, что Советы довольствуются неэкономичным, как и у них, газодиффузионным методом… В 1957 году, переехав в США, Циппе построил там работающую установку, воспроизведя по памяти опытный образец Сергеева. И назвал ее, следует отдать должное, «Русской центрифугой». Однако увлечь американцев он не сумел. В отношении новой машины, как в свое время и по конструкции Штеенбека, был вынесен вердикт: для промышленного использования непригодна.


Степень обогащения одной газовой центрифуги невелика, поэтому их объединяют в последовательные каскады, в которых обогащенное сырье с выхода каждой центрифуги подается на вход следующей, а обедненное — на вход одной из предыдущих. При достаточном количестве центрифуг в каскаде можно получить очень высокую степень обогащения.

Правда, четверть века спустя в США все-таки решили перейти с газовой диффузии на центрифуги. Первая попытка не удалась — в 1985 году, когда были установлены первые 1300 машин, разработанные в Оук-Риджской национальной лаборатории, правительство США закрыло программу. В 1999 году на расконсервированной площадке в Пайктоне (штат Огайо) вновь начались работы по установке американских центрифуг нового поколения (в 10−15 раз больше российских по высоте и в два-три раза по диаметру) с ротором из углеродных волокон. По плану смонтировать 96 каскадов по 120 «волчков» предполагалось еще в 2005 году, но и к концу 2012 года проект все еще не запущен в коммерческую эксплуатацию.


Лазерное разделение изотопов урана основано на том, что молекулы, содержащие различные изотопы, имеют немного различные энергии возбуждения. Облучив смесь изотопов лазерным лучом строго определенной длины волны, можно ионизовать только молекулы с нужным изотопом, после чего разделить изотопы с помощью магнитного поля. Существует несколько разновидностей этого метода — воздействующие на атомный пар AVLIS (Atomic Vapor Laser Isotope Separation), SILVA (французский аналог AVLIS), и на молекулы — MLIS (Molecular Laser IsotopeSeparation), CRISLA (Chemical Reaction Isotope Separation) и SILEX (Separation of Isotopes by Laser EXcitation). В настоящее время корпорация General Electric пытается коммерциализировать технологию SILEX, разработанную специалистами из ЮАР и Австралии. Лазерная сепарация имеет низкое энергопотребление, низкую стоимость и высокую степень обогащения (поэтому она используется сейчас для получения малых количеств сверхчистых изотопов), однако пока существуют проблемы с производительностью, со сроком службы лазеров и отбором обогащенного материала без остановки процесса.

Секретные иголки

А тем временем в СССР, в малоприметном местечке Верх-Нейвинск на Среднем Урале, в обстановке строжайшей секретности монтировалась первая опытная линия разделительных газовых центрифуг. Исаак Кикоин еще в 1942 году сталкивался с газовой центрифугой конструкции Ланге и даже испытывал ее в своей лаборатории в Свердловске. Тогда эксперименты желаемых результатов не дали, и академик скептически относился к самой возможности создания промышленных газовых центрифуг. Главной бедой самых первых установок была их недолговечность. И хотя вращались они поначалу со скоростью «всего» 10000 оборотов в минуту, совладать с огромной кинетической энергией ротора было далеко не просто.

— Машины-то ваши разрушаются! — язвительно упрекнул разработчиков на одном из совещаний в Минсредмаше начальник главка Александр Зверев, имевший звание генерала НКВД.

— А вы что хотели? Чтобы они еще и размножались?! — дерзко парировал руководивший в то время проектом заместитель главного конструктора Анатолий Сафронов.


При центрифужном методе разделения за счет высокой скорости вращения создается центробежная сила, превышающая силу тяготения Земли в сотни тысяч раз. За счет этого более тяжелые молекулы гексафторида урана-238 «сбиваются» на периферии вращающегося цилиндра, а более легкие молекулы гексафторида урана-235 концентрируются возле оси ротора. Через раздельные выводные трубопроводы (типа трубок Пито, о которых говорил советский инженер Сергеев немцу Штеенбеку) газ, содержащий изотопы U-238, выводится «в отвал», а обогащенная фракция с возросшим содержанием урана-235 перетекает в следующую центрифугу. Каскад таких центрифуг, содержащий сотни и тысячи машин, позволяет быстро увеличивать содержание легкого изотопа. Условно говоря, их можно назвать сепараторами, на которых превращенное в газ урановое сырье (гексафторид урана, UF6) с низким содержанием изотопа U-235 последовательно переводят из консистенции парного молока в сливки и сметану. А при необходимости могут и «масло» сбить — довести обогащение до 45%, а то и 60%, чтобы использовать в качестве топлива в реакторах подводных лодок и на исследовательских установках. А еще недавно, когда это требовалось в большом количестве, крутили центрифуги до тех пор, пока не получали на выходе дорогущий «сыр» — оружейный уран с обогащением более 90%. Но к концу 1980-х на четырех советских комбинатах «насепарировали» столько оружейного урана, что его запасы на складах и в готовых ядерных зарядах были признаны избыточными, и производство высокообогащенного урана для военных целей было прекращено.

По первоначальным расчетам, толщина наружных стенок корпуса центрифуги должна была быть 70 мм — как танковая броня. Попробуй такую махину раскрути… Но методом проб и ошибок нашли-таки компромиссное решение. Был создан специальный сплав — прочнее и легче стали. Корпуса современных центрифуг, которые одному из авторов довелось увидеть и подержать в руках на ПО «Точмаш» во Владимире, никаких ассоциаций с танковой броней не вызывают: обычные с виду пустотелые цилиндры с отшлифованной до блеска внутренней поверхностью. Издали их можно принять за обрезки труб с соединительными фланцами на концах. Длина — не больше метра, в диаметре — сантиметров двадцать. А на Уральском электрохимическом комбинате из них собраны гигантские каскады длиною в сотни метров. Знаки на стенах и специальная разметка на окрашенном бетонном полу в технологических проходах указывают, что здесь принято перемещаться на велосипеде. Правда, не быстрее 5−10 км/ч.


А внутри гудящих едва слышно центрифуг совсем другие скорости — ротор на игле с корундовым подпятником, «подвешенный» в магнитном поле, делает 1500 оборотов в секунду! В сравнении с первым изделием ВТ-3Ф 1960 года выпуска его разогнали почти в десять раз, а срок безостановочной работы увеличили с трех лет до 30. Наверное, трудно найти другой пример, когда бы техника демонстрировала такую надежность при столь экстремальных параметрах. Как рассказал заместитель начальника центрифужного производства Валерий Лемперт, на комбинате в Новоуральске еще работают машины, которые «Точмаш» поставил туда 30 лет назад: «Это было, наверное, третье поколение центрифуг, а сейчас серийно производится восьмое и запускается в опытное производство девятое».

«В конструкции нашей центрифуги ничего сверхсложного нет. Все дело в отработке технологии до мельчайших деталей и строгом контроле качества, — объясняет Татьяна Сорокина, которая десятки лет «вела» на заводе технологию изготовления опорной иглы для ротора. — Такие иглы делают из обычной рояльной проволоки, из которой тянут струны. А вот способ закалки наконечника — это наше ноу-хау».

Свое объяснение секретам российской центрифуги дал на склоне лет и один из главных ее создателей — Виктор Сергеев. По свидетельству инженера Олега Чернова, на вопрос спецслужб, а что же нужно охранять в этом изделии и в чем его главный секрет, конструктор ответил лаконично: «Люди».

Разделение изотопов

Разделение изотопов - технологический процесс, в котором из материала, состоящего из смеси различных изотопов одного химического элемента , выделяются отдельные изотопы этого элемента. Основное применение процесса разделения изотопов - производство ядерного топлива, оружейных радиоактивных материалов, и прочие применения, связанные с использованием радиоактивных веществ. В таких случаях разделение обычно преследует цель обогащения или обеднения материала определёнными радиоактивными изотопами.

Общие принципы

Разделение изотопов (например извлечение , 235 U , ) всегда сопряжено со значительными трудностями, ибо изотопы , представляющие собой мало отличающиеся по массе вариации одного элемента , химически ведут себя практически одинаково. Но - скорость прохождения некоторых реакций отличается в зависимости от изотопа элемента, кроме того, можно использовать различие в их физических свойствах - например в массе .

Как бы то ни было, различия в поведении изотопов настолько малы, что за одну стадию разделения, вещество обогащается на сотые доли процента и повторять процесс разделения приходится снова и снова - огромное количество раз.

На производительность подобной каскадной системы влияют две причины: степень обогащения на каждой из ступеней и потери искомого изотопа в отходном потоке.

Поясним второй фактор. На каждой из стадий обогащения поток разделяется на две части - обогащённую и обеднённую нужным изотопом. Поскольку степень обогащения чрезвычайно низка, суммарная масса изотопа в отработанной породе может легко превысить его массу в обогащённой части. Для исключения такой потери ценного сырья обеднённый поток каждой последующей ступени попадает снова на вход предыдущей.

Исходный материал не поступает на первую стадию каскада. Он вводится в систему сразу на некоторую, n-ю ступень. Благодаря этому с первой ступени выводится в утиль сильно обеднённый по основному изотопу материал.

Основные используемые методы разделения изотопов

  • Электромагнитное разделение
  • Газовая диффузия
  • Жидкостная термодиффузия
  • Газовое центрифугирование
  • Аэродинамическая сепарация
  • Лазерное разделение изотопов
  • Химическое обогащение
  • Фотохимическое разделение

В любом случае, количество произведённого обогащённого материала зависит от желаемой степени обогащения и обеднения выходных потоков. Если исходное вещество имеется в большом количестве и дёшево, то производительность каскада можно увеличить за счёт отбрасывания вместе с отходами и большого количества неизвлёченного полезного элемента (пример - производство дейтерия из обычной воды). При необходимости достигается большая степень извлечения изотопа из материала-сырца (например, при обогащении урана или плутония).

Электромагнитное разделение

Метод электромагнитного разделения основан на различном действии магнитного поля на одинаково электрически заряженные частицы различной массы. По сути дела такие установки, называемые калютронами, являются огромными масс-спектрометрами . Ионы разделяемых веществ, двигаясь в сильном магнитном поле, закручиваются с радиусами, пропорциональными их массам и попадают в приёмники, где и накапливаются.

Этот метод позволяет разделять любые комбинации изотопов, обладает очень высокой степенью разделения. Обычно достаточно двух проходов для получения степени обогащения выше 80 % из бедного вещества (с исходным содержанием желаемого изотопа менее 1 %). Однако электромагнитное разделение плохо приспособлено для промышленного производства: большая часть веществ осаждается внутри калютрона, так что его приходится периодически останавливать на обслуживание. Остальные недостатки - большое энергопотребление, сложность и дороговизна технического обслуживания, низкая производительность. Основная сфера применения метода - получение небольших количеств чистых изотопов для лабораторного применения. Тем не менее, во время второй мировой войны была построена установка Y-12 , вышедшая с января 1945 на мощность 204 грамма 80 % U-235 в день.

Газовая диффузия

Этот метод использует различие в скоростях движения различных по массе молекул газа. Понятно, что он будет подходить только для веществ, находящихся в газообразном состоянии.

При различных скоростях движения молекул, если заставить их двигаться через тонкую трубочку, более быстрые и лёгкие из них обгонят более тяжёлые. Для этого трубка должна быть настолько тонка, чтобы молекулы двигались по ней поодиночке. Таким образом, ключевой момент здесь - изготовление пористых мембран для разделения. Они должны не допускать утечек, выдерживать избыточное давление.

Для некоторых лёгких элементов степень разделения может быть достаточно велика, но для урана - только 1.00429 (выходной поток каждой ступени обогащается в 1.00429 раза). Поэтому газодиффузионные обогатительные предприятия - циклопические по размерам, состоящие из тысяч ступеней обогащения.

Жидкостная термодиффузия

В этом случае опять же, используется различие в скоростях движения молекул. Более лёгкие из них при существовании разницы температуры имеют свойство оказываться в более нагретой области. Коэффициент разделения зависит от отношения разницы массы изотопов к общей массе и больший для лёгких элементов. Несмотря на свою простоту, в этом методе требуются большие энергозатраты для создания и поддержания нагрева. Поэтому широко не применяется.

Газовое центрифугирование

Впервые эта технология была разработана в Германии, во время второй мировой, но промышленно нигде не применялась до начала 50-х. Если газообразную смесь изотопов пропускать через высокоскоростные газовые центрифуги , то центробежная сила разделит более лёгкие или тяжёлые частицы на слои, где их и можно будет собрать. Большое преимущество центрифугирования состоит в зависимости коэффициента разделения от абсолютной разницы в массе, а не от отношения масс. Центрифуга одинаково хорошо работает и с лёгкими, и с тяжёлыми элементами. Степень разделения пропорциональна квадрату отношения скорости вращения к скорости молекул в газе. Отсюда очень желательно как можно быстрее раскрутить центрифугу. Типичные линейные скорости вращающихся роторов - 250-350 м/с, и более 600 м/с в усовершенствованных центрифугах.

Типичный коэффициент сепарации - 1.01 - 1.1. По сравнению с газодиффузионными установками этот метод имеет уменьшенное энергопотребление, большую лёгкость в наращивании мощности. В настоящее время газовое центрифугирование - основной промышленный метод разделения изотопов в России.

Аэродинамическая сепарация

Этот способ можно рассматривать как вариант центрифугирования, но вместо закручивания газа в центрифуге, он завихряется при выходе из специальной форсунки, куда подаётся под давлением. Эта технология, основанная на вихревом эффекте , использовалась ЮАР и Германией.

Лазерное разделение изотопов (ЛРИ)

Различные изотопы поглощают свет с немного различной длиной волны. При помощи точно настроенного лазера можно избирательно ионизировать атомы какого-то определённого изотопа. Получившиеся ионы можно легко отделить, допустим, магнитным полем. Такая технология имеет чрезвычайную эффективность и применялась в ЮАР (MLIS), КНР (CRISLA), США (AVLIS) и Франции (SILVA). Технология имеет большой недостаток, а именно трудность в перестройке аппаратуры с одного изотопа на другой. На смену AVLIS пришла SILEX (Separation of Isotopes by Laser EXcitation) разработки "General Electric" и "Hitachi". Начато строительство завода в Уилмингтоне , штат Северная Каролина .

Химическое обогащение

Химическое обогащение использует разницу в скорости протекания химических реакций с различными изотопами. Лучше всего оно работает при разделении лёгких элементов, где разница значительна. В промышленном производстве применяются реакции, идущие с двумя реактивами, находящимися в различных фазах (газ/жидкость, жидкость/твёрдое вещество, несмешивающиеся жидкости). Это позволяет легко разделять обогащённый и обеднённый потоки. Используя дополнительно разницу температур между фазами, достигается дополнительный рост коэффициента разделения. На сегодня химическое разделение - самая энергосберегающая технология получения тяжёлой воды. Кроме производства дейтерия, оно применяется для извлечения 6 Li. Во Франции и Японии разрабатывались методы химического обогащения урана, так и не дошедшие до промышленного освоения.

Дистилляция


Wikimedia Foundation . 2010 .

Смотреть что такое "Разделение изотопов" в других словарях:

    разделение изотопов - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN isotope separationisotope fractionation …

    разделение изотопов - izotopų atskyrimas statusas T sritis radioelektronika atitikmenys: angl. isotope separation vok. Isotopentrennung, f rus. разделение изотопов, n pranc. séparation d isotopes, f … Radioelektronikos terminų žodynas

    Обусловлено различиями физико хим. свойств, связанными с их массой и определяющими разные скорости их диффузии, испарения и т. д. Термодинамические особенности изотопов и их соединений несколько различаются, чем объясняется их несколько отличное… … Геологическая энциклопедия

    разделение изотопов в высокоградиентном магнитном поле - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN high gradient magnetic isotope separation … Справочник технического переводчика

    разделение изотопов в оперативном режиме - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN isotope separation on lineISOL … Справочник технического переводчика

    разделение изотопов выпариванием с помощью лазеров - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN atomic vapor laser isotope separationAVLIS … Справочник технического переводчика

    разделение изотопов методом химического обмена - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN CHEMEX (chemical exchange) process … Справочник технического переводчика

    разделение изотопов на молекулярном уровне с помощью лазеров - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN molecular laser isotope separationMLIS … Справочник технического переводчика

    Разделение изотопов, основанное на изотопич. сдвиге уровней энергии атомов и молекул и использовании резонансного воздействия лазерного излучения. Интенсивное монохроматическое излучение лазера, вызывая переходы между соответствующими энергетич.… … Физическая энциклопедия