Метровый телескоп. Большие оптические телескопы будущего

Большой телескоп азимутальный (БТА) Специальной астрофизической обсерватории (САО) Российской академии наук вновь ведет наблюдения за небесными объектами. В 2018 году обсерватория заменила главный элемент телескопа - зеркало диаметром 6 м, но оно оказалось непригодным для полноценной работы. На телескоп вернули зеркало 1979 года выпуска.


Лучше поменьше


БТА, расположенный в поселке Нижний Архыз в горах Карачаево-Черкесии,- один из крупнейших в мире. Телескоп был запущен в 1975 году.

В 1960–1970 годах для БТА на подмосковном Лыткаринском заводе оптического стекла (ЛЗОС) было изготовлено два зеркала. Стеклянные заготовки толщиной около 1 м и весом около 70 тонн сначала остывали в течение двух лет, а затем их еще семь лет полировали алмазным порошком. Первое зеркало проработало на телескопе четыре года. В 1979 году из-за несовершенства поверхности его заменили.

В 1990-е годы ученые подняли вопрос о новой замене зеркала. К тому моменту оно уже неоднократно прошло процедуры переалюминирования: примерно раз в пять лет с зеркала кислотами смывался отражающий слой алюминия, а затем наносилось новое покрытие. Каждая такая процедура ухудшала на микроуровне поверхность зеркала. Это сказывалось на качестве наблюдений.

В начале 2000-х годов РАН вплотную занялась этим вопросом. Были предложены два варианта: переполировка первого зеркала БТА и радикальное обновление телескопа с заменой 6-метрового зеркала на 8-метровое.

В 2004 году можно было купить в Германии болванку зеркала такого размера, изготовленную для комплекса Very Large Telescope (VLT, Очень большой телескоп) и не понадобившуюся ему. 8-метровое зеркало обеспечило бы новый уровень зоркости и вернуло бы российский телескоп в десятку крупнейших в мире.

Однако у этого варианта были и недостатки: высокая стоимость и высокие риски. Покупка заготовки обошлась бы в €6–8 млн, примерно столько же стоила бы полировка – ее нужно было делать в Германии, потому что в России нет оборудования для зеркал такого диаметра. Потребовалось бы переделывать верхнюю часть конструкции телескопа и перенастраивать под новую светосилу все научное оборудование.

«При введении в строй 8-метрового зеркала фактически нетронутым остался бы только купол телескопа,- объяснил “Ъ” замдиректора САО Дмитрий Кудрявцев.- А теперь представим себе все это в российских реалиях с перебоями финансирования научных проектов. Мы легко могли бы оказаться в ситуации, когда телескоп разобран буквально на куски, деньги не приходят, и мы на неопределенное время вообще лишаемся доступа к наблюдениям».

Получилось, как прежде


Считать, во сколько обойдется переделка конструкции телескопа, даже не стали. «Было очевидно, что таких денег РАН не найдет»,- рассказал “Ъ” директор САО Валерий Власюк. В 2004 году академия приняла решение о реставрации первого зеркала БТА, хранившегося в специальном контейнере с 1979 года.

Фото: Кристина Кормилицына, Коммерсантъ

Задачу вновь поручили ЛЗОС, который теперь входит в холдинг «Швабе» госкорпорации «Ростех». Для устранения «врожденных» дефектов с поверхности зеркала площадью 28 кв. м было срезано 8 мм стекла, из-за чего его вес уменьшился почти на тонну. Полировку планировали провести за три года, но из-за перебоев с финансированием она растянулась на 10 лет.

«Рост цены объясняется в основном финансовыми кризисами, произошедшими между 2004 и 2018 годами, и последовавшей инфляцией,- объясняет замначальника научно-производственного комплекса ЛЗОС Владимир Патрикеев.- Например, если в 2007 году мы привезли зеркало с Кавказа в Подмосковье за 3,5 млн руб., то в 2018 году везли назад уже за 11 млн руб.».


Отреставрированное зеркало приехало в Нижний Архыз в феврале 2018 года. о транспортировке особо хрупкого груза весом 42 т, занявшей восемь дней.

Перед отправкой в обсерваторию отреставрированное зеркало прошло сертификацию на ЛЗОС. Однако после его установки в штатную оправу БТА были обнаружены существенные отклонения от характеристик, указанных в техническом задании.

Парабола пустила процесс по кругу


«Качество поверхности зеркала оценивается несколькими параметрами, основные из которых - шероховатость и соответствие параболической форме,- говорит господин Кудрявцев.- ЛЗОС блестяще справился со снижением шероховатости поверхности зеркала. Если у второго зеркала БТА она составляет 20 нанометров, то у отреставрированного всего один нанометр. А вот с формой зеркала возникли проблемы».

Исходя из технического задания, среднеквадратичное отклонение от идеального параболоида должно было составлять не более 95 нанометров. В реальности этот параметр оказался на уровне 1 микрона, что в десять раз хуже требуемого значения.

Проблемы с отреставрированным зеркалом стали понятны практически сразу после его установки летом 2018 года. Уже тогда было решено вернуть только что замененное второе зеркало. Но коллектив обсерватории был вымотан предыдущей заменой, к тому же проводить эту многомесячную процедуру можно только в теплое время года.

БТА запустили в эксплуатацию с некачественным зеркалом, по возможности откорректировав имеющиеся недостатки с помощью механических систем. Из-за нестабильной и в целом плохой фокусировки на нем невозможно было вести фотометрические наблюдения. Другие научные программы на БТА выполнялись, но с потерей эффективности.

Возвращение прежнего зеркала начали 3 июня 2019 года. В сентябре велись тестовые наблюдения и окончательная настройка телескопа. С октября БТА вернулся к полноценной работе. На операцию потратили 5 млн руб.

« Мы довольны тем, как прошло возвращение старого зеркала. Оно прекрасно встало в оправу, качество изображений на лучшем уровне. Пока будем работать так»,- заверил “Ъ” директор САО РАН.

Кто виноват и что делать


Совместная комиссия САО РАН, ЛЗОС и НПО ОПТИКА признала отреставрированное зеркало не соответствующим техническому заданию и нуждающимся в доработке. Формальная причина - отсутствие на заводе стационарной оправы и ошибки компьютерного моделирования.

В советское время первое зеркало полировалось в настоящей оправе телескопа, которая затем была перевезена с ЛЗОС на Кавказ и установлена на БТА. Для полировки второго зеркала на заводе был создан прототип оправы - ее упрощенная дешевая копия.

Когда в 2004 году РАН приняла решение реставрировать первое зеркало, проект предполагал создание новой имитации оправы. Старая в 2007 году была утилизирована.

И тут возникли проблемы с финансированием - на создание копии оправы БТА денег не оказалось. Тогда специалисты решили, что в ХХI веке возможна полировка зеркала не в жесткой оправе, а с помощью компьютерного моделирования.

При выполнении контрольных замеров зеркало поддерживалось стальной лентой. Происходящая при этом деформация стекла моделировалась, проверялась экспериментально и учитывалась при корректировке работы полировального станка. Однако неоднородность стекла оказалась гораздо выше расчетной. В штатной оправе отреставрированное зеркало показало отклонение от заданной формы на порядок хуже ожидаемого.

Комиссия признала, что первое зеркало необходимо дополировать в имитации оправы БТА. Пока оно хранится в Нижнем Архызе. Сколько будет стоить повторение процесса и будет ли он проведен вновь, пока неизвестно. По словам представителя завода Владимира Патрикеева, решение о восстановлении на ЛЗОС копии оправы не принято.

В потраченные 250 млн руб. входила не только переполировка зеркала, уточняет директор обсерватории Валерий Власюк. Комплекс работ включал также транспортировку зеркала для реставрации и обратно на БТА, модернизацию полировального станка и системы термоконтроля помещения на ЛЗОС, ремонт крана БТА, с помощью которого переставляются зеркала, обновление технических помещений телескопа и создание с нуля системы охлаждения зеркала.

«Все эти улучшения остались с нами и снизят стоимость дальнейших работ,- говорит господин Власюк.- Но пока у государства нет денег на продолжение работ по зеркалу. В начале нулевых САО РАН писала письма всем сильным мира сего, всем олигархам с просьбой помочь обновить БТА. И сейчас мы тоже готовы просить помощи у читателей “Ъ”, чтобы все-таки получить зеркало с улучшенными характеристиками».

Юлия Бычкова, Нижний Архыз

Первый телескоп был построен в 1609 году итальянским астрономом Галилео Галилеем . Ученый, основываясь на слухах об изобретении голландцами зрительной трубы, разгадал ее устройство и изготовил образец, который впервые использовал для космических наблюдений. Первый телескоп Галилея имел скромные размеры (длина трубы 1245 мм, диаметр объектива 53 мм, окуляр 25 диоптрий), несовершенную оптическую схему и 30-кратное увеличение.Но позволил сделать целую серию замечательных открытий: обнаружить четыре спутника планеты Юпитер , фазы Венеры , пятна на Солнце, горы на поверхности Луны, наличие у диска Сатурна придатков в двух противоположных точках.

Прошло более четырехсот лет - на земле и даже в космосе современные телескопы помогают землянам заглянуть в далекие космические миры. Чем больше диаметр зеркала телескопа, тем мощнее оптическая установка.

Многозеркальный телескоп

Расположен на горе Маунт-Хопкинс, на высоте 2606 метров над уровнем море, в штате Аризона в США . Диаметр зеркала этого телескопа – 6,5 метров . Этот телескоп был построен еще в 1979 году. В 2000 году он был усовершенствован. Многозеркальным он называется, потому что состоит из 6 точно подогнанных сегментов, составляющих одно большое зеркало.


Телескопы Магеллана

Два телескопа, “Магеллан -1″ и “Магеллан-2″, находятся в обсерватории “Лас-Кампанас” в Чили , в горах, на высоте 2400 м, диаметр их зеркал 6,5 м у каждого . Телескопы начали работать в 2002 году.

А 23 марта 2012 года начато строительство еще одного более мощного телескопа «Магеллан» - «Гигантского Магелланова Телескопа», он должен вступить в строй в 2016-м. А пока взрывом была снесена вершина одной из гор, чтобы расчистить место для строительства. Гигантский телескоп будет состоять из семи зеркал по 8,4 метра каждое, что эквивалентно одному зеркалу диаметром 24 метра, за это его уже прозвали “Семиглаз”.


Разлученные близнецы телескопы «Джемини»

Два телескопа-брата, каждый из которых расположен в другой части света. Один – «Джемини север» стоит на вершине потухшего вулкана Мауна-Кеа на Гавайях , на высоте 4200 м. Другой – «Джемини юг», находится на горе Серра-Пачон (Чили) на высота 2700 м.

Оба телескопа идентичны, диаметры их зеркал составляют 8,1 метра , построены они в 2000 г. и принадлежат обсерватории «Джемини». Телескопы расположены на разных полушариях Земли, чтобы было доступно для наблюдения все звездное небо. Системы управления телескопами приспособлены для работы через интернет, поэтому астрономам не приходится совершать путешествия к разным полушариям Земли. Каждое из зеркал этих телескопов составлено из 42 шестиугольных фрагментов, которые были спаяны и отполированы. Эти телескопы созданы по самым совершенным технологиям, что делает обсерваторию «Джемини» одной из передовых астрономических лабораторий на сегодняшний день.


Северный "Джемини" на Гаваях

Телескоп «Субару»

Этот телескоп принадлежит Японской Национальной Астрономической Обсерватории. А расположен на Гавайях, на высоте 4139 м, по соседству с одним из телескопов «Джемини». Диаметр его зеркала – 8,2 метра . «Субару» оснащенкрупнейшим в мире «тонким» зеркалом.: его толщина – 20 см., его вес - 22,8 т. Это позволяет использовать систему приводов, каждый из которых передает свое усилие на зеркало, придавая ему идеальную поверхность в любом положении, что позволяет добиться самого лучшего качества изображения.

С помощью этого зоркого телескопа была открыта самая далекая из известных на сегодняшний день галактик, расположенная на расстояние 12,9 млрд. св. лет, 8 новых спутников Сатурна, сфотографированы протопланетные облака.

Кстати, «субару» по-японски значит «Плеяды» - название этого красивейшего звездного скопления.


Японский телескоп "Субару" на Гаваях

Телескоп Хобби-Эберли (НЕТ)

Расположен в США на горе Фолкс, на высоте 2072 м, и принадлежит обсерватории Мак-Дональд. Диаметр его зеркала около 10 м . Несмотря на внушительные размеры, Хобби-Эберли обошелся своим создателям всего в 13,5 млн. долларов. Сэкономить бюджет удалось благодаря некоторым конструктивным особенностям: зеркало у этого телескопа не параболическое, а сферическое, не цельное – состоит из 91 сегмента. К тому же зеркало находится под фиксированным углом к горизонту (55°) и может вращаться только на 360° вокруг своей оси. Все это значительно удешевляет конструкцию. Специализируется этот телескоп на спектрографии и успешно используется для поиска экзопланет и измерения скорости вращения космических объектов.


Большой южноафриканский телескоп (SALT)

Принадлежит Южно-африканской Астрономической Обсерватории и находится в ЮАР , на плато Кару , на высоте 1783 м. Размеры его зеркала 11х9,8 м . Оно крупнейшее в Южном полушарии нашей планеты. А изготовлено в России , на «Лыткаринском заводе оптического стекла». Этот телескоп стал аналогом телескопа Хобби-Эберли в США. Но был модернизирован – откорректирована сферическая аберрация зеркала и увеличено поле зрения, благодаря чему кроме работы в режиме спектрографа, этот телескоп способен получать прекрасные фотографии небесных объектов с большим разрешением.


Самый большой телескоп в мире ()

Стоит на вершине потухшего вулкана Мучачос на одном из Канарских островов, на высоте 2396 м. Диаметр главного зеркала – 10,4 м . В создании этого телескопа принимали участие Испания , Мексика и США. Между прочим, этот интернациональный проект обошелся в 176 млн. долларов США, из которых 51% заплатила Испания.

Зеркало Большого Канарского Телескопа, составленное из 36 шестиугольных частей – крупнейшее из существующих на сегодняшний день в мире. Хотя это и самый большой телескоп в мире по размеру зеркала, нельзя назвать его самым мощным по оптическим показателям, так как в мире существуют системы, превосходящие его по своей зоркости.


Расположен на горе Грэхем, на высоте 3,3 км, в штате Аризона (США). Этот телескоп ринадлежит Международной Обсерватории Маунт-Грэм и строился на деньги США, Италии и Германии . Сооружение представляет собой систему из двух зеркал диаметром по 8,4 метра, что по светочувствительности эквивалентно одному зеркалу диаметром 11,8 м . Центры двух зеркал находятся на расстоянии 14,4 метра, что делает разрешающую способность телескопа эквивалентной 22-метровому, а это почти в 10 раз больше, чем у знаменитого космического телескопа "Хаббла". Оба зеркала Большого Бинокулярного Телескопа являются частью одного оптического прибора и вместе представляют собой один огромный бинокль – самый мощный оптический прибор в мире на данный момент.


Keck I и Keck II – еще одна пара телескопов-близнецов. Располагаются по соседству с телескопом «Субару» на вершине гавайского вулкана Мауна-Кеа (высота 4139 м). Диаметр главного зеркала каждого из Кеков составляет 10 метров - каждый из них в отдельности является вторым по величине в мире телескопом после Большого Канарского. Но эта система телескопов превосходит Канарский по «зоркости». Параболические зеркала этих телескопов составлены из 36 сегментов, каждый из которых снабжен специальной опорной системой, с компьютерным управлением.


Очень Большой Телескоп расположен в пустыне Атакама в горном массиве чилийских Анд, на горе Параналь, 2635 м над уровнем моря. И принадлежит Европейской Южной Обсерватории (ESO), включающей в себя 9 европейских стран.

Система из четырех телескопов по 8,2 метра, и еще четырех вспомогательных по 1,8 метра по светосиле эквивалентна одному прибору с диаметром зеркала 16,4 метра.

Каждый из четырех телескопов может работать и отдельно, получая фотографии, на которых видны звезды до 30-й звездной величины. Все телескопы сразу работают редко, это слишком затратно. Чаще каждый из больших телескопов работает в паре со своим 1,8 метровым помощником. Каждый из вспомогательных телескопов может двигаться по рельсам относительно своего «большого брата», занимая наиболее выгодное для наблюдения данного объекта положение. Очень Большой Телескоп – самая продвинутая астрономическая система в мире. На нем была сделана масса астрономических открытий, например, было получено первое в мире прямое изображение экзопланеты.


Космический телескоп «Хаббл»

Космический телескоп «Хаббл» - совместный проект NASA и Европейского космического агентства, автоматическая обсерватория на земной орбите, названная в честь американского астронома Эдвина Хаббла. Диаметр его зеркала только 2,4 м, что меньше самых больших телескопов на Земле. Но из-за отсутствия влияния атмосферы, разрешающая способность телескопа в 7 - 10 раз больше аналогичного телескопа, расположенного на Земле . «Хаббл» принадлежит множество научных открытий: столкновение Юпитера с кометой, изображение рельефа Плутона , полярные сияния на Юпитере и Сатурне...


Телескоп "Хаббл" на земной орбите

Привет, камрады. Чего-то я пощу вам в основном потраченные объекты, да помойки. Давайте побываем на действующем объекте - на настоящей астрофизической обсерватории с телескопом огромным.

Итак, вот она, специальная астрофизическая обсерватория Российской академии наук, известная, как объект под кодом 115.
Расположена она на Северном Кавказе у подножия горы Пастуховая в Зеленчукском районе Карачаево-Черкесской Республики России (п. Нижний Архыз и станица Зеленчукская). В настоящее время обсерватория является крупнейшим российским астрономическим центром наземных наблюдений за Вселенной, который располагает крупными телескопами: шестиметровым оптическим рефлектором БТА и кольцевым радиотелескопом РАТАН-600. Основана в июне 1966 года.


Фото 2.

С помощью этого козлового крана крана строили обсерваторию.



Фото 3.

Более подробно вы можете почитать http://www.sao.ru/hq/sekbta/40_SAO/SAO_40/SAO_40.htm тут.


Фото 4.

Обсерватория создавалась как центр коллективного пользования для обеспечения работы оптического телескопа БТА (Большой Телескоп Азимутальный) с диаметром зеркала 6 метров и радиотелескопа РАТАН-600 с диаметром кольцевой антенны 600 метров, тогда крупнейших в мире астрономических инструментов. Они были введены в строй в 1975-1977 годах и предназначены для изучения объектов ближнего и дальнего космоса методами наземной астрономии.


Фото 5.


Фото 6.


Фото 7.


Фото 8.


Фото 9.


Фото 10.


Фото 11.

Глядя на эту футуристическую дверь так и хочется зайти внутрь и ощутить всю мощь.


Фото 12.


Фото 13.

Вот мы внутри.


Фото 14.


Фото 15.

Перед нами старая панель управления. Судя по всему, она не работает.


Фото 16.


Фото 17.


Фото 18.


Фото 19.


Фото 20.


Фото 21.


Фото 22.


Фото 23.

А вот и самое интересное. БТА - «большой телескоп азимутальный». Это чудо является самым большим телескопом в мире с 1975 года, когда он превзошёл 5-метровый телескоп Хейла Паломарской обсерватории, и по 1993, когда заработал телескоп Кека с 10-метровым сегментированным зеркалом.


Фото 24.

Да,

этого самого Кека.

БТА является телескопом-рефлектором. Главное зеркало диаметром 605 см имеет форму параболоида вращения. Фокусное расстояние зеркала 24 метра, вес зеркала без учёта оправы - 42 тонны. Оптическая схема БТА предусматривает работу в главном фокусе главного зеркала и двух фокусах Несмита. В обоих случаях можно применять корректор аберраций.

Телескоп установлен на альт-азимутальной монтировке. Масса подвижной части телескопа - около 650 тонн. Общая масса телескопа - около 850 тонн.



Фото 25.

Главный конструктор - д. т. н. Баграт Константинович Иоаннисиани (ЛОМО).

Фото 26.

Оптическая система телескопа изготавливалась на Ленинградском оптико-механическом объединении им. В.И. Ленина (ЛОМО), Лыткаринском заводе оптического стекла (ЛЗОС), Государственном оптическом институте им. С. И. Вавилова (ГОИ).
Для его изготовления строились даже отдельные цеха, не имевшие аналогов.
Знаете ли вы, что?
- Заготовка для зеркала, отлитая в 1964 году остывала более двух лет.
- Для обработки заготовки использовалось 12 000 карат натуральных алмазов в виде порошка, обработка шлифовальным станком, изготовленном на Коломенском заводе тяжелого станкостроения велась в течении 1,5 лет.
- Масса заготовки для зеркала составила 42 тонн.
- В общей сложности создание уникального зеркала продолжалось в течение 10 лет.


Фото 27.


Фото 28.

Главное зеркало телескопа подвергается температурной деформации, как и у всех огромных телескопов подобного типа. Если температура зеркала изменяется быстрее, чем на 2° в сутки, разрешение телескопа падает в полтора раза. Поэтому внутри установлены специальные кондиционеры, поддерживающие оптимальный температурный режим. Запрещено открывать купол телескопа при разности температур снаружи и внутри башни больше чем 10°, так как такие перепады температуры могут привести к разрушению зеркала.


Фото 29.


Фото 30.

Отвес

Фото 31.

К сожалению, Северный Кавказ не самое лучшее место для подобного мегадевайса. Дело в том, что в горах, открытых всем ветрам очень высокая турбулентность атмосферы, что значительно ухудшает видимость и не позволяет использовать всю мощь данного телескопа.


Фото 32.


Фото 33.

11 мая 2007 года начата перевозка первого главного зеркала БТА на изготовивший его Лыткаринский завод оптического стекла (ЛЗОС) с целью глубокой модернизации. Сейчас на телескопе установлено второе главное зеркало. После обработки в Лыткарино - удаления с поверхности 8 миллиметров стекла и переполировки телескоп должен войти в десятку самых точных в мире. Модернизация завершена в ноябре 2017 года. Установка и начало исследований запланированы на 2018.


Фото 34.


Фото 35.


Фото 36.


Фото 37.

Надеюсь, вам понравилась прогулка. Идём на выход.

Фото 38.


Фото 39.


Фото 40.

Оформлено с помощью «

Во вторник мы начали испытание нового прибора на нашем телескопе "Цейсс-1000". Второй по размеру оптический телескоп нашей обсерватории (в просторечии - "метровик") куда менее известен, чем 6-метровый БТА и теряется на фоне его башни. Но несмотря на относительно скромный диаметр, это довольно затребованный инструмент, активно используемый как нашими астрономами, так и внешними заявителями. Много времени на нем уделяется мониторингу - отслеживанию изменений яркости и вида спектра переменных объектов: активных галактических ядер, источников гамма-всплесков, двойных систем с белыми карликами, нейтронными звездами, черными дырами, и прочими вспыхивающими объектами. С недавнего времени в список добавились еще и транзиты внесолнечных планет.
В давние времена, когда мы еще не наблюдали дистанционно, приходя псоле ночи утром в комнату на башне БТА, иногда делал традиционный "усталый снимок с БТА" - рассвет над аккуратной башней "Цейсс-1000". Как-то так, когда облака лежать внизу до горизонта и сливаются со снегом, если дело зимой:

Работать на метровике самому приходилось до этого лишь несколько раз и очень давно, в частности на нем получил данные для первой свой публикации (фотометрия запыленной галатики NGC972).

Небольшой фоторассказ по местам, где не часто бывают экскурсанты.

Телескоп в редкой конфигурации - фокус Кассегрена свободен от аппаратуры:

Пользуюсь случаем сделать фото собственного отражения во вторичном зеркале:


Выхожу на площадку вокруг купола и фоткаю телескоп через открытое забрало. Обратите внимание на деревянную обшивку купола. Телескоп поставлялся из ГДР в комплекте со зданием:

C другой стороны на крыше стоят all-sky камеры, картинка с которых транслируется в сеть . Внизу - долина реки Большой Зеленчук:

Правее - купол нашего третьего телескопа, самого маленького - "Цейсс-600". Луна восходит рядом с Эльбрусом.

Оба крупным планом:

Панорама комплекса башни БТА с мегакраном, солнце заходит где-то над

Мне в комментариях сразу же напомнили, что нужно обязательно написать и про БТА-6. Выполняю пожелания:-)

В течении многих лет самый большой в мире телескоп БТА (Большой Телескоп Азимутальный) принадлежал именно нашей стране, причем сконструирован и построен он был полностью с использованием отечественных технологий, продемонстрировав лидерство страны в области создания оптических инструментов. В начале 60-х советские учёные получили от правительства «особое задание» - создать телескоп больше чем у американцев (телескоп Хейла - 5 м.). Посчитали, что на метр больше будет достаточно, так как американцы вообще считали бессмысленным создание цельных зеркал размером более 5 метров из-за деформации под собственным весом.

Какова же история создания этого уникального научного объекта?

Сейчас мы узнаем …

Кстати, первое фото из очень , посмотрите его обязательно тоже.

Фото 3.

М. В. Келдыш, Л. А. Арцимович, И. М. Копылов и другие на стройплощадке БТА. 1966 г.

История Большого телескопа азимутального (БТА, Карачаево-Черкесия) началась 25 марта 1960 года, когда по предложению АН СССР и Государственного комитета по оборонной технике Совет министров СССР принял постановление о создании комплекса с телескопом-рефлектором, имеющим главное зеркало диаметром 6 метров.

Его назначение – «исследование структуры, физической природы и эволюции внегалактических объектов, детальное изучение физических характеристик и химического состава нестационарных и магнитных звезд». Головным исполнителем был назначен Государственный оптико-механический завод им. ОГПУ (ГОМЗ), на базе которого вскоре было образовано ЛОМО, а главным конструктором – Баграт Константинович Иоаннисиани. БТА являлся новейшей для своего времени астрономической техникой, содержавшей в себе много поистине революционных решений. С тех пор монтировка всех больших телескопов мира осуществляется по блестяще оправдавшей себя альт-азимутальной схеме, впервые в мировой практике примененной нашими учеными в БТА. Над его созданием трудились специалисты самого высокого класса, что обеспечило высокое качество гигантского прибора. Вот уже более 30 лет БТА несет свою звездную вахту. Этот телескоп способен различать астрономические объекты 27-ой величины. Представьте, что земля плоская; и тогда, если в Японии кто-нибудь прикуривал бы сигарету, при помощи телескопа это можно было бы ясно увидеть.

Фото 4.

Очистка дна котлована. Февраль 1966 г

После анализа всех данных, площадкой для телескопа БТА стало место на высоте 2100 метров возле горы Пастухова, недалеко от станицы Зеленчукская, которая расположена в Карачаево-Черкессии — Нижний Архыз.

По проекту был выбран азимутальный тип монтировки телескопа. Полный наружный диаметр зеркала составлял 6.05 метра при толщине 65 см, равномерной по всей площади.

Сборка конструкции телескопа производилась в помещении ЛОМО. Специально для этого был построен корпус высотой свыше 50 метров. Внутри корпуса были установлены подъемные краны грузоподъемностью 150 и 30 тонн. Перед началом сборки был изготовлен специальный фундамент. Сама сборка началась в январе 1966 года и продолжалась более полутора лет, до сентября 1967 года.

Фото 5.

Строительство фундаментов телескопа и башни. Апрель 1966 г.

К моменту изготовления заготовки зеркала диаметром 6 м накопленный опыт обработки крупногабаритных оптических заготовок был невелик. Для обработки отливки 6-метрового диаметра, когда потребовалось снять с заготовки около 25 т стекла, имеющийся опыт оказался непригодным, как из-за низкой производительности труда, так и из-за наличия реальной опасности выхода заготовки из строя. Поэтому при обработке заготовки диаметром 6 м было принято решение о применении алмазного инструмента.

Многие из узлов телескопа являются уникальными для своего времени, такие как главный спектрограф телескопа, имеющий диаметр 2 метра, система гидирования, включающая в себя телескоп-гид и комплексную фото и телевизионную систему, а также специализированную ЭВМ для управления работой системы

Фото 6.

Лето 1968 г. Доставка деталей телескопа

БТА является телескопом мирового класса. Большая светособирающая способность телескопа дает возможность проводить исследование структуры, физической природы и эволюции внегалактических объектов, детальное изучение физических характеристик и химического состава пекулярных, нестационарных и магнитных звезд, исследование процессов звездообразования и эволюции звезд, изучение поверхностей и химического состава атмосфер планет, траекторные измерения искусственных небесных тел на больших расстояниях от Земли и многое другое.

С его помощью были проведены многочисленные уникальные исследования космического пространства: изучены самые далекие из наблюдавшихся когда-либо с Земли галактик, оценена масса местного объема Вселенной, разгадано множество других загадок космоса. Петербургский ученый Дмитрий Вышелович с помощью БТА искал ответ на вопрос, дрейфуют ли фундаментальные постоянные во Вселенной. По итогам наблюдений он сделал важнейшие открытия. Астрономы со всего мира записываются в очередь, чтобы провести наблюдения с помощью знаменитого русского телескопа. Отечественные телескопостроители и ученые накопили благодаря БТА огромный опыт, позволивший открыть пути к новым технологиям изучения Вселенной.

Фото 7.

Монтаж металлоконструкций купола. 1968 г

Разрешающая способность телескопа в 2000 раз большеразрешающей способности человеческого глаза, а его радиус «зрения» в 1,5 раза превышает аналогичный показа-тель крупнейшего на тот момент телескопа США в Маунт-Паломаре (8-9 млрд. световых лет против 5-6 соответственно). Не случайно БТА называют «Оком планеты». Его размеры поражают воображение: высота – 42 метра, вес – 850 тонн. Благодаря специальной конструкции гидравлических опор телескоп как бы «плавает» на тончайшей масляной подушке толщиной 0,1 мм, и человек в состоянии повернуть его вокруг своей оси без применения техники и дополнительных инструментов.

Постановлением Правительства от 25 марта 1960 г. Лыткаринский завод оптического стекла был утвержден головным исполнителем по разработке технологического процесса на отливку из стекла заготовки зеркала диаметром 6 м и по изготовлению заготовки зеркала. Специально для этого проекта было построено два новых производственных корпуса. Предстояло отлить заготовку стекла массой 70 т, отжечь ее и произвести сложную обработку всех поверхностей с изготовлением 60 посадочных глухих отверстий на тыльной стороне, центрального отверстия и др. Спустя три года с момента выхода Постановления Правительства был создан опытно-производственный цех. В задачу цеха входило монтаж и отладка оборудования, отработка промышленного техпроцесса и изготовление заготовки зеркала.

Фото 8.

Проведенный специалистами ЛЗОС комплекс поисковых работ по созданию оптимальных режимов обработки позволил разработать и реализовать технологию изготовления промышленной заготовки главного зеркала. Обработка заготовки велась в течение почти полутора лет. Для обработки зеркала Коломенским заводом тяжелого станкостроения в 1963 г. был создан специальный карусельный станок КУ-158. Параллельно проводилась большая научно-исследовательская работа по технологии и контролю этого уникального зеркала. В июне 1974 года зеркало было готово для проведения аттестации, которая была успешно выполнена. В июне 1974 г. начался ответственный этап транспортировки зеркала в обсерваторию. 30 декабря 1975 г. утвержден акт Государственной межведомственной комиссии по приемке в эксплуатацию Большого азимутального телескопа.

Фото 9.

1989 г. Сборка 1-метрового телескопа Цейс-1000

Фото 10.

Транспортировка верхней части трубы БТА. Август 1970 г.

Сегодня существуют новые, более эффективные астрономические системы с более крупными, в том числе сегментными, зеркалами. Но по своим параметрам наш телескоп до сих пор считается одним из лучших в мире, поэтому он по сей день пользуется повышенным спросом у отечественных и зарубежных ученых. За прошедшие годы он проходил неоднократную модернизацию, совершенствовалась прежде всего система управления. Сегодня осуществлять наблюдения можно при помощи оптоволоконного соединения прямо из расположенного в долине городка астрономов.

Фото 11.

Советская оптическая промышленность тех времён не была рассчитана на решение таких задач, поэтому для создания 6-метрового зеркала был специально построен завод в подмосковном Лыткарино на базе небольшого цеха по изготовлению зеркальных отражателей.

Заготовка для такого зеркала весит 70 тонн, первые несколько были «запороты» из-за спешки, так как чтобы не треснуть должны были остывать очень долго. «Удачная» заготовка остывала 2 года и 19 дней. Затем при её шлифовке было выработано 15000 карат алмазного инструмента и «стёрто» почти 30 тонн стекла. Полностью готовое зеркало стало весить 42 тонны.

Доставка зеркала на Кавказ стоит отдельного упоминания.. Сначала к месту назначения был отправлен муляж такого же размера и веса, в маршрут были внесены некоторые коррективы - построены 2 новых речных порта, 4 новых моста и укреплено и расширено 6 уже существующих, проложено несколько сотен километров новых дорог с идеальным покрытием.

Механические детали телескопа были созданы на Ленинградском Оптико-Механическом заводе. Общая масса телескопа составила - 850 тонн.

Фото 12.

Но несмотря на все усилия, «переплюнуть» по качеству (то есть по разрешению) американский телескоп Хейла БТА-6 не удалось. Частично из-за дефектов главного зеркала (первый блин всё-таки комом), частично из-за худших климатических условий в месте его расположения.

Фото 13.

Установка в 1978 году нового, уже третьего по счёту зеркала, заметно улучшила ситуацию, но погодные условия остались прежними. К тому же, осложняет работу слишком большая чувствительность цельного зеркала к незначительным температурным колебаниям. «Не видит» - это конечно громко сказано, до 1993 года БТА-6 оставался крупнейшим в мире телескопом, а крупнейшим в Евразии он является и по сей день. С новым зеркалом удалось добиться разрешающей способности практически, как у «Хейла», а «проницающая сила», то есть способность видеть слабые объекты у БТА-6 даже больше (всё таки на целый метр больше диаметр).

Фото 14.

Фото 15.

Фото 16.

Фото 17.

Фото 18.

За 30-летний период эксплуатации телескопа его зеркало несколько раз перепокрывалось, что привело к существенному повреждению поверхностного слоя, его коррозии, и, вследствие чего было утрачено до 70% отражающей способности зеркала. И все же, БТА был и остается уникальным инструментов ученых-астрономов, как российских, так и зарубежных. Но для сохранения его работоспособности и повышения эффективности возникла необходимость в реконструкции и обновлении главного зеркала. В настоящее время технология формообразования и разгрузки зеркала, которой владеют специалисты ОАО ЛЗОС, позволяет троекратно улучшить его оптические характеристики, в том числе и по угловому разрешению.

Фото 19.


Сегодня технологический процесс формообразования поверхностей астрономических оптических деталей на Лыткаринском заводе оптического стекла выведен на новый уровень, достигаемое качество отклонений формы поверхностей от теоретической повысилось на порядок за счет автоматизации и модернизации производства и компьютерного управления. Существенно улучшилась и механическая база, и технология облегчения и разгрузки зеркал с использованием современного компьютерного оборудования. Станки для фрезерования, шлифования и полирования 6-метрового зеркала также модернизированы в соответствии с современными требованиями. Существенно улучшены и средства контроля оптики.

Главное зеркало доставлено на Лыткаринский завод оптического стекла. В настоящее время завершен этап фрезерования. С рабочей поверхности удален верхний слой толщиной около 8 мм. Зеркало транспортировано в термостабилизированный корпус и установлено на автоматизированный станок для шлифования и полирования рабочей поверхности. По словам технического директора – главного инженера предприятия С.П.Белоусова, это будет наиболее сложный и ответственный этап обработки зеркала, – необходимо получить форму поверхности с гораздо меньшими отклонениями от идеального параболоида, чем это было достигнуто в семидесятых годах. После этого зеркало телескопа с улучшенными на порядок разрешающей способностью и проницающей силой сможет прослужить российской и мировой науке еще не менее 30 лет.

Фото 20.

Среди специалистов, кто участвовал в изготовлении зеркала – механик Жихарев А.Г., оптик Каверин М.С., слесарь Панов В.Г., фрезеровщик Писаренко Н.И. – они работают и поныне, передают богатый опыт крупногабаритного оптического приборостроения молодежи. Совсем недавно ушли на заслуженный отдых оптик Бочманов Ю.К., фрезеровщик Егоров Е.В. (он выполнял повторную фрезеровку зеркала в прошлом и в этом году).

Подобную работу в России больше никто выполнить не сможет. В мире, кроме ЛЗОСа, есть всего лишь две фирмы, которые изготавливают крупногабаритные зеркала. Это Оптическая лаборатория обсерватории Стюарда (Аризона, США) и фирма SAGEM-REOSC (Франция) (диаметром 8 м) но и там башни для контроля зеркал короче, чем требуется, поскольку радиус зеркала БТА 48 метров.