Частота наблюдения затмения на определенной территории. История солнечных и лунных затмений

Для того, чтобы произошло затмение, не важно, лунное или солнечное, и Луна, и Солнце, и Земля должны находиться на одной линии. Так, во время солнечного затмения, между Землей и Солнцем проходит Луна, и она, как-будто, скрывает Солнце из поля зрения, закрывает его. А вот во время лунного затмения, Луна закрывается уже тенью Земли, которая отбрасывается от планеты, освещенной Солнцем.

Различают полные, частичные и полутеневые лунные затмения. При полном лунном затмении, Луна полностью «закрывается» земной тень, при частичном - Луна погружается в тень только наполовину, при этом, максимально возможное затемнение составляет половину диска Луны. А при полутеневом затмении, Луна проходит только через полутень Земли. Лунные затмения происходят только при полной Луне. Но полнолуние бывает каждый месяц, однако же, мы, почему-то, не замечаем таких частых лунных затмений. С чем же это связано? А вот с чем: для того, чтобы такая дружная компания в лице Солнца, Луны и Земли, радовала нас лунными затмениями каждую ночь с участием полной Луны, они должны «дружить» совсем по-другому. И вот как должна выглядеть эта «дружба»: Луна должна вращаться вокруг Земли в той же плоскости, в какой Земля вращается вокруг Солнца. Но этого не происходит, ведь плоскость лунной орбиты чуть-чуть, совсем немного, наклонена по отношению к плоскости обращения Земли вокруг Солнца (по-научному эта плоскость называется плоскость эклиптики). Таким образом, получается, что затмение происходит только тогда, когда Луна расположена вблизи узлов собственной орбиты. Длина фазы лунного затмения определяется по тому, насколько близко располагается затмение к лунному узлу. Так, чем оно ближе к нему тем длиннее будет фаза. Так как во время затмения, Луна закрывается тенью Земли, то, по логике вещей, она должна полностью исчезнуть из вида. Однако, как мы знаем, этого никогда не происходит. А все потому, что земная атмосфера, просто-напросто, рассеивает лучи Солнца, а они, в свою очередь, падают на затемненную земной тенью Луну. Чаще всего, затемненная Луна имеет красноватый цвет. Это связано с тем, что красные и оранжевые лучи лучше всего проходят через атмосферу нашей планеты.

Это был краткий экскурс в основы астрономии и лунного затмения. Но ведь мы так и не ответили, как часто случается такое явление, как лунное затмение. Точнее ответили, но осветили некоторую часть этого явления. То есть, теперь мы знаем, что лунное затмение возможно только при полной Луне. Но так и не ясно, сколько же раз, например, в год бывают лунные затмения? Но еще древние астрономы рассчитали частоту лунных затмений в год. Так, они вывели такое понятие, как «сарос». Сарос длится ровно 18 лет, 11 дней и 8 часов. И во время этого временного промежутка происходит 43 солнечных и 28 лунных затмения. Таким образом, в год возможно, как минимум, два лунных затмения, иногда число затмений увеличивается еще на одно, а бывают и годы, вообще, без затмений. Но эта частота лунных затмений рассчитана на всю Землю. А если рассматривать отдельные области Земного шара, то их частота будет неодинакова. В определенных местах, затмения будут видны чаще, чем в других.

В конце хотелось бы заметить, что как лунное, так и солнечное затмение - это красивейшие явления, которыми одарила нас природа. И это достаточно частое явление, но нам может вполне показаться, что они случаются не чаще, чем раз в десятилетие, именно тогда в средствах массовой информации нам сообщают об очередном крупном затмении.

Тема урока: Движение и фазы Луны.

Затмения Солнца и Луны

Цели урока

Личностные : организовывать самостоятельную познавательную деятельность.

Метапредметные : графически пояснять условия возникновения лунных и солнечных затмений.

Предметные : формулировать понятия и определения «синодический период», «сидерический период»; объяснять наблюдаемое движение и фазы Луны, причины затмений Луны и Солнца; описывать порядок смены лунных фаз.

Основной материал

Анализ модели взаимодействия Земли и Луны. Сравнительная характеристика физических свойств Земли и Луны. Анализ явлений солнечного и лунного затмений, условия их наступления и наблюдения на различных широтах Земли.

Методические акценты урока. Для введения в урок представленные вопросы, упражнение 5 и задания 7-10 позволят организовать деятельность учащихся по актуализации знаний о характере суточного и годичного движения Солнца.

Несмотря на кажущуюся простоту введения данной темы, важно учитывать, что навыки проведения мысленного эксперимента у обучающихся недостаточны, а рассмотрение разных процессов в различных системах отсчета традиционно является сложным учебным действием для обучающихся. Истинное понимание астрофизических основ данной темы в представлении обучающихся может подменяться поверхностным знанием отдельных фактов. Поэтому при анализе движения Луны необходимо наряду с виртуальным наблюдением использовать возможности реальной модели: укрепленный на стержне непрозрачный шар, размещенный на определенном отдалении от глобуса, освещают широким пучком света. При этом обращают внимание, что из разных точек класса наблюдается различная освещенность шара.

Взаимовлияние Земли и Луны вызвано сходными физическими свойствами небесных тел (сравнимый радиус, масса). Следствием данного взаимовлияния Земли и Луны выступает равенство периодов собственного обращения Луны вокруг собственной оси и вокруг Земли. Данное положение следует проиллюстрировать с использованием модели: сделав на шаре отметку, можно наглядно показать вращение Луны относительно Земли. Вводится понятие «сидерический месяц». Далее анализируется динамика наступления различных фаз Луны и анализируются причины возникновения наблюдаемых лунных фаз: видимая часть Луны освещается Солнцем, и Луна имеет форму шара. Вводится понятие «синодический месяц». Важно остановиться на относительности всех систем отсчета и показать, что для наблюдателя на Луне (такими «наблюдателями» выступали космонавты, высаживавшиеся на поверхность спутника, а также исследовательские космические аппараты, в том числе и советские) Земля также будет иметь фазы, сходные с лунными.

Так как обучающиеся из курса физики и географии имеют общее представление о солнечных и лунных затмениях, изучение данных вопросов можно представить для самостоятельной индивидуальной работы с последующим обсуждением. При этом желательно сравнить по одним и тем же характеристикам солнечные и лунные затмения и представить результаты в виде таблицы.

Характеристика солнечных и лунных затмений

Параметры

характеристики

Солнечное затмение

Лунное затмение

Графическое изображение процесса затмения

Астрономические условия наступления

Вид затмения

Максимальная продолжительность

Средняя частота наступления в течение года

Частота наблюдения на определенной территории

Сарос (период повторения последовательности затмений) и его причины

Использование явлений в научных целях

После выполнения данной работы необходимо обсудить результаты, обратив внимание на кольцеобразное солнечное затмение, свидетельствующее об изменении расстояний видимого углового диаметра Луны в зависимости от взаимных расстояний Солнца, Земли и Луны. Возвратившись к демонстрации модели движения Луны вокруг Земли относительно Солнца, необходимо проиллюстрировать теоретические рассуждения обучающихся: удаляя и приближая шар к источнику света, можно наблюдать изменение характера видимости самого источника. Далее иллюстрируется тот факт, что плоскость орбиты Луны относительно Земли имеет наклон к плоскости эклиптики, составляющий 5 0 , что и препятствует возникновению в каждое новолуние и полнолуние солнечного и лунного затмений.

Размещенные в сети Интернет иллюстрации наблюдавшихся на территории России солнечных и лунных затмений активизирует интерес обучающихся и обсуждение темно-красного оттенка лунного диска, который остается видимым во время лунных затмений: преломляясь в земной атмосфере, длинноволновое солнечное излучение попадает в конус земной тени и освещает Луну.

Итогом занятия являются ответы на вопросы к § 7 и § 8 учебника и упражнений 6, 7 учебника, что позволит еще раз проанализировать изученные явления.

Домашнее задание. § 7, 8; практические задания.

    В течение недели наблюдайте положение Луны водно и то же время. Выберите удаленные объекты, относительно которых можно сравнивать положение лунного диска. По результатам наблюдений заполните таблицу.

Дата наблюдения

Графическое изображение наблюдений фазы Луны

Название фазы

Цвет Луны

Характер смещения Луны относительно выбранных ориентиров

Темы проектов

    О чем может рассказать цвет лунного диска.

    Описания солнечных и лунных затмений в ли-

тературных и музыкальных произведениях.

Интернет-ресурсы

http://school-collection.edu.ru/catalog/rubr/c670 3457-4971-944b-5e84-05dc4d96d915/45363/?interfa ce=catalog&class=47&subject=39 - Единая коллек-ция цифровых образовательных ресурсов. Статиче-ская графика «Лунные затмения», «Полные солнеч-ные затмения», «Солнечные затмения».

Представьте себе ясный солнечный день, на небе — ярко сияющий солнечный диск, Природа живет своей обычной жизнью. Но вот на правом краю Солнца сначала постепенно появляется небольшой ущерб, затем он медленно увеличивается, а в результате еще недавно бывший круглым диск принимает форму серпа. Солнечный свет постепенно ослабевает, становится прохладнее. Образовавшийся серп делается совсем маленьким, и в конце концов за черным диском исчезают последние вспышки света. Ясный день моментально превращается в ночь, на потемневшем небе появляются звезды, со всех сторон вспыхивает лимонно-оранжевая заря, а на месте Солнца зияет черный круг, окруженный невнятным серебристым сиянием. Напуганные наступившей темнотой звери и птицы резко замолкают, и почти все растения свертывают листья. Но пройдет несколько минут, и Солнце снова явит миру свой торжествующий лик и Природа оживет. На протяжении тысячелетий явление солнечного затмения внушало людям и страх, и благоговейный трепет.

Если бы полные солнечные затмения были видимы в каждой местности достаточно часто, к ним привыкли бы так же быстро, как и к изменениям фазы Луны. Но они случаются настолько редко, что далеко не каждому поколению местных жителей удается увидеть их хотя бы раз — в одной точке земной поверхности полные солнечные затмения можно наблюдать только раз в 300—400 лет. Лунных затмений, особенно полных, боялись не менее солнечных. Ведь это ночное светило порой совершенно исчезало с небесного свода, а затемненная часть Луны довольно скоро принимала серый с красноватым отблеском цвет, становящийся все более и более кроваво-темным. В давние времена лунным затмениям приписывалось особое зловещее влияние на земные события. Древние полагали, что Луна в этот момент обливается кровью, что сулит человечеству великие бедствия. Первое лунное затмение, зарегистрированное в древних китайских летописях, относится к 1136 году до н.э.

Чтобы понять причину солнечных и лунных затмений, жрецы веками вели счет полным и частным затмениям. Сначала было замечено, что лунные происходят только в полнолуние, а солнечные только в новолуние, затем — что не при каждом новолунии происходят солнечные затмения и не при каждом полнолунии — лунные, а еще — что затмений Солнца не случалось, когда была видна Луна. Даже во время солнечного затмения, когда свет совершенно мерк, а звезды и планеты начинали проглядывать сквозь неестественно темные сумерки, Луны нигде не было видно. Это возбуждало любопытство и давало повод к тщательному исследованию того места, в котором должна была находиться Луна сразу после окончания солнечного затмения. Вскоре было обнаружено, что в ночь, следующую за днем солнечного затмения, Луна всегда находилась в своем нарождающемся виде очень близко к Солнцу. Заметив местонахождение Луны перед солнечным затмением и тотчас после него, определили, что во время самого затмения Луна действительно проходила от западной к восточной стороне места, занимаемого Солнцем, а сложные вычисления показали, что совпадение Луны и Солнца на небе совершалось именно в то время, когда Солнце затмевалось. Вывод стал очевиден: Солнце заслоняется от Земли темным телом Луны.

После выяснения причин солнечного затмения перешли к разгадке тайны лунного. Хотя в данном случае найти удовлетворительное объяснение было гораздо труднее, так как свет Луны не заслонялся никаким непрозрачным телом, становившимся между ночным светилом и наблюдателем. Наконец, было замечено, что все непрозрачные тела отбрасывают тень в направлении, противоположном источнику света. Было высказано предположение, что, возможно, Земля, освещенная Солнцем, и дает ту тень, доходящую даже до Луны. Необходимо было либо подтвердить, либо опровергнуть эту теорию. И вскоре было доказано, что лунные затмения бывают только во время полной Луны. Это подтверждало предположение о том, что причиной затмения является тень от Земли, падающая на Луну, — как только Земля становилась между Луной и источником света — Солнцем, свет Луны в свою очередь становился невидимым и происходило затмение.

В результате длительных наблюдений выяснилось, что и лунные, и солнечные затмения неизбежно повторяются в прежнем порядке по истечении того промежутка времени, через который повторяется взаимное положение Солнца, Луны и узлов лунной орбиты. Этот промежуток древние греки назвали саросом. Он составляет 223 оборота Луны, то есть 18 лет, 11 дней и 8 часов. По истечении сароса все затмения повторяются, но уже в несколько иных условиях, так как за 8 часов Земля поворачивается на 120°, а потому лунная тень пойдет по Земле на 120° западнее, чем это было 18 лет назад. Древние египтяне, вавилоняне, халдеи и другие «культурные» народы еще за 2 500 лет до нашей эры, не зная причин затмения, умели предсказывать их наступление с точностью до 1—2 суток в пределах своей ограниченной территории. Но так как они не могли располагать результатами наблюдений на всем земном шаре, они использовали для расчетов утроенный, или большой, сарос, содержащий целое число суток. Последовательность солнечных и лунных затмений по истечении утроенного сароса повторяется на той же географической долготе. Считается, что большой сарос — а именно 19 756 суток — впервые был вычислен древневавилонскими астрономами-жрецами. Установление сароса было одним из величайших открытий древности, поскольку оно привело к нахождению истинной причины затмений уже в VI веке до н.э.

Самое раннее письменное свидетельство солнечного затмения относится к 22 октября 2137 года до н.э. Причем затмение это не было предсказано придворными астрономами, а потому ужас перед неожиданно наступившей ночью был крайне велик. Однако тех древних астрономов вряд ли можно было обвинить в нерадивости, так как по тем временам предвидение подобных явлений в каком-либо определенном месте было делом совсем непростым. По саросу нельзя сделать точного прогноза затмения, можно было указать лишь приблизительную дату и область его видимости. Точно же вычислить время наступления затмения, а также условия его видимости было трудной задачей. И чтобы решить ее, астрономы изучали движение Земли и Луны в течение нескольких столетий. В настоящее время затмения с высокой степенью точности вычислены как на тысячи лет назад, так и на сотни лет вперед.

Изучение древних солнечных затмений помогает современным ученым корректировать даты многих исторических событий и даже вносить изменения в их последовательность. Ведь каждое полное солнечное затмение происходит в определенной и достаточно узкой полосе земной поверхности, положение которой меняется от года к году. А потому по той местности, где оно происходило, можно с помощью вычислений абсолютно точно выяснить их дату. Помимо этого, путем сравнения перемещений лунной тени по земной поверхности можно установить естественную эволюцию движения Луны. Именно такое сравнение впервые навело ученых на мысль о вековом замедлении вращения Земли, которое составляет 0,0014 секунды за столетие.

Полное солнечное затмение — это уникальная возможность для исследования внешних слоев атмосферы Солнца — хромосферы и короны. И хотя их наблюдения проводятся повседневно, этого оказывается недостаточно. Корона видна только во время полного солнечного затмения, так как яркость света короны в миллион раз меньше яркости света диска. Кроме того, свет от диска Солнца рассеивается атмосферой Земли и яркость этого рассеянного света близка к яркости короны. Самая яркая часть Солнца, та, что кажется нам желтой, называется фотосферой. Во время полного затмения лунный диск полностью покрывает фотосферу. Только после того, как фотосфера скрывается за Луной, на недолгое время можно увидеть хромосферу в виде клочковатого кольца красного цвета, окружающего черный диск.

Солнечная корона простирается далеко от Солнца — до орбит Юпитера и Сатурна. В течение 11-летнего цикла солнечной активности меняются как форма короны, так и общая ее яркость. Чрезвычайно интересными оказались спектры короны, снятые вблизи солнечного диска. На фоне непрерывного спектра были видны яркие эмиссионные линии, которые в течение многих лет являлись для науки одной из величайших загадок. Она была разрешена только в 40-х годах XX века. Оказалось, что эти линии излучают сильно ионизованные атомы железа и кальция, для существования которых необходимы температуры, доходящие до миллиона градусов.

Большую роль в прояснении физических условий, существующих в солнечной короне, сыграли так называемые затменные наблюдения, в частности радиоастрономические. На сегодняшний день одной из главных задач является исследование инфракрасного излучения межпланетной пыли. В ходе затмений выполняются также фотометрические, колориметрические, спектрофотометрические и поляриметрические наблюдения. Не вызывает сомнения и тот факт, что затменные наблюдения Солнца внесли неоценимый вклад в представление ученых о Солнце и межзвездной среде.

Чтобы плодотворно использовать те немногие минуты, во время которых происходит затмение, астрономы готовятся к нему долгие месяцы, делая точные вычисления полосы затмения, изучая сводки погоды в полосе затмения и занимаясь поисками оптимального для наблюдений места. Одновременно с этим решаются вопросы транспортировки и обеспечения необходимыми средствами обслуживания, такими как электроэнергия и вода, параллельно происходит составление программ наблюдений, конструирование соответствующих инструментов. Чем недоступнее место наблюдения, тем более необходимо застраховать себя от разных случайностей.

Наблюдение за солнечным затмением может быть с успехом использовано и для исследования земной атмосферы. С этой целью ведутся наблюдения изменения температур, давления, влажности, ветра, образования облачности, фотометрические наблюдения яркости и цвета неба и так далее. Во время затмений также становится возможно распознать отклонения в движении Луны и вращении Земли. Производимое же во время затмений исследование ионосферы с помощью радиоволн позволяет изучить влияние Солнца на верхние слои земной атмосферы.

Значительным достижением наблюдателей затмений по праву можно считать проверку эффекта гравитационного воздействия массивных космических объектов (в частности, Солнца) на световые лучи, предсказанного в рамках теории относительности Эйнштейна. Для этого необходимо было посредством одного и того же телескопа сделать снимки звезд, находящихся как можно ближе к краю Солнца во время затмения, а через несколько месяцев эти же звезды снять уже на ночном небе. После измерений относительных положений изображений этих звезд на двух фотографиях можно было судить о том, сместились ли они. Впервые этот эксперимент был проведен в 1919 году, подтвердив справедливость выводов теории Эйнштейна.

Остается добавить, что ближайшее полное солнечное затмение произойдет 4 декабря 2002 года. Оно начнется в Южной Африке и закончится в Австралии, а его максимальная продолжительность будет составлять 2 минуты 4 секунды. Все астрономы-профессионалы, равно как и астрономы-любители, уже готовятся к этому событию.

Cолнечные затмения видны отнюдь не из всех местностей дневного полушария Земли, так как из-за своих небольших размеров Луна не может скрыть Солнце от всего земного полушария. Ее диаметр меньше диаметра Солнца приблизительно в 400 раз, но при этом Луна по сравнению с Солнцем почти в 400 раз ближе к Земле, поэтому видимые размеры Луны и Солнца почти одинаковы, так что Луна, хоть и в очень ограниченной области, может закрывать от нас Солнце.
Характер затмения зависит от удаленности Луны от Земли, причем, так как орбита Луны не круговая, а эллиптическая, это расстояние меняется, а в зависимости от этого немного меняется и видимый размер Луны. Если в момент солнечного затмения Луна находится ближе к Земле, то лунный диск, будучи чуть больше солнечного, целиком закроет Солнце, а значит, затмение будет полным. Если же — дальше, то ее видимый диск будет меньше солнечного и Луна не сможет закрыть все Солнце — вокруг него останется светлый ободок. Такое затмение называется кольцеобразным.

Освещаемая Солнцем Луна отбрасывает в пространство сходящийся конус тени и окружающей ее полутени. Когда эти конусы пересекаются с Землей, то лунная тень и полутень падают на нее. Пятно лунной тени диаметром около 300 км бежит по земной поверхности, оставляя след длиной 10—12 тыс. км, и там, где она проходит, происходит полное солнечное затмение, в области же, захваченной полутенью, — частное затмение, когда Луной закрыта лишь часть солнечного диска. Нередко бывает и так, что лунная тень минует Землю, а полутень частично захватывает ее, тогда происходят только частные затмения.

Так как скорость перемещения тени по поверхности Земли в зависимости от географической широты составляет от 2000 км/ч (вблизи экватора) до 8000 км/ч (около полюсов), полное солнечное затмение, наблюдаемое в одной точке, продолжается не более 7,5 минуты, причем максимальное значение достигается в очень редких случаях (ближайшее затмение продолжительностью 7 минун 29 секунд произойдет только в 2186 году).

Солнечное затмение начинается в западных районах земной поверхности при восходе Солнца и заканчивается в восточных при его заходе. Общая продолжительность всех фаз солнечного затмения на Земле может достигать 6 часов. Степень покрытия Солнца Луной называется фазой затмения. Она определяется как отношение закрытой части диаметра солнечного диска ко всему его диаметру. При частных затмениях ослабления солнечного света не заметно (за исключением затмений с очень большой фазой), а потому фазы затмения можно наблюдать только через темный светофильтр.

Лунные затмения происходят тогда, когда Луна в полнолуние проходит вблизи узлов своей орбиты. В зависимости от того, частично или полностью она погружается в земную тень, происходят как частные, так и полные теневые лунные затмения. Вблизи лунных узлов, в пределах 17° в обе стороны от них, существуют зоны лунных затмений. Чем ближе к лунному узлу происходит затмение, тем больше его фаза, определяемая долей лунного диаметра, покрытого земной тенью. Вступление Луны в тень или полутень Земли обычно проходит незаметно. Полному затмению предшествуют частные фазы, и в момент окончательного погружения Луны в земную тень оно и наступает, продолжаясь около двух часов. Частота лунных затмений для какого-либо определенного места Земли выше частоты солнечных только потому, что они видны со всего ночного полушария Земли. При этом продолжительность полной фазы солнечного затмения на Луне может достигать 2,8 часа.

Наблюдения полных лунных затмений позволяют изучать структуру и оптические свойства земной атмосферы, а также тепловые свойства различных участков лунной поверхности, в том числе и изменение их температуры при разных фазах затмения.

Лунное затмение наступает, когда Луна (в фазе полнолуния) входит в конус тени, отбрасываемой Землёй. Диаметр пятна тени Земли на расстоянии 363 000 км (минимальное расстояние Луны от Земли) составляет около 2,5 диаметров Луны, поэтому Луна может быть затенена целиком. Лунное затмение может наблюдаться на половине территории Земли (там, где на момент затмения Луна находится над горизонтом). Вид затенённой Луны с любой точки наблюдения одинаков. Максимальная теоретически возможная продолжительность полной фазы лунного затмения составляет 108 минут; такими были, например, лунные затмения 13 августа 1859 года, 16 июля 2000 года.

В каждый момент затмения степень покрытия диска Луны земной тенью выражается фазой затмения Ф. Величина фазы определяется расстоянием 0 от центра Луны до центра тени. В астрономических календарях приводятся величины Ф и 0 для разных моментов затмения.

Если Луна попадает в полную тень Земли только частично, наблюдается частное затмение . При нём часть Луны является тёмной, а часть, даже в максимальной фазе, остаётся в полутени и освещается солнечными лучами.

Вокруг конуса тени Земли имеется полутень - область пространства, в которой Земля заслоняет Солнце лишь частично. Если Луна проходит область полутени, но не входит в тень, происходит полутеневое затмение . При нём яркость Луны уменьшается, но незначительно: такое уменьшение практически незаметно невооружённым глазом и фиксируется только приборами. Лишь когда Луна в полутеневом затмении проходит вблизи конуса полной тени, при ясном небе можно заметить незначительное потемнение с одного края лунного диска.

Затмеваемая Луна мерцает в небе над памятником Спасителю мира в Сан-Сальвадоре, Сальвадор, 21 декабря 2010 года.

(Jose CABEZAS/AFP/Getty Images)

При наступлении полного затмения Луна приобретает красноватый или коричневатый оттенок. Цвет затмения зависит от состояния верхних слоев земной атмосферы, поскольку только прошедший сквозь нее свет освещает Луну во время полного затмения. Если сравнить снимки полных лунных затмений разных лет, то легко увидеть разницу в цвете. Например, затмение 6 июля 1982 года было красноватым, а затмение 20 января 2000 года имело коричневый оттенок. Такие цвета Луна приобретает во время затмений благодаря тому, что земная атмосфера больше рассеивает красные лучи, поэтому никогда нельзя наблюдать, скажем, синего или зеленого лунного затмения. Но полные затмения различаются не только цветом, но и яркостью. Да, именно, яркостью, и существует специальная шкала для определения яркости полного затмения, называемая шкалой Данжона (в честь французского астронома Андре Данжона, 1890–1967).

Градация шкалы Данжона имеет 5 пунктов. 0 - затмение очень темное (Луна еле угадывается на небе), 1 - затмение темно-серое (на Луне заметны детали), 2 - затмение серое с коричневым оттенком, 3 - светлое красно-коричневое затмение, 4 - очень светлое медно-красное затмение (Луна видна отчетливо, и различимы все основные детали поверхности).

Если бы плоскость лунной орбиты лежала в плоскости эклиптики, то лунные (как и солнечные) затмения происходили бы ежемесячно. Но большую часть времени Луна проводит либо выше, либо ниже плоскости земной орбиты ввиду того, что плоскость лунной орбиты имеет пятиградусный наклон к плоскости орбиты Земли. Как следствие, естественный спутник Земли попадает в ее тень лишь два раза в году, то есть в то время, когда узлы лунной орбиты (точки ее пересечения с плоскостью эклиптики) находятся на линии Солнце-Земля. Тогда в новолуние происходит солнечное затмение, а в полнолуние - лунное.

Каждый год происходят как минимум два лунных затмения, однако в связи с несовпадением плоскостей лунной и земной орбит, их фазы отличаются. Затмения повторяются в прежнем порядке каждые 6585⅓ дней (или 18 лет 11 дней и ~8 часов - период, называемый сарос); зная, где и когда наблюдалось полное лунное затмение, можно точно определить время последующих и предыдущих затмений, хорошо просматриваемых в этой местности. Эта цикличность часто помогает точно датировать события, описываемые в исторических летописях. История лунных затмений уходит далеко в прошлое. Первое полное лунное затмение зарегистрировано в древнекитайских летописях. С помощью расчетов удалось вычислить, что оно произошло 29 января 1136 г. до н. э. Еще три полных лунных затмения зафиксированы в «Альмагесте» Клавдия Птолемея (19 марта 721 г. до н. э., 8 марта и 1 сентября 720 г. до н. э.). В истории часто описываются лунные затмения, что очень помогает установить точную дату того или иного исторического события. Например, военачальник афинской армии Никий испугался начавшегося полного лунного затмения, в армии началась паника, что привело к гибели афинян. Благодаря астрономическим расчетам удалось установить, что это произошло 27 августа 413 г. до н. э.

В средние века полное лунное затмение оказало Христофору Колумбу большую услугу. Его очередная экспедиция на острове Ямайке оказалась в тяжелом положении, продукты питания и питьевая вода были на исходе, и людям грозила голодная смерть. Попытки Колумба получить пищу у местных индейцев окончились безрезультатно. Но Колумб знал, что 1 марта 1504 г. должно произойти полное лунное затмение, и под вечер он предупредил вождей живших на острове племен, что он похитит у них Луну, если они не доставят на корабль продукты и воду. Индейцы лишь посмеялись и ушли. Но, как только началось затмение, индейцев охватил неописуемый ужас. Продукты и вода были немедленно доставлены, а вожди на коленях умоляли Колумба вернуть им Луну. Колумб, естественно, не мог «отказать» в этой просьбе, и вскоре Луна, к восторгу индейцев, снова засияла на небе. Как видим, обычное астрономическое явление может быть весьма полезным, а знание астрономии просто необходимо путешественникам.

Наблюдения лунных затмений могут принести некоторую научную пользу, так как дают материал для изучения структуры земной тени и состояния верхних слоев атмосферы Земли. Любительские наблюдения частных лунных затмений сводятся к точной регистрации моментов контактов, фотографированию, зарисовкам и описанию изменений яркости Луны и лунных объектов в затмившейся части Луны. Моменты касания лунного диска с земной тенью и схождения с нее фиксируются (с возможно большей точностью) по часам, выверенным по сигналам точного времени. Необходимо отмечать и контакты земной тени с крупными объектами на Луне. Наблюдения можно проводить невооруженным глазом, в бинокль или телескоп. Точность наблюдений, естественным образом, увеличивается при наблюдении в телескоп. Для регистрации контактов затмения необходимо установить на телескопе максимальное для него увеличение и направить его на соответствующие точки касания диска Луны с земной тенью за несколько минут до предсказанного момента. Все записи заносятся в тетрадь (журнал наблюдений затмения).

Если в распоряжении любителя астрономии имеется фотоэкспонометр (прибор, измеряющий яркость объекта), то с его помощью можно построить график изменения яркости лунного диска в течение затмения. Для этого надо установить экспонометр так, чтобы его чувствительный элемент был направлен точно на диск Луны. Показания прибора снимаются через каждые 2-5 минут, и записываются в таблицу тремя столбцами: номер замера яркости, время и яркость Луны. По окончании затмения, используя данные таблицы, можно будет вывести график изменения яркости Луны во время этого астрономического явления. В качестве экспонометра можно использовать любой фотоаппарат, где имеется система автоматического экспонирования со шкалой экспозиций.

Фотографирование явления можно производить любым фотоаппаратом, имеющим съемный объектив. При съемке затмения объектив из фотоаппарата удаляется, а корпус аппарата прилаживается к окулярной части телескопа при помощи переходника. Это будет съемка с окулярным увеличением. Если объектив вашего фотоаппарата несъемный, то можно просто приставить аппарат к окуляру телескопа, но качество такого снимка будет хуже. При наличии у вашего фотоаппарата или видеокамеры функции Zoom необходимость в дополнительных увеличительных средствах, как правило, отпадает, т.к. размеры Луны при максимальном увеличении такой камеры достаточны для съемок.

Тем не менее, лучшее качество снимков получается при фотографировании Луны в прямом фокусе телескопа. В такой оптической системе объектив телескопа автоматически становится объективом фотоаппарата, только с большим фокусным расстоянием.

Организация сети пунктов наблюдений за поверхностными водными объектами

Для проведения мониторинга вод суши организуются:

Стационарная сеть пунктов наблюдений за естественным составом и загрязнением поверхностных вод;

Специализированная сеть пунктов для решения научно-исследовательских задач;

Временная экспедиционная сеть пунктов.

В основе организации и проведения наблюдений за качеством поверхностных вод лежат следующие принципы: комплексность и систематичность наблюдений, согласованность сроков их проведения с характерными гидрологическими ситуациями, определение показателей качества воды едиными методами. Соблюдение этих принципов достигается установлением программ контроля (по физическим, химическим, гидробиологическим и гидрологическим показателям) и периодичности проведения контроля, выполнением анализа проб воды по единым или обеспечивающим требуемую точность методикам (Вильдяев, 1999).

Сеть гидрохимических наблюдений должна охватывать

в пространстве:

По возможности все водные объекты, расположенные на территории изучаемого бассейна;

Всю длину водотока с определением влияния наиболее крупных его притоков и сброса сточных вод в него;

Всю акваторию водоема с определением влияния на него наиболее крупных притоков и сброса в него сточных вод;

во времени:

Все фазы гидрологического режима (весеннее половодье, летнюю межень, летние и осенние дождевые паводки, ледостав, зимнюю межень);

Различные по водности годы (многоводные, средние по водности и маловодные);

Суточные изменения химического состава воды;

Катастрофические сбросы сточных вод в водные объекты (Вильдяев, 1999).

Виды наблюдений за качеством поверхностных вод ОГСНК

В рамках ОГСНК проводят:

Наблюдения за уровнем загрязненности поверхностных вод по физическим, химическим, гидрологическим и гидробиологическим показателям в режимных пунктах;

Наблюдения, предназначенные для решения специальных задач.

Каждый из этих видов наблюдений осуществляется в результате:

Предварительных (рекогносцировочных) наблюдений и исследований на водных объектах или их участках;

Систематических наблюдений на водных объектах в выбранных пунктах (Вильдяев, 1999).

25. Пункты наблюдений за загрязнением поверхностных вод, правила их установки. Категории пунктов наблюдений за качеством водоемов.

Основным принципом организации наблюдений за качеством водных объектов является их комплексность. Она предусматривает согласованную программу работ по гидрологии, гидрохимии и гидробиологии, обеспечивающих наблюдения за качеством воды по физическим, химических и гидробиологическим показателям. Необходимым условием является синхронность всех систем наблюдения и согласованность сроков их проведения. Наблюдения за качеством воды ведутся по специальным программам, выбор которых зависит от категории пункта наблюдения. Периодичность работ по гидрохимическим и гидробиологическим параметрам также определяется категорией пункта наблюдения. Выбор программы контроля качества воды связан с использованием водотока или водоема, химическим составом сточных вод и той информацией, которая требуется водопользователю. Пункты наблюдений за качеством воды водотоков и водоемов подразделяются на 4 категории. Расположение пунктов контроля регламентируется специальными правилами наблюдений за качеством воды. Пункты первой категории устанавливаются на средних и больших вототоках и водоемах, имеющих важное хозяйственное значение:

В городах и промышленных зонах с населением более 1 млн. жителей;

В местах зимовья и нереста ценных видов промысловых рыб;

В местах организованного сброса сточных вод, где постоянно наблюдается высокая степень загрязненности воды;

В районах, где повторяются аварийные сбросы загрязняющих веществ;

В городах с населением от 0,5 до 1 млн. жителей;

На предплотинных участках рек, важных для рыбного хозяйства;

В местах сброса дренажных вод с орошаемых территорий и сточных промышленных вод;

При пересечении реками государственной границы РФ;

В районах со средней загрязненностью воды.

В городах с населением менее 0,5 млн. жителей;

На замыкающих участках больших и средних рек;

В устьях загрязненных притоков больших рек и водоемов;

В местах сброса сточных вод с низкой загрязненностью воды.

На незагрязненных участках водотоков и водоемов;

На водных объектах, расположенных на территориях национальных парков и государственных заповедников.