Результаты мониторинга качества воды поверхностных водных объектов. Служба по контролю и надзору в сфере охраны окружающей среды, объектов животного мира и лесных отношений Ханты-Мансийского автономного округа – Югры Оценка поверхностных вод

В целом качество воды поверхностных водных объектов в черте города Москвы соответствует нормативам, установленным для водных объектов культурно-бытового назначения (за исключением участка реки Москвы ниже сбросов сточных вод Курьяновских очистных сооружений).

Условно «по качеству» реку Москву в черте города можно разбить на три характерных участка, это:

участок верхнего течения реки - традиционно является наиболее чистым участком в городе Москве, по большинству показателей качество воды стабильно в течение года и очень незначительно изменяется по течению реки. Среднегодовые концентрации анализируемых показателей не превышают установленных нормативов культурно-бытового водопользования.

участок центральной части города -один и самых нестабильных по качеству. Высокая плотность автодорожной сети, городской застройки и огромное количество водовыпусков приводят к тому, что качество воды в реке нестабильно по металлам, взвешенным веществам и нефтепродуктам.

Кроме того, отмечаются существенные колебания концентраций анализируемых показателей как в течение года, так и вдоль реки, что свидетельствует о влиянии наиболее загрязненных притоков и выпусков промышленных сточных вод на данном участке (около 700 - более половины всех водовыпусков). Основным источником загрязнения на данном участке является поверхностный сток с территории автодорожной сети и городской застройки. Однако среднегодовые концентрации анализируемых показателей не превышают установленных нормативов культурно-бытового водопользования.

участок нижнего течения реки - на данном участке наибольшее влияние на экологическое состояние р. Москвы оказывают Курьяновские очистные сооружения (КОС), после выпуска которых в р. Москва резко увеличивается концентрация прежде всего биогенных элементов - ионов аммония, нитритов, фосфатов

Анализ результатов наблюдений в 2012 году показал, что качество воды в р.Москва по среднегодовым концентрациям анализируемых показателей соответствовало нормативам, установленным для водных объектов культурно-бытового назначения* за исключением содержания в воде органического загрязнения. Уровень содержания труднорасстворимой

органики (по ХПК) во всех створах наблюдения находился на уровне ПДК

">ПДК к-б. Уровень содержания иона аммония в нижнем течении реки Москвы в черте города по среднегодовым концентрациям составил 3,97 ПДК — предельно допустимая концентрация загрязняющего вещества в среде — концентрация, не оказывающая в течение всей жизни прямого или косвенного неблагоприятного действия на настоящее или будущее поколение, не снижающее работоспособности человека, не ухудшающая его самочувствия и санитарно-бытовых условий жизни. Величины ПДК приведены в мг/ 3 (л, кг).">ПДК к-б.

В отдельных пробах зафиксированы превышения допустимого содержания органического загрязнения (до 2 ПДКк-б по ХПК

">ХПК , до 8,5 ПДКк-б по аммонию), металлов (железа до 4,2ПДКк-б, марганца до 1,6 ПДКк-б, никеля до 1,4 ПДКк-б, свинца до 1,2 ПДКк-б, алюминия до 3,6 ПДКк-б, кадмия до 5 ПДКк-б), нефтепродуктов до 5 ПДКк-б, и формальдегида до 4,2 ПДКк-б.

В сравнении с предыдущим 2011 годом в р. Москва в черте города отмечено увеличение содержание органического загрязнения (по ХПК — бихроматная окисляемость, наиболее высокая степень окисления; величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых одним из сильнейших химических окислителей. В водоёмах и водотоках подверженных сильному воздействию хозяйственной деятельности человека, изменение окисляемости выступает, как характеристика, отражающая режим поступления сточных вод.

">ХПК и аммонию). В 2011 году среднегодовые значения показателя ХПК — бихроматная окисляемость, наиболее высокая степень окисления; величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых одним из сильнейших химических окислителей. В водоёмах и водотоках подверженных сильному воздействию хозяйственной деятельности человека, изменение окисляемости выступает, как характеристика, отражающая режим поступления сточных вод.">ХПК превышали допустимые нормативы в трех створах наблюдения, в 2012 году - уже в восьми створах наблюдения. Среднегодовая концентрация аммония в нижнем течении р. Москвы увеличилась с 2,92 ПДКк-б в 2011 году до 3,9 ПДК — предельно допустимая концентрация загрязняющего вещества в среде — концентрация, не оказывающая в течение всей жизни прямого или косвенного неблагоприятного действия на настоящее или будущее поколение, не снижающее работоспособности человека, не ухудшающая его самочувствия и санитарно-бытовых условий жизни. Величины ПДК приведены в мг/ 3 (л, кг).">ПДК к-б в 2012 году. Также в 2012 году отмечено увеличение содержания в воде формальдегида. В 2011 году среднегодовые концентрации формальдегида во всех створах наблюдения соответствовали установленным нормативам, по итогам 2012 года превышения нормативов были отмечены в четырех створах наблюдения.

Кроме того по среднегодовым концентрациям железа и марганца превышения нормативов, наблюдавшиеся в 2010, 2009 годах в 2012 году также как и 2011 году не зафиксированы. Также в 2012 не зафиксированы превышения нормативов культурно-бытового водопользования по среднегодовым концентрациям нефтепродуктов (в предыдущем 2011 году превышения были зафиксированы в двух створах наблюдения.

В течение всего рассматриваемого периода качество воды соответствовало нормативам по содержанию во всех отобранных пробах хлоридов, сульфатов, натрия, сухого остатка, нитратов, нитритов, меди, цинка, кобальта, фенолов, АПАВ, сульфидов, мышьяка, общего и шестивалентного хрома, магния, селена, фторидов и молибдена.

*Для оценки загрязнения снега использовались нормативы содержания загрязняющих веществ в поверхностных водных объектах, установленные для водных объектов культурно-бытового водопользования в соответствии с ГН 2.1. 5. 1315-03 «Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования»

Принимаемые меры по улучшению качества поверхностных вод

Важнейшей задачей с точки зрения сохранения благополучного состояния водных объектов является максимально возможная очистка всех городских стоков.

На сегодняшний день мы достигли того, что эффективность очистки, к примеру, поверхностного стока с территорий крупных автодорог (МКАД, 3-е транспортное кольцо) по нефтепродуктам на сооружениях тонкой очистки достигает 97 %. Объем коммунального стока (ОАО «Мосводоканал») за последние 5 лет ежегодно снижается на 5%. Реализуются мероприятия по реконструкции очистных сооружений коммунально-бытовой канализации с переходом на наилучшие технологии удаления биогенных элементов.

Повышенное внимание ежегодно уделяется санитарному состоянию водосборных территорий. Повышение эффективности уборки и очистки водоохранных зон привело с снижению концентраций в реке Москва взвешенных веществ, некоторых металлов и нефтепродуктов. В центральной части города их концентрации стали минимальными за последние пять лет наблюдений. В 2012 году 3 малых реки (Нищенка, Ваганьковский Студенец, Пресня) улучшили свой «класс качества» - интегральный показатель загрязнения по совокупности загрязнителей.

Город всегда уделял большое внимание мероприятиям по снижению негативного воздействия на водные объекты, хотя согласно федеральному законодательству река Москва и ее притоки относятся к собственности Российской Федерации, и полномочия Москвы как субъекта федерации по государственному контролю и надзору за их состоянием ограничены. В двух государственных программах города Москвы - Развитие индустрии отдыха и туризма и Развитие коммунально-инженерной инфраструктуры - предусмотрены мероприятия по модернизации очистных сооружений коммунально-бытовой канализации, реконструкции более 500 км канализационных и водосточных сетей, строительство 14 очистных сооружений дождевой канализации жилой застройки, реабилитации водоемов города Москвы (29 водных объектов) и участков малых рек. Целевыми показателями программ являются увеличение доли сточных вод хозяйственно-бытовой канализации, очищенных до нормативных значений с 80 до 100%, увеличение доли сточных вод дождевой канализации, очищенных до нормативных значений, в общем объеме сточных вод дождевой канализации с 55 до 75%, увеличение площади города, обеспеченной сетями водостока, с 89,4 до 91,6%, снижение загрязнения поверхностного стока нефтепродуктами и взвешенными веществами на 25% и 17% соответственно.

Приоритетными задачами улучшения качества являются:

1. Снижение загрязнения реки Москвы в центральной части города металлами и нефтепродуктами;

2. Снижение загрязнения реки Москвы органикой на выходе из города;

3. Повышение качества воды в малых реках (оно хуже чем в р. Москве вследствие антропогенной трансформации большинства притоков, заключения их в коллектора, нарушения естественной экосистемы и снижения процессов самоочищения водотоков).

По первой проблеме

Основной мерой является повышение эффективности санитарного содержания и уборки территории. Это систематическая работа. Результаты видны: отмечено снижение загрязнения реки Москвы по нефтепродуктам и отдельным металлам (железо, марганец). Среднегодовая концентрация нефтепродуктов в 2012 году в центральной части города стала минимальной за последние пять лет наблюдений.

Первое полугодие 2013 года подтверждает положительную динамику по содержанию в реке Москве нефтепродуктов и металлов в центральной части города.

По второй проблеме

Сброс сточных вод очистными сооружениями коммунально-бытовой канализации приводит к возрастанию концентраций биогенных элементов (аммония, нитритов, фосфатов) в реке Москве ниже по течению. По данным прошедшего 2012 года среднегодовая концентрация аммония на выходе из города составила 3,5 ПДК — предельно допустимая концентрация загрязняющего вещества в среде — концентрация, не оказывающая в течение всей жизни прямого или косвенного неблагоприятного действия на настоящее или будущее поколение, не снижающее работоспособности человека, не ухудшающая его самочувствия и санитарно-бытовых условий жизни. Величины ПДК приведены в мг/ 3 (л, кг).

">ПДК к-б.

Для улучшения качества очистки сточных вод и совершенствования технологии удаления биогенных элементов ОАО «Мосводоканал» реализуются мероприятия по реконструкции очистных сооружений с использованием современных технологий удаления азота и фосфора и внедрения систем обеззараживания ультрафиолетом .

Комплексная реконструкция очистных сооружений позволит существенно улучшить экологическое состояние основного водотока города - реки Москва.

По третьей проблеме

Малые реки - притоки реки Москвы традиционно отличаются более низким качеством воды, вследствие заключения их в коллектора, снижению интенсивности процессов самоочищения и нарушения экосистемы.

Анализ результатов наблюдений в 2012 году свидетельствует об улучшении качества воды в большинстве притоков р. Москвы (за счет качественной и своевременной санитарной уборки территории). В сравнении с предыдущим 2011 годом отмечено повышение класса качества для рек Неглинка (ЦАО), Нищенка (ЮВАО), и ручей Ваганьковский студенец (ЦАО).

Среднегодовая концентрация железа и марганца в устьях большинства малых рек впервые за последние пять лет наблюдений соответствовала нормативам культурно-бытового водопользования.

Однако проблемы тоже все равно остаются: за прошедший период 2013 года в малых реках отмечалось несоответствие нормативам по содержанию таких металлов как свинец, кадмий, отмечалось повышенное содержание органического загрязнения и взвешенных веществ.

10. Новиков Ю.В., Плитман С.И., Ласточкина К.С. и др. Оценка качества воды по комплексным показателям // Гигиена и санит. 1987. № 10. С. 7-11.

11. Руководство по методам гидробиологического анализа поверхностных вод и донных отложений / Под ред. В.А. Абакумова. Л.: Гидрометеоиздат, 1983. 239 с.

12. Шлычков А.П., Жданова Г.Н., Яковлева О.Г. Использование коэффициента стока загрязняющих веществ для оценки состояния рек // Мониторинг. 1996. №2.

Поступила в редакцию 03.05.05.

The survey of methods of a complex estimation of quality of surface waters

The survey of methods of a complex estimation of quality of surface waters is resulted. The opportunity of use of some of them for an estimation of quality of water objects of Udmurtiya is considered.

Гагарина Ольга Вячеславовна Удмуртский государственный университет 426034, Россия, г. Ижевск, ул. Университетская, 1 (корп. 4)

E-mail:ogagarina@udm. ru

источником питьевого водоснабжения, характеризующегося слабопроточным режимом и подверженного процессам эфтрофирования, необходима оценка качества воды, сочетающая гидрохимические, бактериологические и гидробиологические показатели. В данном случае отдаем предпочтение методам первой группы.

Кроме всего прочего, оценка качества поверхностных вод также зависит и от целей исследования. Если мы хотим получить приближенную картину химического загрязнения природных вод, то нам действительно достаточно оценки качества воды с помощью ИЗВ. Если же перед нами стоит цель охарактеризовать водный объект как экосистему, то одних гидрохимических характеристик недостаточно, необходимо вводить и гидробиологические показатели.

В завершение стоит заметить, что применение какой-либо выбранной комплексной оценки качества воды в каждом конкретном случае требует дополнительных исследований для более полной разработки практичной и универсальной системы оценки качества природных вод.

СПИСОК ЛИТЕРАТУРЫ

1. Белогуров В.П., Лозанский В.Р., Песина С.А. Применение обобщенных показателей для оценки загрязненности водных объектов // Комплексные оценки качества поверхностных вод. Л., 1984. С. 33-43.

2. Былинкина А.А., Драчев С.М., Ицкова А.И. О приемах графического изображения аналитических данных о состоянии водоемов // Материалы 16-го гидрохим. совещ. Новочеркасск, 1962. С. 8 - 15.

3. Временные методические указания по комплексной оценке качества поверхностных и морских вод. Утв. Госкомгидрометом СССР 22.09.1986 г.

4. № 250-1163. М., 1986. 5 с.

5. Гурарий В.И., Шайн А.С. Комплексная оценка качества воды // Проблемы охраны вод. Харьков, 1975. Вып.6. С. 143-150.

6. Драчев С.М. Борьба с загрязнением рек, озер, водохранилищ промышленными и бытовыми стоками. М.; Л.: Наука, 1964. 274 с.

7. Емельянова В.П., Данилова Г.Н., Колесникова Т.Х. Оценка качества поверхностных вод суши по гидрохимическим показателям //Гидрохимические материалы. Л.:Гидрометеоиздат, 1983. Т.88. С. 119-129.

8. Жукинский В.Н., Оксиюк О.П., Олейник Г.Н., Кошелева С.И. Критерии комплексной оценки качества поверхностных пресных вод // Самоочищение и биоиндикация загрязненных вод. М.: Наука, 1980. С. 57 - 63.

9. Методические основы оценки антропогенного влияния на качество поверхностных вод / Под ред. А.В. Караушева. Л.: Гидрометеоиздат, 1981. 175 с.

В зависимости от значений комплексных оценок W авторы предлагают 4 уровня загрязнения водоемов (см. табл. 4).

Таблица 4

Степень загрязнения водоемов в зависимости от значений комплексных показателей W, рассчитанных по лимитирующим признакам вредности

Уровень загрязнения Критерий загрязнения по величинам комплексных оценок

Органо- лепти- ческий W) Санитар- ный режим ТО Санитарно-токсикологический ^ст) Эпидемо- логический ТО

Допустимый 1 1 1 1

Умеренный 1,0 - 1,5 1,0 - 3,0 1,0 - 3,0 1,0 - 10,0

Высокий,0 2, 1 ,5 3,0 - 6,0 3,0 - 10,0 10,0 - 100,0

Чрезвычайно высокий > 2,0 > 6,0 > 10,0 > 100,0

Достоинством данной методики является не только более полный учет гидрохимических показателей качества воды, но и то, что в отличие от вышеперечисленных показателей ИЗВ и КИЗ в данном случае учитываются еще и бактериологические показатели. Это особенно важно для водоемов хозяйственно-питьевого и рекреационного назначения. Однако при оценке качества воды по данной методике обращают на себя внимание два момента: во-первых, отсутствует четкое определение приоритетных показателей микробного загрязнения. Вероятнее всего, для водоемов, являющихся источниками питьевого водоснабжения, такого как Ижевский пруд, в качестве таковых можно предложить следующие: число термотолерантных колиформных бактерий, число колифагов, наличие возбудителей кишечных инфекций. Каждый из этих показателей уже в отдельности может выступать в качестве эпидемиологического критерия. Во-вторых, авторы предлагают всего 4 градации уровня загрязнения, что не всегда достаточно при работе с водными объектами (или их участками), отличающимися разным уровнем антропогенной нагрузки.

В заключение хочется подчеркнуть, что при разработке комплексных показателей качества воды надо исходить из особенностей гидрологического режима, климатических, почвенных условий водосбора, а также вида водопользования. Так, для Ижевского водохранилища, являющегося

класс качества воды. Таким образом, возникает непонятная ситуация - или мы вводим в расчет все гидрохимические показатели, по которым имеются анализы воды, или только 5-6 особенно «наболевших» для данного водоема.

Практический опыт показывает, что такой субъективный фактор, как количество ингредиентов, по которым производится оценка качества воды, может оказать влияние на результат. Для водных объектов, испытывающих значительное антропогенное влияние, с введением в расчет КИЗ большего количества ингредиентов класс качества воды ухудшается.

По нашему мнению, более верный подход к оценке качества воды, который бы позволил избежать субъективизма, сводится к методам, где в расчетах участвуют обязательные показатели, объединенные в группы по лимитирующему показателю вредности (ЛПВ). Одним из таковых является метод оценки качества воды Ю.В.Новикова с соавторами , которые предлагают рассчитывать комплексную оценку уровня загрязнения по каждому лимитирующему признаку вредности. При этом используются четыре критерия вредности, по каждому из которых сформирована определенная группа веществ и специфических показателей качества воды:

Критерий санитарного режима (Wc), когда учитывают растворенный кислород, БПК5, ХПК и специфические загрязнения, нормируемые по влиянию на санитарный режим;

Критерий органолептических свойств (^ф), когда учитывают запах, взвешенные вещества, ХПК и специфические загрязнения, нормируемые по органолептическому признаку вредности;

Критерий опасности санитарно-токсикологического загрязнения (Wcm): учитывают ХПК и специфические загрязнения, нормируемые по санитарно-токсикологическому признаку;

Эпидемиологический критерий (W,), учитывающий опасность микробного загрязнения.

Одни и те же показатели могут входить одновременно в несколько групп. Комплексная оценка вычисляется отдельно для каждого лимитирующего признака вредности (ЛПВ) Wc, W,/,. Wcm и W, по формуле

W= 1 + ^---------------

где W - комплексная оценка уровня загрязнения воды по данному ЛПВ,я -число показателей, используемых в расчете; N - нормативное значение единичного показателя (чаще всего N = ПДКг). Если 6 i < 1, то есть концентрация менее нормативной, то принимается 6 i = 1.

Таблица 3

Классификация качества воды водотоков по величине комбинаторного индекса загрязненности

Класс каче- ства Разряд класса качеств а Характе ристика состоян ия загрязн енности Величина комбинаторного индекса загрязненности (КИЗ)

без учета числа лимитирующих показателей загрязненности (ЛПЗ) с учетом числа лимитирующих показателей загрязненности

1 ЛПЗ (k=0,9) 2 ЛПЗ (k=0,8) 3 ЛПЗ (k=0,7) 4 ЛПЗ (k=0,6) 5 ЛПЗ (k=0,5)

I слабо загрязн енная

II - загрязн енная (1п; 2п] (0,9n; 1,Bn] (0,Bn; 1,6n] (0,7n; 1,4n] (0,6n; 1,2n] (0,5n; 1,0n]

III грязная (2п; 4п] (1,Bn; 3,6n] (1,6n; 3,2n (1,4n; 2,Bn] (1,2n; 2,4n] (1,0n; 1,5n]

III а грязная (2п; 3п] (1,Bn; 2,7n] (1,6n; 2,4n] (1,4n; 2,1n] (1,2n; 1,Bn] (1,0n; 1,5n]

III б грязная (3п; 4п] (2,7n; 3,6n] (2,4n; 3,2n] (2,1n; 2,Bn] (1,Bn; 2,4n] (1,5n; 2,0n]

IV очень грязная (4п; 11п] (3,6n; 9,9n] (3,2n; B,Bn] (2,Bn; 7,7n] (2,4n; 6,6n] (2,0n; 5,5n]

IV а очень грязная (4п; 6п] (3,6n; 5,4n] (3,2n; 4,Bn] (2,Bn; 4,2n] (2,4n; 3,6n] (2,0n; 3,0n]

IV б очень грязная (6п; 8п] (5,4n; 7,2n] (4,Bn; 6,4n] (4,2n; 5,6n] (3,6n; 4,Bn] (3,0n; 4,0n]

IV в очень грязная (8п; 10п] (7,2n; 9,0n] (6,4n; B,0n] (5,6n; 7,0n] (4,8n; 6,0n] (4,0n; 5,0n]

IV г очень грязная (10п; 11п] (9,0n; 9,9n] (B,0n; B,Bn] (7,0n; 7,7n] (6,0n; 6,6n] (5,0n; 5,5n]

Далее производится суммирование обобщенных оценочных баллов всех определяемых в створе загрязняющих веществ. Так как при этом учитываются различные комбинации концентраций загрязняющих веществ в условиях их одновременного присутствия, В.П.Емельянова с соавторами и назвали этот комплексный показатель комбинаторным индексом загрязненности.

По величине комбинаторного индекса загрязненности и числу учтенных в оценке ингредиентов качества воды воду относят к тому или иному классу качества. Выделяют четыре класса качества воды: слабо загрязненная, загрязненная, грязная, очень грязная. Поскольку третий и четвертый классы качества воды характеризуются более широкими, чем первый и второй, диапазонами колебаний величины КИЗ и значительно различающаяся загрязненность воды оценивается одинаково, попадая в один и тот же класс, авторы вводят в эти классы разряды качества (табл.3).

Ингредиенты, для которых величина общего оценочного балла больше или равна 11, выделяются как лимитирующие показатели загрязненности (ЛПЗ).

В тех случаях, когда вода очень сильно загрязнена одним или несколькими веществами, но имеет удовлетворительные характеристики по остальным, при получении КИЗ происходит сглаживание высоких величин одних показателей за счет низких величин по другим показателям. Для устранения этого в градации качества вводится коэффициент запаса к, которым преднамеренно занижаются количественные выражения градаций качества в зависимости от числа лимитирующих показателей загрязненности и уменьшаются с возрастанием числа последних (от 1 при отсутствии ЛПЗ до 0,5 при 5 ЛПЗ). Таким образом, при наличии в воде водного объекта лимитирующих показателей загрязненности класс качества воды определяется с учетом коэффициента запаса. В случае присутствия в воде более пяти ЛПЗ, либо при величине КИЗ более 11 п вода характеризуется как «недопустимо грязная» и рассматривается вне предлагаемой классификации.

Итак, при расчете КИЗ по сравнению с ИЗВ, кроме кратности превышения ПДК, учитывается еще повторяемость превышения ПДК. Это весьма важное дополнение хотя и усложняет оценку качества воды (при простоте расчетов требуется значительная обработка материала), но делает логически завершенным представление о загрязненности водного объекта.

Однако, как было указано выше, авторы данного метода не ограничивают количество ингредиентов, участвующих в расчете КИЗ. Хотя, как показывает практический опыт, при оценке качества воды водных объектов, подверженных высокой антропогенной нагрузке (реки и водоемы в черте города), чем больше ингредиентов участвует в расчете КИЗ, тем хуже

следующий метод оценки качества воды при помощи комбинаторного индекса загрязненности (в дальнейшем - КИЗ), предложенного В.П.Емельяновой с соавторами .

Определение КИЗ осуществляется по следующей формуле:

где Ч, - обобщенный оценочный балл.

Расчет КИЗ проводится в несколько этапов. Вначале устанавливается мера устойчивости загрязненности (по повторяемости случаев превышения ПДК):

где Н - повторяемость случаев превышения ПДК по 1-му ингредиенту; NПдК -число результатов анализа, в которых содержание 1-го ингредиента превышает его предельную допустимую концентрацию; N - общее число результатов анализа по,-му ингредиенту.

По признаку повторяемости можно выделить качественные характеристики загрязненности, которым затем присуждаются количественные выражения в баллах.

Второй этап установления уровня загрязненности основан на определении показателя кратности превышения ПДК

где К - кратность превышения ПДК по і-му ингредиенту; С, - концентрация і-го ингредиента в воде водного объекта, мг/л; СПдК - предельная допустимая концентрация і-го ингредиента, мг/л.

При анализе загрязненности воды водных объектов по кратности превышения нормативов отдельным загрязняющим веществом выделяются качественные характеристики загрязненности, которым присваиваются количественные выражения градаций в баллах.

Сочетая первую и вторую ступени классификации воды по каждому из учитываемых ингредиентов, получаем обобщенные характеристики загрязненности, условно соответствующие мере их влияния на качество воды за определенный промежуток времени. Качественным обобщенным характеристикам присвоены обобщенные оценочные баллы Б, полученные как произведение оценок по отдельным характеристикам.

Таблица 2

Классы качества вод в зависимости от значения индекса загрязнения

Воды Значения ИЗВ Классы качества вод

Очень чистые до 0,2 I

Чистые 0,2-1,0 II

Умеренно загрязненные 1,0-2,0 III

Загрязненные 2,0-4,0 IV

Г рязные 4,0-6,0 V

Очень грязные 6,0-10,0 VI

Чрезвычайно грязные >10,0 VII

Относительно последнего условия хотелось бы отметить следующее. В середине 90-х гг. А.П. Шлычковым с соавторами был предложен ИЗВ с учетом водности (в дальнейшем - ИЗВ*). Расчет ИЗВ* производится по следующей формуле:

А Х"™4 * Х-"факт

ИЗВ * = ИЗВ К = - £

Числитель в данном выражении представляет собой наблюдаемый сток ингредиентов, вносящих основной вклад в загрязнение, а знаменатель -его предельно допустимый сток в средний по водности год. И если загрязненность зарегулированных речных систем (пример - р. Иж) может быть охарактеризована с помощью ИЗВ, то на реках, характеризующихся постоянным определением расходов, расчет степени загрязненности водного объекта за год должен идти с поправкой на водность в данном году. Наблюдения показывают, что на реках, попадающих под основное влияние неорганизованных источников загрязнения, находящихся на водосборе, в многоводные годы и сезоны года (весна) ИЗВ* превышает просто ИЗВ. Другая картина характерна для рек, принимающих организованные сбросы сточных вод или загрязненные притоки (для которых опять-таки основной источник загрязнения - организованное отведение стоков). В этом случае ИЗВ* в многоводные годы, наоборот, ниже, чем ИЗВ. Объясняется это лучшим разбавлением организованно поступающих в русла рек загрязнителей от постоянных источников загрязнения.

Явное преимущество ИЗВ - быстрота расчетов, сделавшая этот показатель одним из наиболее распространенных. Однако, основываясь только на гидрохимических показателях, он может использоваться для приближенной оценки современного состояния водного объекта, как и

Однако в действующем варианте СанПиН 2.1.5.980-00 такая гигиеническая классификация уже отсутствует.

Вторую группу методов по оценке качества воды составляют методы, основанные на использовании обобщенных числовых характеристик -комплексных индексов качества воды. Одним из наиболее часто применяемых в системе оценки качества поверхностных вод является гидрохимический индекс загрязнения воды (ИЗВ), установленный Госкомгидрометом СССР . Этот индекс представляет собой среднюю долю превышения ПДК по строго лимитированному числу индивидуальных ингредиентов (как правило, их 6):

где С - концентрация компонента (в ряде случаев - значение физикохимического параметра); п - число показателей, используемых для расчета индекса, п = 6; ПДК - установленная величина норматива для

соответствующего типа водного объекта.

Таким образом, ИЗВ рассчитывается как среднее из 6 индексов: О2, БПК5 и четырем загрязнителям, чаще всего превышающим ПДК. Вызвано это тем, что загрязнение водного объекта может быть обусловлено превышением ПДК одним-двумя веществами, а содержание других по сравнению с ними незначительно, и в результате усреднения мы можем получить заниженные значения ИЗВ. Для устранения этого недостатка надо учитывать именно приоритетные загрязнители водных объектов. Для водных объектов Удмуртии они представлены содержанием органического вещества, железа общего, азота аммонийного, нефтепродуктов, меди, цинка. Одним из постоянных индексов при расчете ИЗВ является содержание растворенного кислорода. Оно нормируется с точностью до наоборот: вместо отношения С/ПДКг- подставляется обратная величина. В зависимости от величины ИЗВ участки водных объектов подразделяют на классы (табл. 2).

При этом устанавливается требование, чтобы индексы загрязнения воды сравнивались для водных объектов одной биогеохимической провинции и сходного типа, для одного и того же водотока (по течению, во времени и т.д.), а также с учетом фактической водности текущего года.

Биомасса фитопланктона - структурный гидробиологический показатель; при величинах 5,0 г/м3 фитопланктон способствует самоочищению вод; более высокие значения характерны для массового развития фитопланктона («цветение» воды), последствиями которого является ухудшение санитарно-биологического состояния и качества вод.

Фитомасса нитчатых водорослей дает представление о реальной и потенциальной возможности ухудшения качества вод, так как разложение фитомассы нитчатых водорослей является причиной загрязнения вод органическими веществами, повышения численности бактерий . Оценивается по величинам для всей площади, на которой развиваются эти водоросли.

Индекс самоочищения / самозагрязнения (Л/Я). Отношение валовой продукции к суммарной деструкции планктона за сутки является функциональным гидробиологическим показателем. Низкие значения индекса (менее 1) свидетельствуют о превышении потребления кислорода над его продуцированием, в результате чего создается неблагоприятный для переработки загрязнений кислородный режим. Значения выше единицы характеризуют интенсивно идущие процессы окисления органического вещества. Вместе с тем при регулярном превышении продукции над деструкцией (Л/Я>1) происходит биологическое загрязнение за счет первично продуцированного остаточного органического вещества.

Для выявления влияния на качество воды водоемов производственных и хозяйственно-бытовых сточных вод в комплексную оценку В.Н. Жукинским с соавторами была включена схема биотического индекса оценки качества воды, принятая в Англии. «Большими

достоинствами последней являются: комбинированный учет видового

разнообразия организмов, преобразование качественных характеристик в количественные (баллы или индексы), чувствительность к загрязнениям невыясненного происхождения и простота использования; недостатком -ограничение таксонов-индикаторов... В связи с этим в предлагаемой системе не заполнена графа ’’Таксоны-индикаторы’’» . При использовании этой оценки качества воды применительно к Ижевскому пруду требуется подбор специфичных для данного водоема таксонов-индикаторов, что, впрочем, является сферой деятельности гидробиологов и требует специального рассмотрения.

Довольно удачная попытка дать классификацию воды по степени загрязненности для водоемов хозяйственно-питьевого и рекреационного назначения предпринималась и на уровне нормативных документов. Так, в СанПиН 4630-88 приводится гигиеническая классификация водных объектов.

комплексной оценки качества воды водоемов, и дополнив их, тем самым расширить рамки оценки качества воды. Одной из наиболее успешных в этой области является разработка комплексной оценки качества поверхностных пресных вод (ранний вариант), предложенная В.Н. Жукинским с соавторами . Оценивается в ней степень загрязненности водоема с учетом эфтрофирования водоемов, что актуально для Ижевского водохранилища. В данной классификации наряду с гидрохимическими показателями качества воды (рН, азот аммонийный, нитратный, фосфаты, процент насыщения воды растворенным кислородом, окисляемость перманганатная и бихроматная, БПК5) используются и бактериологические показатели: биомасса

фитопланктона и нитчатых водорослей, индекс самоочищения. Остановимся на характеристике этих важных показателей.

Таблица 1

Система коэффициентов для выведения общего значения показателя

Наименование показателя Степень загрязнения

Очень чистые Чистые Уме- ренно загряз- ненные Загряз- ненные Гряз- ные Очень грязные

Азот аммонийный 0 і 3 6 12 15

БПК5 и токсические вещества 0 і 5 8 12 15

Радиоактивность общая 0 і 3 5 15 25

Титр кишечной палочки 0 2 4 10 15 30

Запах 0 і 2 8 10 20

Внешний вид 0 і 2 6 8 10

Средне- суммарный коэффициент загрязнения 0-1 2 3-4 5-7 8-10 >10

некоторых тяжелых металлов (марганец, хром), нефтепродукты, азот аммонийный, фосфаты, БПК5, коли-индекс, запах воды.

Таким образом, авторы вышеприведенной классификации качества воды выявили те показатели, которые, по их мнению, чаще всего должны использоваться при изучении водоемов. Весьма необходимыми (можно даже сказать насущными) являются эти показатели и для характеристики санитарного состояния водных объектов Удмуртии, особенно тех, что находятся в сельской местности, где основными источниками загрязнения являются либо неорганизованные источники - поверхностный сток с объектов животноводства и от села, либо организованные - отведение в водные объекты неочищенных хозяйственно-бытовых сточных вод.

Весьма важным показателем санитарного состояния водоемов является содержание токсических веществ. «В качестве показателя степени загрязнения водоемов по содержанию токсических веществ можно принять отношение количества токсических веществ, найденных аналитически, к допустимым концентрациям, согласно существующим нормативам» .

К сожалению, С.М.Драчев не уточняет, какие именно токсические вещества могут выступать в качестве показательных, вероятнее всего, те, по которым отмечаются более частые превышения санитарно-гигиенических нормативов. Относительно водных объектов нашей республики таковым может являться содержание железа общего, меди, цинка, хрома.

Каждому из показателей авторами данного метода придается приоритет - цифровое значение, соответствующее важности и значимости данного фактора. Если по различным показателям классификация водоема неоднозначна (одно и то же состояние воды по разным показателям может быть отнесено к различным классам качества, что является недостатком данных методов), то необходимо рассчитать общий показатель загрязнения путем усреднения числовых значений условных приоритетов. Коэффициенты для подсчета общего показателя и группировка водоемов по сумме признаков приведены в табл. 1.

Несмотря на то что с помощью данной классификации попытались дать оценку санитарного состояния воды водоемов (пока речь еще не идет о комплексной оценке качества воды), нельзя не признать удачным выбор приоритетных показателей: титр кишечной палочки, запах, БПК5, азот аммонийный и внешний вид водоема у места взятия проб (по степени загрязнения нефтью). Естественно, что почти за полвека, прошедших после появления данной классификации, расширились и знания в этой области и технические средства проведения мониторинга качества воды. Поэтому все перечисленные показатели можно взять лишь за основу при разработке

принятый в международном стандарте качества питьевой воды (1958 г.). Последний показатель представляет собой отношение количества одноклеточных организмов, не содержащих хлорофилла (В), к общему количеству организмов, включая содержащие хлорофилл (А), выраженное в процентах : БПЗ = 100* В / (А + В); органолептических показателей (прозрачность, содержание взвешенных веществ, запах воды, внешний вид поверхности воды).

показателем может быть взята суммарная ^-активность, поскольку в отношении данного определения имеется наибольшее количество аналитических материалов” .

В качестве главных показателей А.А. Былинкиной с соавторами были рекомендованы пять следующих показателей: титр кишечной палочки, запах, БПК5, азот аммонийный и внешний вид водоема у места взятия проб (по степени загрязнения нефтью).

Впоследствии в литературе появилось много предложений по выбору основных показателей для оценки качества воды. Одни авторы предлагали использовать все показатели, для которых установлены ПДК. Другие использовали в расчетах ограниченное число показателей (в среднем 9 - 16) .

Идеальным вариантом было бы использование всех показателей, но это невыполнимо в реальных условиях. Необходимо выбрать показатели для обязательного наблюдения. Почти все авторы с небольшими вариациями сходятся на следующей группе: взвешенные вещества, растворенный

кислород, биохимическое потребление кислорода (БПК), рН, коли-индекс, №+, N0^, хлориды, сульфаты.

Предложения комплексной оценки качества воды на основе такого сокращения списка (или какого-либо из его расширенных вариантов) базируются на использовании принципа репрезентативности , согласно которому загрязняющие вещества делят на две группы: репрезентативные и фоновые. Первую группу определяют систематически, а вторую - относительно редко. В число репрезентативных специально отбираются загрязнения, концентрации по которым, исходя из местных условий, могут значительно превышать ПДК. В качестве фона рассматриваются вещества обязательной группы (их может быть 15-20). Например, для Ижевского водохранилища, расположенного в черте города и принимающего производственные и бытовые сточные воды, а также поверхностный сток с городской черты, в число репрезентативных следует включать соединения

УДК 504.4.054 О.В. Гагарина

ОБЗОР МЕТОДОВ КОМПЛЕКСНОЙ ОЦЕНКИ КАЧЕСТВА ПОВЕРХНОСТНЫХ ВОД

Приводится обзор методов комплексной оценки качества поверхностных вод. Рассматривается возможность использования некоторых из них для оценки качества водных объектов Удмуртии.

Ключевые слова: качество воды, оценка качества воды, показатели качества воды, классы качества воды.

Существующие на сегодняшний день методы комплексной оценки загрязненности поверхностных вод принципиально разделяют на две группы: к первой относят методы, позволяющие оценивать качество воды по совокупности гидрохимических, гидрофизических, гидробиологических, микробиологических показателей; ко второй группе - методы, связанные с расчетом комплексных индексов загрязненности воды.

В первом случае вода по качеству разделяется на классы с различной степенью загрязнения. Этот метод в оценке состояния водоемов имеет давнюю историю. Еще в 1912 г. в Англии подобная классификация была предложена Королевской комиссией по сточным водам. Правда, тогда были использованы в основном химические показатели. Согласно внешним признакам загрязнения водоемы были разделены на шесть групп: очень чистые, чистые, довольно чистые, сравнительно чистые, сомнительные и плохие. В качестве показателей тогда были взяты БПК5, окисляемость, аммонийный, альбуминоидный и нитратный азот, взвешенные вещества, хлор-ион и растворенный кислород. Кроме того, учитывались запах, мутность воды, наличие или отсутствие рыб, характер водной растительности. Наибольшее значение придавалось величине БПК.

В 1962 г. в СССР А. А. Былинкиной с соавторами была предложена классификация водоемов по химическим, бактериологическим и гидробиологическим признакам и физическим свойствам. Она явилась первой наиболее совершенной разработкой в этом направлении, заложившей основы широко распространившейся шестибалльной шкалы классификации водоемов. Оценка качества воды осуществляется с использованием химических показателей (содержание растворенного кислорода, рН, БПК5, окисляемость, аммонийный азот, содержание токсичных веществ); бактериологических и гидробиологических показателей (коли-титр, коли-индекс, количество сапрофитных организмов, количество яиц гельминтов, сапробность и биологический показатель загрязнения, или индекс Хорасавы,

Качество поверхностных вод

Гидрографическая сеть автономного округа включает около 290 тысяч озер и тридцати тысяч водотоков, из них большую часть составляют малые реки. Основной водной артерией является река Обь, которая принимает крупные притоки: Иртыш, Вах, Аган, Тромъеган, Большой Юган, Лямин, Ляпин, Пим, Северная Сосьва, Казым. Общая протяженность гидросети около 172 тысяч км.

Большая часть рек относится к равнинному типу, имеет медленное течение, широкие поймы и большое количество русловых озер. Ледостав начинается в октябре, за зиму мелкие реки и озера промерзают до дна. Ледоход проходит с начала мая по начало июня.

Для рек характерно сильно растянутое половодье, пониженная дренирующая роль, что является одним из важных факторов переувлажнения и заболачивания территории. Заболоченность водосборов рек достигает 50-70% и более. Влияние вод болот в значительной мере определяет региональные гидрохимические особенности как речных вод, так и грунтовых вод поверхностных водоносных горизонтов.

Поверхностные воды автономного округа испытывают мощную антропогенную нагрузку, связанную с активным развитием в последние десятилетия инфраструктуры городов и крупнейшего в России нефтегазодобывающего комплекса.

При ландшафтно-геохимических исследованиях гидрографическая сеть рассматривается как основной блок, через который проходят потоки природных и техногенных веществ. Динамика химического состава поверхностных вод является индикатором региональной экологической обстановки. Это определяет значимость гидрохимических исследований, которые составляют важнейший раздел территориальной системы экологического мониторинга Югры.

Характеристика качества поверхностных вод представлена по результатам мониторинга в 34 створах Росгидромета и 1 692 локальных пунктах территориальной сети наблюдений (рисунок 1).

Наблюдения на постах государственной наблюдательной сети (федеральные створы) обеспечиваются Росгидрометом (исполнитель – Ханты-Мансийский ЦГМС) на 16 крупных водотоках (Обь с протоками, Иртыш, Вах, Аган, Тром-Юган, Большой Юган, Конда, Казым, Назым, Пим, Амня, Ляпин, Северная Сосьва) вблизи населенных пунктов. Ежегодный объем измерений – около 8000 шт.

Рисунок 1. Пункты мониторинга поверхностных вод на территории

Функционирование локальных пунктов наблюдений территориальной системы обеспечивается предприятиями-недропользователями и Правительством автономного округа (координатор – Природнадзор Югры). Локальные пункты мониторинга охватывают 700 крупных и мелких водотоков в границах лицензионных участков недр, испытывающих основную нагрузку со стороны нефтегазового комплекса. В 2018 году в границах 308 лицензионных участков недр произведено 91080 измерений качества вод.

Речные воды Югры имеют ряд гидрохимических особенностей. Для них характерна низкая минерализация, повышенные значения ионов аммония и металлов, вызванные присутствием в речных и озерных водах большого количества органических соединений, интенсивное окрашивание и малая прозрачность вод (таблица 1).

Природными ландшафтно-геохимическими условиями вызвано практически повсеместное превышение предельно допустимых концентраций (далее – ПДК) по железу (в 94-98% проб), марганцу (в 75-91% проб), цинку (в 29-53% проб) и меди (в 60-73% проб) (рисунок 2).

Причинами этого являются геохимические особенности таёжных заболоченных ландшафтов со свойственной им кислой реакцией почв и широким распространением восстановительной обстановки. Железо, марганец, цинк и медь обладают высокой миграционной способностью в ландшафтах кислого глеевого класса, поэтому интенсивно поступают из почв в грунтовые воды и затем – в реки.

Таблица 1

Среднее содержание загрязняющих веществ и параметров

Показатель

Отношение среднего в 2018 г. к ПДК

подкисление

мгО 2 /дм 3

Углеводороды

Сульфаты

Марганец

Многолетние наблюдения показывают, что средние концентрации указанных веществ находятся в диапазоне:

железа – 1,35-1,86 мг/дм 3 , или 13-18 ПДК;

марганца – 0,09-0,18мг/дм 3 , или 9-18 ПДК;

цинка – 0,01-0,02 мг/дм 3 , или 1-2 ПДК;

меди – 0,003 – 0,007 мг/дм 3 , или 3-7 ПДК.

Рисунок 2. Распределение измерений соединений железа и марганца

относительно экологического норматива

Характерной природной особенностью поверхностных вод автономного округа также являются значительные сезонные колебания гидрохимического состава. Максимальные значения показателей загрязнения достигаются в период зимней межени, когда низкие расходы и температура воды способствуют увеличению концентраций веществ.

За период 2010-2018 годы на 15 крупных водотоках зафиксировано 159 случая высокого (ВЗ) и экстремально высокого (ВЗ) загрязнения поверхностных вод (таблица 2), из них 137 случаев наблюдались в период закрытого русла, когда питание рек осуществляется только грунтовыми водами, что приводит к нарушению кислородного режима и замедлению скорости химических реакций. Оставшиеся 22 случая были зафиксированы в период начала половодья (смыв загрязняющих веществ с прилегающей территории) и перед ледоставом (понижение температуры воды). Около 61% общего числа случаев ВЗ + ЭВЗ приходится на тяжелые металлы, 37% на растворенный кислород (рисунок 3).

Таблица 2

Перечень водотоков со случаями ВЗ и ЭВЗ в 2010-2017 годы

Кол-во случаев

Гидрохимический пост

Октябрьское (33), Сургут (7), Сытомино (5), Нижневартовск (6), Полноват (1), Нефтеюганск (7), Белогорье (2)

р. Сев. Сосьва

Березово (11),Сосьва (4)

Белоярский (7), Юильск (2)

Ханты-Мансийск (11), Горноправдинск (2)

Выкатное (3), Урай (12), Болчары (2)

Новоаганск (3)

р. Тром-Юган,

Русскинская (3)

р.Большой Юган

Ларьяк (4), Большетархово (3)

Лянтор (2)

Выкатной (1), Болчары (3), Урай (10)

Белоярский (7)

Ломбовож


Недостаток растворенного кислорода объясняется низким уровнем воды в период закрытого русла и частичным промерзанием створов при отсутствии возможности насыщения кислородом речных вод.

Высокие концентрации растворенных форм тяжелых металлов, в свою очередь, связаны с пониженным содержанием кислорода – в анаэробных условиях замедляется скорость окисления соединений металлов.

Особую актуальность для оценки экологической ситуации в регионе представляют концентрации нефтепродуктов и хлоридов в поверхностных водах, которые характеризуют техногенные потоки загрязняющих веществ в районах нефтепромыслов.

В соответствии с требованиями, утвержденными постановлением Правительства автономного округа от 23.12.2011 №485-п, отбор проб поверхностных вод для определения нефтепродуктов и хлоридов, как приоритетных загрязняющих веществ, проводится в пунктах локального мониторинга ежемесячно с учётом гидрологических особенностей водных объектов. Ежегодный объем измерений нефтепродуктов в поверхностных водах на территории лицензионных участков – около 9 000 шт.

По результатам локального мониторинга доля проб, загрязненных нефтепродуктами, имеет тенденцию к снижению с 11 % в 2008 году до 4,8 % 2018 году от общей выборки (рисунок 4).

Рисунок 4. Распределение измерений нефтепродуктов относительно ПДК

В целом за 5 лет годы на нефтяных месторождениях округа, среднее содержание нефтепродуктов в поверхностных водах варьировало на уровне 0,026-0,049 мг/дм3, не превышая установленного норматива (таблица 1).

Содержание хлоридов в поверхностных водах, как и нефтепродуктов, отражает степень техногенной нагрузки и соблюдение норм рационального природопользования. Ежегодно в поверхностных водах на лицензионных участках недр выполняется около 9 000 измерений хлоридов. При этом превышения ПДК хлоридов фиксируются редко, а доля проб, загрязненных хлоридами, с 2008 года не превышает 0,1-0,8% от выборки (рисунок 5).

Рисунок 5. Распределение измерений хлоридов относительно ПДК

Систематически повышенные концентрации нефтепродуктов и хлоридов в пунктах мониторинга поверхностных водах отмечаются локально, преимущественно в границах давно разрабатываемых лицензионных участков с повышенным уровнем аварийности: Самотлорском (север) (18 пунктов) и Самотлорском (12 пунктов), Мамонтовском (16 пунктов), Южно-Сургутском (3 пункта), Правдинском (7 пунктов), Южно-Балыкском (4 пункта), Мало-Балыкском (4 пункта), Усть-Балыкском (2 пункта), Вахском (9 пунктов) и Советском (8 пунктов).

Для улучшения экологической ситуации под контролем Природнадзора Югры осуществлена корректировка природоохранных мероприятий недропользователей на территории указанных лицензионных участков, в части принятия оперативных мер по снижению аварийности на трубопроводных системах; проведения первоочередных мероприятий по восстановлению загрязненных земельных участков и представлению рекультивированных участков к освидетельствованию в текущем году.

Таким образом, качество воды в поверхностных водных объектах автономного округа во многом объясняется природным происхождением и сезонной динамикой соединений железа, марганца, цинка, меди, а также растворенного кислорода. Мониторинговыми исследованиями последних лет показано, что нефтяное и солевое загрязнение в целом для региона стабилизировалось на относительно низком уровне.

Снижение нефтяного и солевого загрязнения поверхностных вод на территории автономного округа подтверждается также результатами наблюдений в створах Росгидромета. В основных реках (Обь и Иртыш) с 2008 года отмечается устойчивая тенденция снижения среднегодовых концентраций нефтепродуктов до уровня, не превышающего ПДК; содержание хлоридов стабильно составляет десятые доли ПДК.

Указана дата переноса документа на новую платформу 1C-bitrix.

1

В работе отражены основные результаты оценки качества вод Верхневолжского водохранилища за период 2011–2014 гг. Проведен анализ гидрохимических данных вод водохранилища. Выявлены приоритетные загрязняющие вещества, к которым относится марганец, железо общее, цветность, аммоний-ион, нефтепродукты. Приведены результаты расчета интегральных показателей качества воды: индексы ИЗВ (Индекс загрязнения воды), ИКВ (Общесанитарный индекс качества воды) и УКИЗВ (Удельный комбинаторный индекс загрязненности воды). Проведена оценка качества вод Верхневолжского водохранилища. В целом качество вод Верхневолжского водохранилища по значению интегральных гидрохимических индексов оценено как вода «грязная» (по значению индекса ИЗВ), умеренно-загрязненная (по значению индекса ИКВ), вода очень загрязненная (по значению индекса УКИЗВ).

качество вод

Верхневолжское водохранилище

интегральные индексы качества

1. Верхневолжское водохранилище // Большая советская энциклопедия. – М.: Советская энциклопедия, 1969–1978. URL: www./enc-dic.com/enc_sovet/Verhnevolzhskoe_ vodohranilische-3512.html (дата обращения: 17.07.15).

2. Гидрохимические показатели состояния окружающей среды: справочные материалы / под ред. Т.В. Гусевой. – М.: Форум: ИНФРА-М, 2007. – 192 с.

3. Лазарева Г.А., Кленова А.В. Оценка экологического состояния Верхневолжского водохранилища по гидрохимическим показателям // Сборник трудов VII международной научной конференции молодых ученых и талантливых студентов «Водные ресурсы, экология и гидрологическая безопасность» (г. Москва, ИВП РАН, Российская академия естествознания, 11–13 декабря 2013 г.). – М., 2014. – C.173-176.

4. РД 52.24.643-2002 Метод комплексной оценки степени загрязненности поверхностных вод по гидрохимическим показателям – Росгидромет, 2002. – 21 с.

5. Шитиков В.К., Розенберг Г.С., Зинченко Т.Д. Количественная гидроэкология: методы системной идентификации. – Тольятти: ИЭВБ РАН, 2003. – 463 с.

Качество вод водных объектов формируется под воздействием как природных, так и антропогенных факторов. В результате человеческой деятельности в водоемы может поступать много загрязнителей разной степени токсичности. Загрязняют водоемы стоки сельскохозяйственных и промышленных предприятий, сточные воды населенных пунктов. В современных условиях проблема обеспечения населения чистой водой становится все более актуальной, а исследование состояния водных объектов является одной из важнейших задач.

Целью данной работы является оценка качества вод Верхневолжского водохранилища с использованием интегральных показателей качества.

Объекты и методы исследования

Верхневолжское водохранилище создано в 1843 году (реконструировано в 1944- 47 гг.) и состоит из сообщающихся между собой озер Стерж, Вселуг, Пено и Волго. Водохранилище располагается на северо-западе Тверской области на территории Осташковского, Селижаровского и Пеновского районов. Площадь зеркала водохранилища составляет 183 км2, объем - 0,52 км3, длина - 85 км, наибольшая ширина 6 км. Протяженность береговой линии - 225 км. При высоком уровне воды, близком к нормальному подпорному уровню (206,5 м), водохранилище представляет единый водоем, а в межень при сильной сработке расчленяется на озера, слабо сообщающиеся между собой. Водные ресурсы Верхневолжского водохранилища используются в летний меженный период для регулирования уровней в верховьях Волги, а также для промышленных целей, коммунальных нужд, в сельском хозяйстве и животноводстве. Большое значение водохранилище имеет для отдыха, туризма и рыболовства .

При выполнении исследований были изучены 3 створа Верхневолжского водохранилища (створ оз. Волго, поселок Пено; створ оз. Волго, д. Девичье; створ Верхневолжский бейшлот) (Рис.1) по гидрохимическим показателям за период с 2011 по 2014 г.

Рисунок 1. Карта-схема станций отбора проб Верхневолжского вдхр.: 1 - створ оз. Волго, поселок Пено, 2 - створ оз. Волго, д. Девичье, 3 - створ Верхневолжский бейшлот

В работе были использованы данные, предоставленные Дубнинской Экоаналитической Лабораторией (ДЭАЛ) ФГВУ «Центррегионводхоз», по таким гидрохимическим показателям как: водородный показатель, цветность, аммоний-ион, нитрат-ион, нитрит-ион, фосфат-ион, железо общее, хлорид ион, сульфат-ион, марганец, магний, биохимическая потребность в кислороде, медь, цинк, свинец, нефтепродукты, растворенный кислород, никель.

Результаты исследования

Анализ гидрохимических данных показал, что для всех исследуемых створов Верхневолжского водохранилища характерно высокое содержание в воде марганца, железа общего и аммоний-иона, концентрации которых всегда превышали ПДКв, в отдельные периоды отмечены превышения ПДКв по нефтепродуктам. Концентрации этих веществ за исследуемый период изменялись незначительно .

Для оценки качества вод Верхневолжского водохранилища за 2011-2014 гг. были рассчитаны интегральные показатели качества вод: индексы ИЗВ (Индекс загрязнения воды), ИКВ (Общесанитарный индекс качества воды) и УКИЗВ (Удельный комбинаторный индекс загрязненности воды). Полученные результаты представлены в таблице 1.

Таблица 1

Значение индексов ИЗВ, ИКВ, УКИВЗ, класс качества вод, качественное и экологическое состояние вод в створах Верхневолжского водохранилища

Значение индексов

по створам

Створ оз. Волго, п. Пено

Класс качества воды

Качественное состояние

очень грязные

Класс качества воды

Качественное состояние

умеренно-загрязненные

умеренно-загрязненные

умеренно-загрязненные

Класс и разряд

Качественное состояние

очень загрязненная

очень загрязненная

загрязненная

Створ оз. Волго, д. Девичье

Класс качества воды

Качественное состояние

Класс качества воды

Качественное состояние

умеренно-загрязненные

умеренно-загрязненные

умеренно-загрязненные

Створ Верхневолжский бейшлот

Класс качества воды

Качественное состояние

очень грязные


Продолжение Таблицы 1

Значение индексов

по створам

Класс качества воды

Качественное состояние

умеренно-загрязненные

умеренно-загрязненные

умеренно-загрязненные

умеренно-загрязненные

Класс и разряд

Качественное состояние

очень загрязненная

очень загрязненная

очень загрязненная

очень загрязненная

Гидрохимический индекс загрязнения воды (ИЗВ) использовался в качестве основного комплексного показателя качества воды до 2002 г. Классификация качества воды по значениям ИЗВ, позволяет разделять поверхностные воды на 7 классов в зависимости от степени их загрязненности. Расчет ИЗВ проводится по шести ингредиентам: обязательные - растворенный кислород и БПК5, и 4 вещества, которые имели наибольшие относительные концентрации (Ci/ПДКi) . Основной недостаток этого способа оценки качества вод состоит в том, что учитывается небольшой спектр загрязняющих веществ.

Максимальные значения индекса ИЗВ во всех створах наблюдаются в зимне-весенний период, а минимальные - в осенний период. По значению индекса ИЗВ в 2011-2013 годах во всех створах качество вод оценивается как «грязная» (класс качества воды - 5). В 2014 г. в створе Верхневолжский бейшлот (№ 3) наблюдается ухудшение качества воды до 6 класса качества - «очень грязная», при этом в створах оз. Волго п. Пено (№1) и оз. Волго д. Девичье (№ 2) качество воды не изменилось (рис. 2).

Рисунок 2. Изменение значений индекса ИЗВ в створах водохранилища за 2011-2014 гг.

Для определения общесанитарного индекса качества воды (ИКВ) проводится балльная оценка (от 1 до 5 баллов). Баллы присваиваются каждому показателю, используемые для расчета, также учитывается вес показателя, после чего определяется величина ИКВ .

В целом по значениям индекса ИКВ на протяжении рассматриваемого периода (2011-2014 гг.) во всех створах воды на протяжении практически всего периода исследования за отдельным исключением характеризуются как «умеренно-загрязненные» (3 класс качества воды) (рис. 3).

Рисунок 3. Изменение значений индекса ИКВ в створах водохранилища за 2011-2014 гг.

Удельный комбинаторный индекс загрязненности воды (УКИЗВ) на сегодняшний день становится приоритетным при оценке качества вод. Классификация качества воды по значениям УКИЗВ позволяет разделять поверхностные воды на 5 классов в зависимости от степени их загрязненности . В отличие от ИЗВ при данном подходе к расчету определяется не только кратность превышения ПДК, но и определяется повторяемость случаев превышений нормативных значений. Данные расчета индекса УКИЗВ позволяют точнее отражать качество поверхностных вод.

По значению индекса УКИЗВ воды Верхневолжского водохранилища в течение наблюдаемого периода (2011-2014 гг.) во всех створах оценивается как «очень загрязненная» (3 класс, разряд «Б»), за исключением створа в створе оз. Волго п. Пено в 2014 году, где степень загрязненности воды характеризуется как «загрязненная» (3 класс, разряд «А») (рис. 4).

Рисунок 4. Изменение значений индекса УКИЗВ в створах водохранилища за 2011-2014 гг.

Отмечено увеличение значений индекса УКИВЗ в створах, расположенных ниже по течению водохранилища, и хотя они не выходят за рамки значений одного класса качества и разряда, это свидетельствует о незначительном ухудшении качества вод. В створах в районе д. Девечье и Верхневолжского бейшлота значение индекса в 2013 г. несколько выше, чем в остальные годы исследованного периода.

Выводы

Таким образом, в результате проведенной работы были определены приоритетные загрязняющие вещества и показатели вод Верхневолжского водохранилища, к которым относятся марганец, железо общее, цветность, аммоний-ион и нефтепродукты. Качество вод Верхневолжского водохранилища по значению индекса ИЗВ оценено как «грязная» (5 класс), по значению индекса ИКВ - как «умеренно-загрязненная» (3 класс), по значению индекса УКИЗВ - как вода «очень загрязненная» (3 класс, разряд «Б»). Применение индекса УКИЗВ дает более точную информацию о классе состояния поверхностных вод, т.к. при его расчете используются все гидрохимические показатели, определяемые в пробе.

Рецензенты:

Жмылев П.Ю., д.б.н., профессор кафедры экологии и наук о Земле факультета естественных и инженерных наук, ГБОУ ВО МО «Государственный университет “Дубна”», г. Дубна.

Судницин И.И., д.б.н., профессор кафедры экологии и наук о Земле факультета естественных и инженерных наук, ГБОУ ВО МО «Государственный университет “Дубна”», г. Дубна.

Библиографическая ссылка

Лазарева Г.А., Кленова А.В. ОЦЕНКА КАЧЕСТВА ПОВЕРХНОСТНЫХ ВОД ПО ИНТЕГРАЛЬНЫМ ПОКАЗАТЕЛЯМ (НА ПРИМЕРЕ ВЕРХНЕВОЛЖСКОГО ВОДОХРАНИЛИЩА) // Современные проблемы науки и образования. – 2015. – № 6.;
URL: http://science-education.ru/ru/article/view?id=23406 (дата обращения: 20.03.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»