Разнесенная пара сцепленных запутанных частиц. Проведены новые эксперименты по проверке механизма квантовой запутанности

Квантовая запутанность - это квантовомеханическое явление, которое стали изучать на практике сравнительно недавно - в 1970-е годы. Оно заключается в следующем. Представим себе, что в результате какого-нибудь события родились одновременно два фотона. Получить пару квантово-запутанных фотонов можно, например, светя на нелинейный кристалл лазером с определенными характеристиками. У порождаемых фотонов в паре могут быть разные частоты (и длины волны), но при этом сумма их частот равна частоте исходного возбуждения. У них также ортогональные поляризации в базисе кристаллической решетки, что облегчает их пространственное разделение. При рождении пары частиц должны выполняться законы сохранения, а значит, суммарные характеристики (поляризация, частота) двух частиц имеют заранее известное, строго определенное значение. Из этого следует, что, зная характеристику одного фотона, мы совершенно точно можем узнать характеристику другого. Согласно принципам квантовой механики, до момента измерения частица находится в суперпозиции нескольких возможных состояний, а при измерении суперпозиция снимается и частица оказывается в каком-то одном состоянии. Если проанализировать много частиц, то в каждом состоянии окажется определенный процент частиц, соответствующий вероятности этого состояния в суперпозиции.

А что же происходит с суперпозицией состояний у запутанных частиц в момент измерения состояния одной из них? Парадоксальность и контринтуитивность квантовой запутанности заключается в том, что характеристика второго фотона оказывается определена ровно в тот момент, когда мы измерили характеристику первого. Нет, это не теоретическое построение, это суровая правда окружающего мира, подтвержденная экспериментально. Да, она подразумевает наличие взаимодействия, предающегося с бесконечно большой скоростью, превышающей даже скорость света. Как этим пользоваться на благо человечества пока не очень понятно. Есть идеи применения для вычислений на квантовом компьютере, криптографии и коммуникации.

Ученым из Вены удалось разработать совершенно новую и крайне контринтуитивную методику получения изображений, основанную на квантовой природе света. В их системе изображение формирует свет, никогда не взаимодействовавший с объектом. В основе технологии лежит принцип квантовой запутанности. Статья об этом опубликована в журнале Nature. В исследовании принимали участие сотрудники Института квантовой оптики и квантовой информации (Institute for Quantum Optics and Quantum Information, IQOQI) Венского центра квантовой науки и технологии (Vienna Center for Quantum Science and Technology, VCQ) и Венского университета.

В эксперименте венских ученых один из пары запутанных фотонов обладал длиной волны в инфракрасной части спектра, и именно он проходил через образец. Его собрат обладал длиной волны, соответствующей красному свету и мог детектироваться камерой. Пучок света, генерируемый лазером, делился на две половины, и половины направлялись на два нелинейных кристалла. Объект помещался между двумя кристаллами. Он представлял собой вырезанный силуэт кота - в честь перекочевавшего уже в фольклор персонажа умозрительного эксперимента Эрвина Шредингера. На него направлялся инфракрасный пучок фотонов с первого кристалла. Затем эти фотоны проходили через второй кристалл, где прошедшие сквозь изображение кота фотоны смешивались со свежеродившимися инфракрасными фотонами так, что понять, в каком из двух кристаллов они родились, было совершенно невозможно. Более того, камера и вовсе не детектировала инфракрасные фотоны. Оба пучка красных фотонов объединялись и отправлялись на приемное устройство. Оказалось, что благодаря эффекту квантовой запутанности они хранили всю нужную для создания изображения информацию об объекте.

К аналогичным результатам привел эксперимент, в котором в качестве изображения использовалась не непрозрачная пластина с вырезанным контуром, а объемное силиконовое изображение, не поглощавшее света, но замедлявшее прохождение инфракрасного фотона и создающее разность фаз между фотонами, прошедшими через разные части изображения. Оказалось, что такая пластика оказывала влияние и на фазу красных фотонов, находящихся в состоянии квантовой запутанности с инфракрасными фотонами, но никогда не проходившими через изображение.

Что такое квантовая запутанность простыми словами? Телепортация – возможно ли это? Доказана ли экспериментально возможность телепортации? Что такое кошмар Энштейна? В этой статье Вы получите ответы на эти вопросы.

Мы в фантастических фильмах и книгах часто встречаемся с телепортацией. Вы задумывались, почему то, что придумали писатели, со временем становится нашей реальностью? Как им удаётся предсказывать будущее? Думаю, это не случайность. Часто писатели-фантасты обладают обширными знаниями по физике и другим наукам, что в сочетании с их интуицией и незаурядной фантазией помогает им построить ретроспективный анализ прошлого и смоделировать события будущего.

Из статьи Вы узнаете:

  • Что такое квантовая запутанность?

Понятие «квантовая запутанность» появилось из теоретического предположения, вытекающего из уравнений квантовой механики. Оно означает вот что: если 2 квантовые частицы (ими могут быть электроны, фотоны) оказываются взаимозависимыми (запутанными), то связь сохраняется, даже если их разнести в разные части Вселенной

Открытие квантовой запутанности в некоторой степени объясняет теоретическую возможность телепортации.

Если коротко, то спином квантовой частицы (электрона, фотона) называется ёё собственный угловой момент. Спин можно представить в виде вектора, а саму квантовую частицу – в виде микроскопического магнитика.

Важно понять, что когда за квантом, например, электроном никто не наблюдает, то он имеет все значения спина одновременно. Это фундаментальное понятие квантовой механики называется «суперпозицией».

Представьте, что Ваш электрон вращается одновременно по часовой стрелке и против часовой стрелки. То есть он сразу в обоих состояниях спина (вектор спина вверх/вектор спина вниз). Представили? ОК. Но как только появляется наблюдатель и измеряет его состояние, электрон сам определяет, какой вектор спина ему принять – вверх или вниз.

Хотите узнать, как измеряют спин электрона? Его помещают в магнитное поле: электроны со спином против направления поля, и со спином по направлению поля отклонятся в разные стороны. Спины фотонов измеряют, направляя в поляризационный фильтр. Если спин (или поляризация) фотона «-1», то он не проходит через фильтр, а если «+1», то проходит.

Резюме. Как только Вы измерили состояние одного электрона и определили, что его спин «+1», то связанный или «запутанный» с ним электрон принимает значение спина «-1». Причём моментально, даже если он находится на Марсе. Хотя до измерения состояния 2-го электрона, он имел оба значения спина одновременно («+1» и «-1»).

Этот парадокс, доказанный математически, очень не нравился Энштейну. Потому что он противоречил его открытию, что нет скорости больше, чем скорость света. Но понятие запутанных частиц доказывало: если одна из запутанных частиц будет находиться на Земле, а 2-я – на Марсе, то 1-я частица в момент замера ёё состояния мгновенно (быстрее скорости света) передаёт 2-й частице информацию, какое значение спина ей принять. А именно: противоположное значение.

Спор Энштейна с Бором. Кто прав?

Энштейн называл «квантовую запутанность» SPUCKHAFTE FERWIRKLUNG (нем.) или пугающим, призрачным, сверхъестественным действием на расстоянии .

Энштейн не соглашался с интерпретацией Бора о квантовой запутанности частиц. Потому что это противоречило его теории, что информация не может передаваться со скоростью больше скорости света. В 1935 году он опубликовал статью с описанием мысленного эксперимента. Этот эксперимент назвали «Парадоксом Эйнштейна - Подольского - Розена».

Энштейн соглашался, что связанные частицы могут существовать, но придумал другое объяснение мгновенной передачи информации между ними. Он сказал, что «запутанные частицы» скорее напоминают пару перчаток. Представьте, что у Вас пара перчаток. Левую Вы положили в один чемодан, а правую – во второй. 1-й чемодан Вы отправили другу, а 2-й – на Луну. Когда друг получит чемодан, он будет знать, что в чемодане либо левая, либо правая перчатка. Когда же он откроет чемодан и увидит, что в нём левая перчатка, то он мгновенно узнает, что на Луне – правая. И это не означает, что друг повлиял на то, что в чемодане левая перчатка и не означает, что левая перчатка мгновенно передала информацию правой. Это только означает то, что свойства перчаток были изначально такими с момента, как их разделили. Т.е. в запутанные квантовые частицы изначально заложена информация об их состояниях.

Так кто же был прав Бор, который считал, что связанные частицы передают друг другу информацию мгновенно, даже если они разнесены на огромные расстояния? Или Энштейн, который считал, что никакой сверхъестественной связи нет, и всё предопределено задолго до момента измерения.

Этот спор на 30 лет переместился в область философии. Разрешился ли спор с тех времён?

Теорема Белла. Спор разрешён?

Джон Клаузер, будучи ещё аспирантом Колумбийского университета, в 1967 отыскал забытую работу ирландского физика Джона Белла. Это была сенсация: оказывается Беллу удалось вывести из тупика спор Бора и Энштейна . Он предложил экспериментально проверить обе гипотезы. Для этого он предложил построить машину, которая бы создавала и сравнивала много пар запутанных частиц. Джон Клаузер принялся разрабатывать такую машину. Его машина могла создавать тысячи пар запутанных частиц и сравнивать их по разным параметрам. Результаты экспериментов доказывали правоту Бора.

А вскоре французский физик Ален Аспе провёл опыты, один из которых касался самой сути спора между Энштейном и Бором. В этом опыте измерение одной частицы могло прямо повлиять на другую только в случае, если сигнал от 1-й ко 2-й прошёл бы со скоростью, превышающей скорость света. Но сам Энштейн доказал, что это невозможно. Оставалось только одно объяснение – необъяснимая, сверхъестественная связь между частицами.

Результаты опытов доказали, что теоретическое предположение квантовой механики – верно. Квантовая запутанность – это реальность (Квантовая запутанность Википедия ). Квантовые частицы могут быть связанными несмотря на огромные расстояния. Измерение состояния одной частицы влияет на состояние далеко расположенной от нёё 2-й частицы так, как если бы расстояния между ними не существовало. Сверхъестественная связь на расстоянии происходит в действительности.

Остаётся вопрос, возможна ли телепортация?

Подтверждена ли телепортация экспериментально?

Японские учёные ещё в 2011 году впервые в мире телепортировали фотоны! Мгновенно переместили из пункта А в пункт Б пучок света.

Хотите, чтобы за 5 минут всё, что Вы прочитали о квантовой запутанности, разложилось по полочкам – посмотрите это видео замечательное видео.

До скорых встреч!

Желаю всем интересных, вдохновляющих проектов!

P.S. Если статья была Вам полезна и понятна, не забудьте поделитесь ею.

P.S. Пишите Ваши мысли, вопросы в комментариях. Какие ещё вопросы по квантовой физике Вам интересны?

P.S. Подписывайтесь на блог - форма для подписки под статьёй.

  • Перевод

Квантовая запутанность – одно из самых сложных понятий в науке, но основные её принципы просты. А если понять её, запутанность открывает путь к лучшему пониманию таких понятий, как множественность миров в квантовой теории.

Чарующей аурой загадочности окутано понятие квантовой запутанности, а также (каким-то образом) связанное с ним требование квантовой теории о необходимости наличия «многих миров». И, тем не менее, по сути своей это научные идеи с приземлённым смыслом и конкретными применениями. Я хотел бы объяснить понятия запутанности и множества миров настолько просто и ясно, насколько знаю их сам.

I

Запутанность считается явлением, уникальным для квантовой механики – но это не так. На самом деле, для начала будет более понятным (хотя это и необычный подход) рассмотреть простую, не квантовую (классическую) версию запутанности. Это позволит нам отделить тонкости, связанные с самой запутанностью, от других странностей квантовой теории.

Запутанность появляется в ситуациях, в которых у нас есть частичная информация о состоянии двух систем. К примеру, нашими системами могут стать два объекта – назовём их каоны. «К» будет обозначать «классические» объекты. Но если вам очень хочется представлять себе что-то конкретное и приятное – представьте, что это пирожные.

Наши каоны будут иметь две формы, квадратную или круглую, и эти формы будут обозначать их возможные состояния. Тогда четырьмя возможными совместными состояниями двух каонов будут: (квадрат, квадрат), (квадрат, круг), (круг, квадрат), (круг, круг). В таблице указана вероятность нахождения системы в одном из четырёх перечисленных состояний.


Мы будем говорить, что каоны «независимы», если знание о состоянии одного из них не даёт нам информации о состоянии другого. И у этой таблицы есть такое свойство. Если первый каон (пирожное) квадратный, мы всё ещё не знаем форму второго. И наоборот, форма второго ничего не говорит нам о форме первого.

С другой стороны, мы скажем, что два каона запутаны, если информация об одном из них улучшает наши знания о другом. Вторая табличка покажет нам сильную запутанность. В этом случае, если первый каон будет круглым, мы будем знать, что второй тоже круглый. А если первый каон квадратный, то таким же будет и второй. Зная форму одного, мы однозначно определим форму другого.

Квантовая версия запутанности выглядит, по сути, также – это отсутствие независимости. В квантовой теории состояния описываются математическими объектами под названием волновая функция. Правила, объединяющие волновые функции с физическими возможностями, порождают очень интересные сложности, которые мы обсудим позже, но основное понятие о запутанном знании, которое мы продемонстрировали для классического случая, остаётся тем же.

Хотя пирожные нельзя считать квантовыми системами, запутанность квантовых систем возникает естественным путём – например, после столкновений частиц. На практике незапутанные (независимые) состояния можно считать редкими исключениями, поскольку при взаимодействии систем между ними возникают корреляции.

Рассмотрим, к примеру, молекулы. Они состоят из подсистем – конкретно, электронов и ядер. Минимальное энергетическое состояние молекулы, в котором она обычно и находится, представляет собой сильно запутанное состояние электронов и ядра, поскольку расположение этих составляющих частиц никак не будет независимым. При движении ядра электрон движется с ним.

Вернёмся к нашему примеру. Если мы запишем Φ■, Φ● как волновые функции, описывающие систему 1 в её квадратных или круглых состояниях и ψ■, ψ● для волновых функций, описывающих систему 2 в её квадратных или круглых состояниях, тогда в нашем рабочем примере все состояния можно описать, как:

Независимые: Φ■ ψ■ + Φ■ ψ● + Φ● ψ■ + Φ● ψ●

Запутанные: Φ■ ψ■ + Φ● ψ●

Независимую версию также можно записать, как:

(Φ■ + Φ●)(ψ■ + ψ●)

Отметим, как в последнем случае скобки чётко разделяют первую и вторую системы на независимые части.

Существует множество способов создания запутанных состояний. Один из них – измерить составную систему, дающую вам частичную информацию. Можно узнать, например, что две системы договорились быть одной формы, не зная при этом, какую именно форму они выбрали. Это понятие станет важным чуть позже.

Более характерные последствия квантовой запутанности, такие, как эффекты Эйнштейна-Подольского-Розена (EPR) и Гринберга-Хорна-Зейлингера (GHZ), возникают из-за её взаимодействия ещё с одним свойством квантовой теории под названием «принцип дополнительности». Для обсуждения EPR и GHZ позвольте мне сначала представить вам этот принцип.

До этого момента мы представляли, что каоны бывают двух форм (квадратные и круглые). Теперь представим, что ещё они бывают двух цветов – красного и синего. Рассматривая классические системы, например, пирожные, это дополнительное свойство означало бы, что каон может существовать в одном из четырёх возможных состояний: красный квадрат, красный круг, синий квадрат и синий круг.

Но квантовые пирожные – квантожные… Или квантоны… Ведут себя совсем по-другому. То, что квантон в каких-то ситуациях может обладать разной формой и цветом не обязательно означает, что он одновременно обладает как формой, так и цветом. Фактически, здравый смысл, которого требовал Эйнштейн от физической реальности, не соответствует экспериментальным фактам, что мы скоро увидим.

Мы можем измерить форму квантона, но при этом мы потеряем всю информацию о его цвете. Или мы можем измерить цвет, но потеряем информацию о его форме. Согласно квантовой теории, мы не можем одновременно измерить и форму и цвет. Ничей взгляд на квантовую реальность не обладает полнотой; приходится принимать во внимание множество разных и взаимоисключающих картин, у каждой из которых есть своё неполное представление о происходящем. Это и есть суть принципа дополнительности, такая, как её сформулировал Нильс Бор.

В результате квантовая теория заставляет нас быть осмотрительными в приписывании свойствам физической реальности. Во избежание противоречий приходится признать, что:

Не существует свойства, если его не измерили.
Измерение – активный процесс, изменяющий измеряемую систему

II

Теперь опишем две образцовые, но не классические, иллюстрации странностей квантовой теории. Обе были проверены в строгих экспериментах (в реальных экспериментах люди меряют не формы и цвета пирожных, а угловые моменты электронов).

Альберт Эйнштейн, Борис Подольский и Натан Розен (EPR) описали удивительный эффект, возникающий при запутанности двух квантовых систем. EPR-эффект объединяет особую, экспериментально достижимую форму квантовой запутанности с принципом дополнительности.

EPR-пара состоит из двух квантонов, у каждого из которых можно измерить форму или цвет (но не то и другое сразу). Предположим, что у нас есть множество таких пар, все они одинаковые, и мы можем выбирать, какие измерения мы проводим над их компонентами. Если мы измерим форму одного из членов EPR-пары, мы с одинаковой вероятностью получим квадрат или круг. Если измерим цвет, то с одинаковой вероятностью получим красный или синий.

Интересные эффекты, казавшиеся EPR парадоксальными, возникают, когда мы проводим измерения обоих членов пары. Когда мы меряем цвет обоих членов, или их форму, мы обнаруживаем, что результаты всегда совпадают. То есть, если мы обнаружим, что один из них красный и затем меряем цвет второго, мы также обнаруживаем, что он красный – и т.п. С другой стороны, если мы измеряем форму одного и цвет другого, никакой корреляции не наблюдается. То есть, если первый был квадратом, то второй с одинаковой вероятностью может быть синим или красным.

Согласно квантовой теории, мы получим такие результаты, даже если две системы будет разделять огромное расстояние и измерения будут проведены почти одновременно. Выбор типа измерений в одном месте, судя по всему, влияет на состояние системы в другом месте. Это «пугающее дальнодействие», как называл его Эйнштейн, по-видимому, требует передачу информации – в нашем случае, информации о проведённом измерении – со скоростью, превышающей скорость света.

Но так ли это? Пока я не узнаю, какой результат получили вы, я не знаю, чего ожидать мне. Я получаю полезную информацию, когда я узнаю ваш результат, а не когда вы проводите измерение. И любое сообщение, содержащее полученный вами результат, необходимо передать каким-либо физическим способом, медленнее скорости света.

При дальнейшем изучении парадокс ещё больше разрушается. Давайте рассмотрим состояние второй системы, если измерение первой дало красный цвет. Если мы решим мерить цвет второго квантона, мы получим красный. Но по принципу дополнительности, если мы решим измерить его форму, когда он находится в «красном» состоянии, у нас будут равные шансы на получение квадрата или круга. Поэтому, результат EPR логически предопределён. Это просто пересказ принципа дополнительности.

Нет парадокса и в том, что удалённые события коррелируют. Ведь если мы положим одну из двух перчаток из пары в коробки и отправим их в разные концы планеты, неудивительно, что посмотрев в одну коробку, я могу определить, на какую руку предназначена другая перчатка. Точно так же, во всех случаях корреляция пар EPR должна быть зафиксирована на них, когда они находятся рядом и потому они могут выдержать последующее разделение, будто бы имея память. Странность EPR-парадокса не в самой по себе возможности корреляции, а в возможности её сохранения в виде дополнений.

III

Дэниел Гринбергер, Майкл Хорн и Антон Зейлингер открыли ещё один прекрасный пример квантовой запутанности. ОН включает три наших квантона, находящихся в специально подготовленном запутанном состоянии (GHZ-состоянии). Мы распределяем каждый из них разным удалённым экспериментаторам. Каждый из них выбирает, независимо и случайно, измерять ли цвет или форму и записывает результат. Эксперимент повторяют многократно, но всегда с тремя квантонами в GHZ-состоянии.

Каждый отдельно взятый экспериментатор получает случайные результаты. Измеряя форму квантона, он с равной вероятностью получает квадрат или круг; измеряя цвет квантона, он с равной вероятностью получает красный или синий. Пока всё обыденно.

Но когда экспериментаторы собираются вместе и сравнивают результаты, анализ показывает удивительный результат. Допустим, мы будем называть квадратную форму и красный цвет «добрыми», а круги и синий цвет – «злыми». Экспериментаторы обнаруживают, что если двое из них решили измерить форму, а третий – цвет, тогда либо 0, либо 2 результата измерений получаются «злыми» (т.е. круглыми или синими). Но если все трое решают измерить цвет, то либо 1 либо 3 измерения получаются злыми. Это предсказывает квантовая механика, и именно это и происходит.

Вопрос: количество зла чётное или нечётное? В разных измерениях реализовываются обе возможности. Нам приходится отказаться от этого вопроса. Не имеет смысла рассуждать о количестве зла в системе без связи с тем, как его измеряют. И это приводит к противоречиям.

Эффект GHZ, как описывает его физик Сидни Колман, это «оплеуха от квантовой механики». Он разрушает привычное, полученное из опыта ожидание того, что у физических систем есть предопределённые свойства, независимые от их измерения. Если бы это было так, то баланс доброго и злого не зависел бы от выбора типов измерений. После того, как вы примете существование GHZ-эффекта, вы его не забудете, а ваш кругозор будет расширен.

IV

Пока что мы рассуждаем о том, как запутанность не позволяет назначить уникальные независимые состояния нескольким квантонам. Такие же рассуждения применимы к изменениям одного квантона, происходящим со временем.

Мы говорим об «запутанных историях», когда системе невозможно присвоить определённое состояние в каждый момент времени. Так же, как в традиционной запутанности мы исключаем какие-то возможности, мы можем создать и запутанные истории, проводя измерения, собирающие частичную информацию о прошлых событиях. В простейших запутанных историях у нас есть один квантон, изучаемый нами в два разных момента времени. Мы можем представить ситуацию, когда мы определяем, что форма нашего квантона оба раза была квадратной, или круглой оба раза, но при этом остаются возможными обе ситуации. Это темпоральная квантовая аналогия простейшим вариантам запутанности, описанным ранее.

Используя более сложный протокол, мы можем добавить чуть-чуть дополнительности в эту систему, и описать ситуации, вызывающие «многомировое» свойство квантовой теории. Наш квантон можно подготовить в красном состоянии, а затем измерить и получить голубое. И как в предыдущих примерах, мы не можем на постоянной основе присвоить квантону свойство цвета в промежутке между двумя измерениями; нет у него и определённой формы. Такие истории реализовывают, ограниченным, но полностью контролируемым и точным способом, интуицию, свойственную картинке множественности миров в квантовой механике. Определённое состояние может разделиться на две противоречащие друг другу исторические траектории, которые затем снова соединяются.

Эрвин Шрёдингер, основатель квантовой теории, скептически относившийся к её правильности, подчёркивал, что эволюция квантовых систем естественным образом приводит к состояниям, измерение которых может дать чрезвычайно разные результаты. Его мысленный эксперимент с «котом Шрёдингера» постулирует, как известно, квантовую неопределённость, выведенную на уровень влияния на смертность кошачьих. До измерения коту невозможно присвоить свойство жизни (или смерти). Оба, или ни одно из них, существуют вместе в потустороннем мире возможностей.

Повседневный язык плохо приспособлен для объяснения квантовой дополнительности, в частности потому, что повседневный опыт её не включает. Практические кошки взаимодействуют с окружающими молекулами воздуха, и другими предметами, совершенно по-разному, в зависимости от того, живы они или мертвы, поэтому на практике измерение проходит автоматически, и кот продолжает жить (или не жить). Но истории с запутанностью описывают квантоны, являющиеся котятами Шрёдингера. Их полное описание требует, чтобы мы принимали к рассмотрению две взаимоисключающие траектории свойств.

Контролируемая экспериментальная реализация запутанных историй – вещь деликатная, поскольку требует сбора частичной информации о квантонах. Обычные квантовые измерения обычно собирают всю информацию сразу – к примеру, определяют точную форму или точный цвет – вместо того, чтобы несколько раз получить частичную информацию. Но это можно сделать, хотя и с чрезвычайными техническими трудностями. Этим способом мы можем присвоить определённый математический и экспериментальный смысл распространению концепции «множественности миров» в квантовой теории, и продемонстрировать её реальность.

Относится к «Теории мироздания»

Квантовая запутанность


В инете есть настолько много добротных статей, помогающих выработать адекватн ые представления о "запутанных состояниях", что остается делать наиболее подходящие выборки, строя тот уровень описания, который кажется приемлемым для мировоззре нческого сайта.

Тема статьи: многим близка мысль, что все завораживающие причуды запутанных состояний можно было бы объяснить так. Перемешиваем черный и белый шары, не глядя расфасовываем в коробочки и отправляем в разные стороны. Открываем коробочку на одной стороне, смотрим: черный шар, после чего на 100% уверены, что в другой коробочке - белый. Вот и все:)

Цель статьи - не строгое погружение во все особенности понимания "запутанных состояний", а составление системы общих представлений, с пониманием главных принципов. Именно так и стоит относиться ко всему изложенному:)

Сразу зададим определяющий контекст . Когда специалисты (а не далекие от данной специфики обсуждатели, пусть даже в чем-то ученые) говорят про спутанность квантовых объектов, то имеют в виду не то, что это образует одно целое с некоей связью, а то, что один объект становится по квантовым характеристикам точно такой-же как другой (но не всем, а тем, которые допускают идентичность в паре по закону Паули, так спин у спутанной пары не идентичен, а взаимно комплементарен). Т.е. это никакая не связь и никакой не процесс взаимодействия, пусть и может описываться общей функцией. Это – характеристика состояния, которую можно “телепортировать” от одного объекта, другому (кстати здесь тоже повально часто превратное толкование слова “телепортировать”). Если сразу не определиться в этом, то можно зайти очень далеко в мист ику. Поэтому, в первую очередь, все, кто интересуется вопросом, должны четко быть уверенны в том, что именно имеется в виду под “спутанностью”.

То, ради чего была затеяна эта статья сводится к одному вопросу. Отличие поведения квантовых объектов от классических проявляется в единственно известном пока методе проверки: соблюдается или нет определенное условие проверки - неравенство Белла (ниже подробнее), которое для "запутанных" квантовых объектов ведет себя так, как будто существует связь между посланным в разные стороны объектами. Но связь как бы не реальная, т.к. ни информацию, ни энерги ю передать невозможно.

Мало того, эта связь не зависит ни от расстояния, ни от времени : если два объекта были "спутаны", то, независимо от сохранности каждого из них, второй ведет себя так, как будто связь все же существует (хотя наличие такой связи можно обнаружить только при измерении обоих объектов, такое измерение можно разнести во времени: сначала измерить, потом уничтожить один из объектов, а второй измерить позже. Например, см. Р.Пенроуз ). Понятно, что любой вид "связи" становится трудно понимаемым в этом случае и вопрос встает так: может ли быть таким закон вероятности выпадения измеряемого параметра (который описывается волновой функцией), чтобы на каждом из концов неравенство не нарушалось, а при общей статистике с обоих концов - нарушалось - и без какой-либо связи, естественно, кроме связи актом общего возникновения.

Заранее дам ответ: да, может, при условии, что эти вероятности - не "классические", а оперируют комплексными переменными для описания "суперпозиции состояний" - как бы одновременного нахождения всех возможных состояний с определенной вероятностью для каждого.

Для квантовых объектов описатель их состояния (волновая функция) - именно таков. Если говорить об описании положения электрона, то вероятность его нахождения определяет топологию "облака" - форму электронной орбитали. В чем состоит различие между классикой и квантами?

Представим себе быстро вращающееся велосипедное колесо. Где-то на нем прикреплен красный диск бокового отражателя фар, но мы видим лишь более плотную тень размытости в этом месте. Вероятность того, что сунув палку в колесо, отражатель остановится в определенном положении от палки просто определяема: одна палка - одно какое-то положение. Сунем две палки, но остановит колесо только та, которая окажется чуть раньше. Если мы будем стараться сунуть палки совершенно одновременно , добиваясь, чтобы не было времени между концами палки, соприкоснувшимися с колесом, то появится некоторая неопределенность. В "не было времени" между взаимодействиями с сутью объекта - вся суть понимания квантовых чудес:)

Скорость "вращения" того, что определяет форму электрона (поляризации - распространения электрического возмущения) равна предельной скорости, с которой вообще что-то может распространяться в природе (скорости света в вакууме). Мы знаем вывод теор ии относительности: в этом случае время для этого возмущения становится нулевым: нет ничего в природе, что могло бы осуществиться между любыми двумя точками распространения этого возмущения, времени для него не существует. Это значит, что возмущение способно взаимодействовать с любыми другими влияющими на него "палками" без затраты времени - одновременно . И вероятность того, какой результат будет получен в конкретной точке пространства при взаимодействии, должен вычисляться вероятностью, учитывающей этот релятиви стский эффект: Из-за того, что для электрона нет времени, он не способен выбрать ни малейшего отличия между двумя "палками" при взаимодействии с ними и делает это одновременно со своей "точки зрения": электрон проходит в две щели одновременно с разной плотностью волны в каждой и потом интерферирует между самим собой как две наложившиеся волны.

Вот в чем различие в описаниях вероятностей в классике и квантах: квантовые корреляции "сильнее" классических. Если результат выпадения монетки зависит от множества влияющих факторов, но в целом они однозначно детерминированы так, что стоит только сделать точный автомат для выбрасывания монеток, и они станут падать одинаково, - случайность "исчезла". Если же сделать автомат, тыкающий в элекронное облако, то результат определится тем, что каждый тычек будет попадать во что-то всегда, только с разной плотностью сущности электрона в этом месте. Других факторов, кроме статического распределения вероятности нахождения измеряемого параметра в электроне нет и это - уже детерминизм совсем другого рода, чем в классике. Но это - тоже детерминизм, т.е. он всегда вычисляем, воспроизводим, только с особенностью, описываемой волновой функцией. При этом такой квантовый детерминизм касается лишь целостного описания волны кванта. Но, в виду отсутствия собственного времени для кванта, он взаимодействует абсолютно случайно, т.е. нет никакого критерия заранее предсказать результат измерения совокупности его параметров. В этом смысл е (в классическом представлении) он абсолютно недетерминирован.

Электрон реально и в самом деле существует в виде статического образования (а не крутящейся по орбите точки) - стоячей волны электрического возмущения, у которой существует еще один релятиви стский эффект: перпендикулярно основной плоскости "распространения" (понятно почему в кавычках:) электрического поля возникает также статическая область поляризации, которая способна влиять на такую же область другого электрона: магнитный момент. Электрическая поляризация в электроне дает эффект электрического заряда, его отражение в пространстве в виде возможности влияния на другие электроны - в виде магнитного заряда, который не бывает сам по себе без электрического. И если в электронейтральном атоме электрические заряды скомпенсированы зарядами ядер, то магнитные могут оказаться ориентированы в одну сторону и мы получим магнит. Более глубокие представления об этом - в статье .

То, в какую сторону будет направлен магнитный момент электрона - называется спином. Т.е. спин - проявление способа наложения волны электрической деформации на себя с образованием стоячей волны. Числовое значение спина соответствует характеристике наложения волны на себя.У электрона: +1/2или -1/2 (знак символизирует направление бокового смещения поляризации - "магнитный" вектор).

Если на внешнем электронном слое атома есть один электрон и вдруг к нему присоединяется еще один (образование ковалентной связи), то они, как два магнитика, тут же встают в позицию 69, образуя спаренную конфигурацию с энерги ей связи, которую нужно разорвать, чтобы опять разделить эти электроны. Общий спин такой пары - 0.

Спин - тот параметр, который играет важную роль при рассмотрении запутанных состояний. У свободно распространяющегося электромагнитного кванта суть условного параметра "спин" все та же: ориентация магнитной составляющей поля. Но она уже не статична и не приводит к возникновению магнитного момента. Чтобы ее зафиксировать нужен не магнит, а щель поляризатора.

Для затравки представлений о квантовых запутанностях предлагаю прочесть популярную и небольшую статью Алексея Левина : Страсть на расстоянии . Пожалуйста, перейдите по ссылке и прочтите до того, как продолжать:)

Итак, конкретные параметры измерения реализуются только при измерении, а до того они существовали в виде того распределения вероятностей, которое составляло зримую макромиром статику релятиви стких эффектов динамики распространения поляризации микромира. Понять суть происходящего в квантовом мире - означает проникнуться в проявления таких релятиви стких эффектов, которые на деле придают квантовому объекту свойства быть одновременно в разных состояниях до момента конкретного измерения.

"Запутанное состояние" это - вполне детерминированное состояние двух частиц, обладающих настолько одинаковой зависимостью описания квантовых свойств, что на обоих концах проявляются согласованные корреляции, в силу особенностей сути квантовой статики, имеющих согласованное поведение. В отличие от макро статистики, в квантовой статистике возможно сохранение таких корреляций у разнесенных в пространстве и времени ранее согласованных по параметрам объектов. Это проявляется в статистике выполнения неравенств Белла.

Чем отличается волновая функция (наше абстрактное описание) незапутанных электронов двух атомов водорода (при том, что ее параметрами будут общепринятые квантовые числа)? Ничем, кроме того, что спин неспаренного электрона случаен без нарушения неравенств Белла. В случае образования спаренной шаровой орбитали в атоме гелия, или в ковалентных же связях двух атомов водорода, с образованием молекулярной орбитали, обобщенной двумя атомами, параметры двух электронов оказываются взаимно согласованными. Если запутанные электроны расщепить, и они начинают движение в разные стороны, то в их волновой функции появляется параметр, описывающий смещение плотности вероятности в пространстве от времени - траекторию. И это вовсе не означает размазанности функции в пространстве просто потому, что вероятность нахождения объекта становится нулевой на некотором от него удалении и позади не остается ничего, чтобы указывало на вероятность нахождения электрона. Тем более это очевидно в случае разнесения пары во времени. Т.е. возникают два локальных и независимых описателя, смещающихся в противоположных направлениях частиц. Хотя все еще можно использовать один общий описатель, - право того, кто формализ ует:)

Кроме всего, окружение частиц не может оставаться безучастным и так же подвергается модификации: описатели волновой функции частиц окружения изменяются и участвуют в результирующей квантовой статистике своим влиянием (порождая такие явления как декогеренция). Но обычно почти никому в голову не приходит описывать это общей волновой функцией, хотя и это возможно.

Во множестве источников можно подробно ознакомиться с этими явлениями.

М.Б.Менский пишет:

"Одна из целей данной статьи... обосновать точку зрения, что существует формулировка квантовой механики, в которой не возникает никаких парадоксов и в рамках которой можно ответить на все вопросы, которые обычно задают физики. Парадоксы возникают лишь тогда, когда исследователь не удовлетворяется этим "физическим" уровнем теор ии, когда он ставит такие вопросы, которые в физике ставить не принято, другими словами, - когда он берет на себя смелость попытаться выйти за пределы физики . ...Специфические черты квантовой механики, связанные с запутанными состояниями, впер­вые были сформулированы в связи с ЭПР-парадоксом, однако в настоящее время они не воспринимаются как парадоксальные. Для людей, профессионально работаю­щих с квантовомеханическим формализ мом (т.е. для большинства физиков) нет ничего парадоксального ни в ЭПР-парах, ни даже в очень сложных запутанных состояниях с большим числом слагаемых и большим числом факторов в каждом слагаемом. Результаты любых опытов с такими состояниями, в принципе,легко просчитываются (хотя технические трудности при рас­чете сложных запутанных состояний, конечно, возможны). "

Хотя, надо сказать, в рассуждениях о роли сознания, осознанного выбора в квантовой механике Менский оказывается тем самым берущим " на себя смелость попытаться выйти за пределы физики ". Это напоминает попытки подступиться к явлениям психи ки . Как квантовый профессионал Менский хорош, но в механизмах психи ки он, как и Пенроуз - наивен.

Очень кратко и условно (только для схватывания сути) об использовании запутанных состояний в квантовой криптографии и телепортации (т.к. именно это поражает воображение благодарных зрителей).

Итак, криптография. Нужно передать последовательность 1001

Используем два канала. По первому пускаем запутанную частицу, по второму - информацию о том, как нужно интерпретировать полученные данные в виде одного бита.

Предположим, что имеется альтернатива возможного состояния используемого квантовомеханического параметра спин в условных состояниях: 1 или 0. При этом вероятность их выпадений с каждой выпущенной парой частиц - воистину случайна и не передает никакого смысл а.

Первая передача. При измерении здесь вышло, что у частицы состояние 1. Значит у другой - 0. Чтобы на том конце получить требуемую единицу передаем бит 1. Там мерят состояние частицы и, чтобы узнать, что оно означает, складывают с переданной 1. Получают 1. Заодно проверяют по белу, что спутанность не была нарушена, т.е. инфа не перехвачена.

Вторая передача. Вышло опять состояние 1. У другой 0. Передаем инфо - 0. Складываем, получаем требуемую 0.

Третья передача. Вышло состояние здесь 0. Там, значит - 1. Чтобы получить 0, передаем 0. Складываем, получаем 0 (в младшем разряде).

Четвертое. Здесь - 0, там - 1, нужно чтобы было интерпретировано как 1. Передаем инфу - 0.

Вот в таком принципе. Прехват инфо канала бесполезен из-за совершенно некоррелируемой последовательсти (шифрование ключем состояния первой частицы). Перехват запутанного канала - нарушает прием и обнаруживается. Статистика передачи с обоих концов (на приемном конце имеют все нужные данные по передаваемому концу) по Беллу определяет корректность и неперехваченность передачи.

В этом состоит и телепортация. Никакого произвольного навязывания состояния частице там не происходит, а происходит только предсказание того, какое будет это состояние после того (и только после того) как здесь частица будет выведена из связи измерением. И тогда говорят типа, что произошла передача квантового состояния с разрушением комплементарного состояния в исходной точке. Получив там инфу о состоянии здесь, можно тем или иным способом скорректировать квантовомеханический параметр так, чтобы он оказался идентичным такому здесь, но здесь его уже не будет, и говорят о выполнении запрета на клонирование в связанном состоянии.

Похоже, что никакие аналоги этих явлений в макромире, никакие шары, яблоки и т.п. от классической механики не могут послужить для интерпретации проявления такого характера квантовых объектов (на самом деле принципиальных препятствий этому нет, что будет показано ниже в итоговой ссылке). В этом - главная трудность для тех, кто хочет получить зримое "объяснение". Это не значит, что такое не представляемо, как заявляется подчас. Это значит, что нужно довольно кропотливо поработать над релятиви стками представлениями, которые играют определяющую роль в квантовом мире и связывают мир квантов с макро миром.

Но и это не обязательно. Вспомним главную задачу представления: каким должен быть закон материализации измеряемого параметра (который описывается волновой функцией), чтобы на каждом из концов неравенство не нарушалось, а при общей статистики с обоих концов - нарушалось. Существует множество интерпретаций для понимания этого, использующих вспомогательные абстракции. Они говорят об одном и том же разными языками таких абстракций. Из них две - наиболее весомые по разделяемой среди носителей представлений корректности. Надеюсь, что после сказанного будет понятно, что имеется в виду:)

Копенгагенская интерпретация из статьи про парадокс Эйнштейна - Подольского - Розена:

" (ЭПР-парадокс) - кажущийся парадокс... В самом деле, представим себе, что на двух планетах в разных концах Галактики есть две монетки, выпадающие всегда одинаково. Если запротоколировать результаты всех подбрасываний, а потом сравнить их, то они совпадут. Сами же выпадания случайны, на них никак нельзя повлиять. Нельзя, например, договориться, что орёл - это единица, а решка - это ноль, и передавать таким образом двоичный код. Ведь последовательность нулей и единицы будет случайной и на том и на другом «конце провода» и не будет нести никакого смысл а.

Получается, что парадоксу есть объяснение, логически совместимое и с теор ией относительности, и с квантовой механикой.

Можно подумать, что это объяснение слишком неправдоподобно. Это настолько странно, что Альберт Эйнштейн никогда не поверил в «бога, играющего в кости». Но тщательные экспериментальные проверки неравенств Белла показали, что в нашем мире есть-таки нелокальные случайности.

Важно подчеркнуть одно уже упомянутое следствие этой логики: измерения над запутанными состояниями только тогда не будут нарушать теор ию относительности и причинность, если они истинно случайны. Не должно быть никакой связи между обстоятельствами измерения и возмущением, ни малейшей закономерности, потому что в противном случае появилась бы возможность мгновенной передачи информации. Таким образом, квантовая механика (в копенгагенской интерпретации) и существование запутанных состояний доказывают наличие индетерминизма в природе. "

В статистической интерпретации это показывается через понятие "статистических ансамблей" (тот же ):

С точки зрения статистической интерпретации, действительными объектами изучения в квантовой механике являются не единичные микрообъекты, а статистические ансамбли микрообъектов, находящихся в одинаковых макроусловиях. Соответственно, фраза «частица находится в таком-то состоянии» на самом деле означает «частица принадлежит такому-то статистическому ансамблю» (состоящему из множества аналогичных частиц). Поэтому выбор в исходном ансамбле того или иного подансамбля существенно меняет состояние частицы, даже если при этом не происходило непосредственного воздействия на неё.

В качестве простейшей иллюстрации рассмотрим следующий пример. Возьмём 1000 окрашенных монет и бросим их на 1000 листов бумаги . Вероятность того, что на случайно выбранном нами листе отпечатался «орёл», равна 1 / 2. Между тем для листов, на которых монеты лежат «решкой» вверх, та же самая вероятность равна 1 - то есть у нас имеется возможность косвенно устанавливать характер отпечатка на бумаге, глядя не на сам лист, а только на монету. Однако ансамбль, связанный с таким «косвенным измерением», совершенно отличен от исходного: он содержит уже не 1000 листов бумаги , а лишь около 500!

Таким образом, опровержение соотношения неопределённостей в «парадоксе» ЭПР было бы действительным лишь в том случае, если бы для исходного ансамбля оказался возможным одновременный выбор непустого подансамбля и по признаку импульса, и по признаку пространственных координат. Однако как раз невозможность такого выбора и утверждается соотношением неопределённостей! Иначе говоря, «парадокс» ЭПР на деле оказывается порочным кругом: он заранее предполагает неверность опровергаемого факта.

Вариант со «сверхсветовым сигналом» от частицы A к частице B также основан на игнорировании того обстоятельства, что распределения вероятностей значений измеряемых величин характеризуют не конкретную пару частиц, а содержащий огромное количество таких пар статистический ансамбль. Тут в качестве аналогичной можно рассмотреть ситуацию, когда окрашенная монета бросается на лист в темноте, после чего лист вытаскивается и запирается в сейф. Вероятность того, что на листе отпечатался «орёл» apriori равна 1 / 2. И то обстоятельство, что она немедленно превратится в 1, если мы зажжём свет и убедимся, что монета лежит «решкой» вверх, нисколько не свидетельствует о способности нашего взгляда мист ическим образом влиять на запертые в сейфе предметы.

Подробнее: А.А.Печенкин Ансамблевые интерпретации квантовой механики в США и СССР .

И еще одна интерпретация из http://ru.philosophy.kiev.ua/iphras/library/phnauk5/pechen.htm :

Модальная интерпретация ван Фраассена исходит из того, что состояние физической системы изменяется только каузально, т.е. в соответствии с уравнением Шредингера, однако это состояние не детерминирует однозначно значения физических величин, обнаруживаемые при измерении.

Поппер приводит здесь свой излюбленный пример: детский биллиард (уставленная иголками доска, по которой сверху скатывается металлический шарик, символизирующий физическую систему, - сам биллиард символизирует экспериментальное устройство). Когда шарик наверху биллиарда, мы имеем одну диспозицию, одну предрасположенность достичь какой-либо точки внизу доски. Если же мы зафиксировали шарик где-то в середине доски, мы изменили спецификацию эксперимента и получили новую предрасположенность. Квантово-механический индетерминизм сохраняется здесь в полном объеме: Поппер оговаривает, что биллиард не представляет собой механическую систему. Мы лишены возможности прослеживать траекторию шарика. Но “редукция волнового пакета” - это не акт субъективного наблюдения, это сознательное переопределение экспериментальной ситуации, сужение условий опыта.

Подведем общее резюме фактов

1. Несмотря на абсолютную случайность выпадения парамерта при измерении в массе возникающих спутанных пар частиц, в каждой такой паре проявляется согласованность: если одна частица в паре оказывается со спином 1, то другая частица в паре - со спином противоположным. Это в принципе понятно: раз в спаренном состоянии не может быть двух частиц, имеющих одинаковый спин в одном энергетическом состоянии, то при их расщеплении, если согласованность сохраняется, то и спины оказываются все так же согласованными. Стоит определить спин одной, как станет известен спин другой, при том, что случайность спина в измерениях с любой из сторон - абсолютная.

Коротко проясню невозможность полностью одинаковости состояний двух частиц в одной месте пространства-времени, которая в модели строения электронной оболочки атома называется принципом Паули, а в квантовомеханическом рассмотрении согласованных состояний - принципом невозможности клонирования запутанных объектов.

Есть нечто (пока непознанное), реально препятствующее возможности кванту или соответствующей ему частице пребывать в одном локальном состоянии с другим - полностью идентичным по квантовым параметрам. Это реализуется, например, в эффекте Казимира, когда виртуальные кванты между пластинами могут иметь длину волны не более зазора. И особенно наглядно это реализуется в описании атома, когда электроны данного атома не могут иметь во всем идентичные параметры, что аксиом атически формализ овано принципом Паули.

На первом, ближайшем слое могут находится только 2 электрона в виде сферы (s -электроны). Если их два, то они - с разными спинами и спарены (запутаны), образуя общую волну с энерги ей связи, которую нужно приложить, чтобы разорвать эту пару.

Во втором, более удаленном и более энергетическом уровне могут быть 4 "орбитали" по два спаренных электрона в виде стоячей волны формой как объемная восьмерка (p-электроны). Т.е. большая энерги я занимает большее пространство и позволяет соседствовать уже нескольким связанным парам. От первого слоя второй отличается энергетически на 1 возможный дискрет энергетического состояния (более внешние электроны, описывая пространственно большее облако, обладают и большей энерги ей).

Третий слой уже пространственно позволяет иметь 9 орбит в форме четырехлистника (d -электроны), четвертый - 16 орбит - 32 электрона, форма которых тоже напоминает объемные восьмерки в разных комбинациях ( f -электроны).

Формы электронных облаков:

а – s-электроны; б – р-электроны; в – d-электроны.

Вот такой набор дискретно различающихся состояний - квантовые числа - характеризуют возможные локальные состояния электронов. И вот что из этого получается.

Когда два электрона с разными спинами одного энергетического уровня (хотя это принципиально не обязательно: http://www.membrana.ru/lenta/?9250 ) спариваются, то образуется общая "молекулярная орбиталь" с пониженным энергетическим уровнем за счет энерги и связи. Два атома водорода, имеющие по неспаренному электрону, образуют общее перекрытие этих электронов - (простую ковалентную) связь. Пока она есть - воистину два электрона имеют общую согласованную динамику - общую волновую функцию. До каких пор? "Температура" или нечто другое, способное компенсировать энерги ю связи, рвет ее. Атомы разлетаются с электронами уже не имеющими общей волны, но все еще находящимися в комплементарном, взаимосогласованном состоянии спутывания. Но связи уже нет:) Вот тот - момент, когда не стоит более говорить об общей волновой функции, хотя вероятностные характеристики в терминах квантовой механики остаются такими, как если бы эта функция продолжала описывать общую волну. Это как раз и означает сохранение способности к проявлению согласованной корреляции.

Способ получения запутанных электронов через их взаимодействие описан: http://www.scientific.ru/journal/news/n231201.html или популяно-схематично - в http://www.membrana.ru/articles/technic/2002/02/08/170200.html : " Чтобы создать "соотношение неопределённостей" электронов, то есть "запутать" их, нужно убедиться, что они идентичны во всех отношениях, после чего выстрелить этими электронами в расщепитель луча (beam splitter). Механизм "расщепляет" каждый из электронов, приводя их в квантовое состояние "суперпозиции", вследствие чего электрон с равной долей вероятности будет двигаться по одному из двух путей. ".

2. При статистике измерений с обеих сторон взаимная согласованность случайностей в парах может приводить к нарушению неравенства Белла в определенных условиях. Но не за счет использования некоей особой, пока непознанной квантовомеханической сущности.

Следующая небольшая статья (на основе представлений, изложенных Р.Пнроузом) позволяет проследить (показать принцип, пример) как это возможно: Относительность неравенств Белла или Новый ум голого короля . Так же это же показано в работе А.В.Белинского, опубликованной в Успехи физических наук: Теорема белла без предположения о локальности . Дргуая работа А.В.Белинского для размышлени я заинтересовавшимися: Теорема Белла для трихотомных наблюдаемых , а так же обсуждение с д.ф.-м.н., проф., акад. Валерием Борисовичем Морозововым (общепризнанный корифей форумов физфака ФРТК-МФТИ и "дубинушки"), где Морозов предлагает к рассмотрению обе эти работы А.В.Белинского: Опыт Аспекта: вопрос к Морозову . И в дополнение темы о возможности нарушений неравенств Белла без введения какого-либо дальнодействия: Моделирование по неравенству Белла .

Обращаю внимание, что "Относительность неравенств Белла или Новый ум голого короля", как и "Теорема белла без предположения о локальности" в контекст е данной статьи не претендуют на описание механизма квантовомеханической запутанности. Задача показана в последней фразе первой ссылки: "Ссылаться на нарушение неравенств Белла, как на бесспорное опровержение любой модели локального реализма, нет оснований." т.е. граница ее использования - теор ема, озвученная вначале: "Могут существовать модели классической локальности, в которых будут нарушаться неравенства Белла.". Об этом - дополнительные пояснения в обсуждении .

Приведу и модель от себя.
"Нарушение локального реализма" - всего лишь релятиви стский эффект.
Никто (нормальный) не спорит с тем, что для системы, движущейся с предельной скоростью (скорость света в вакууме) нет ни пространства, ни времени (преобразование Лоренца в этом случае дает нулевое время и пространство), т.е. для кванта он находится сразу и здесь и там, каким бы далеким ни было это там.
Понятно, что спутанные кванты обладают вот такой своей точкой отсчета. А электроны - те же кванты в состоянии стоячей волны, т.е. существующие здесь и там сразу на все время существования электрона. Все свойства квантов оказываются предрешенными для нас, тех, кто воспринимает это извне вот почему. Мы состоящим, в конечном счете из квантов, которые и здесь и там. Для них скорость распространения взаимодействия (предельная скорость) - бесконечно высока. Но все эти бесконечности разные также как в разной длине отрезков хоть и бесконечное число точек у каждого, но соотношение этих бесконечностей дает соотношение длин. Вот как для на нас появлятеся время и пространство.
Для нас в экспериментах локальный реализм нарушается, для квантов - нет.
Но это расхождение никак не влияет на реальность потому, что мы не можем воспользоваться такой бесконечной скоростью практически. Ни информация, ни, тем более материя, не передается бесконечно быстро при "квантовой телепортации".
Так что все это - приколы релятиви стских эффектов, не более того. Их можно использовать в квантовой криптографии или еще как-то, ни нельзя использовать для реального дальнодействия.

Смотрим зрительно суть того, что показывают неравенства Белла.
1. Если ориентация измерителей на обоих концах одинаковая, то результат измерения спина на обоих концах всегда будет противоположным.
2. Если ориентация измерителей противоположная, то результат будет совпадающим.
3. Если ориентация левого измерителя отличается от ориентации правого менее, чем на определенный угол, то будет реализовцваться пункт 1 и совпадения окажутся в пределах вероятности, предсказанной Беллом для независимых частиц.
4. Если угол превышает, то - пункт 2 и совпадения окажутся больше вероятности, предсказанной Беллом.

Т.е. при меньшем угле мы будем получать преимущественно противоположные значения спинов, а при большем - преимущественно совпадающие.
Почему так происходит со спином можно представить, имея в виду, что спин электрона - магнитик, и измеряется так же ориентацией магнитного поля (или в свободном кванте спин - направление поляризации и измеряется ориентацией щели, через которую должна прийтись плоскость поворота поляризации).
Ясно, что отправив магнитики, которые были вначале сцеплены и при отправке сохранили свою взаимную ориентацию, мы магнитным полем при измерении будем влиять на них (доворачивая в ту или иную сторону) так, как это происходит в квантовых парадоксах.
Понятно, что встречая магнитное поле (в том числе спин другого электрона) спин обязательно ориентируется в соответствии с ним (взаимно противоположно в случае со спином другого электрона). Поэтому и говорят, что "ориентация спина возникает лишь в ходе измерения", но при этом она зависит от своего первоначального положения (в какую сторону довращаться) и направления влияния измерителя.
Ясно, что никаких дальнодействий для этого не требуется, так же как не требуется заранее прописывать такое поведение в первоначальном состоянии частиц.
У меня есть основания полагать, что пока что при измерениях спина отдельных электронов не учитываются промежуточные состояния спина, а лишь преимущественно - по измерительному полю и против поля. Примеры методов: , . Стоит обратить внимание и на дату освоения этих методов, более позднюю, чем вышеописаннеы эксперименты.
Приведенная модель, конечно, упрощена (в квантовых явлениях спин - не совсем те вещесвтенные магнитики, хотя именно они обеспечивают все наблюдаемые магнитные явления) и не учитывает множество нюансов. Поэтому он - не является описателем реального явления, а показывает только возможный принцип. И еще он показывает как плохо просто доверяться описательному формализ му (формулам) без понимания сути происходящего.
При этом теор ема Белла верна в формулировке из стати Аспека : "невозможно найти теор ию с дополнительным параметром, удовлетворяющую общему описанию, которая воспроизводит все предсказания квантовой механики." а вовсе не в формулировке Пенроуз а: " оказывается, что воспроизвести предсказания квантовой теор ии таким путем (неквантовым) невозможно.". Понятно, чтобы доказать теор ему по Пенроуз у, нужно доказать, что никакими моделями, кроме квантовомеханического эксперимента, нарушения неравенств Белла не возможно.

Это - несколько утрированный, можно сказать вульгарный пример интерпретации, просто для того, чтобы показать, как можно обмануться в таких результатах. Но наведем ясный смысл на то, что хотел доказать Белл и что получается на самом деле. Белл создал опыт, показывающий, что в запутанности нет заранее существующего "алгоритм а", заранее заложенной корреляции (на чем настаивали в то время противники, говоря о том, есть некие скрытые параметры, определяющие такую корреляцию). И тогда вероятности в его опытах должны быть выше, чем вероятность на самом деле случайного процесса (почему хорошо описано ниже).
НО на самом-то деле просто имеют одинаковые вероятностные зависимости. Что это значит? Это значит, что вовсе не предопределенная, заданная связь между фиксацией параметра измерением имеет быть место, а такой результат фиксации происходит от того, что процессы обладают одинаковой (комплементарной) вероятностной функцией (что, в общем-то прямо проистекает из квантовомеханических понятий), суть которой - реализация параметра при фиксации, который был не определен в виду отсутствия в его "системе отсчета" пространства и времени в силу максимально возможной динамики его существования (релятиви стский эффект, формализ уемый Лоренцовыми преобразованиями, см. Вакуум, кванты, вещество).

Вот как описывает методолог ическую суть опыта Белла Брайан Грин в книге Ткань космоса . У него каждый из двоих игроков получили множество ящичков, каждый с тремя дверцами. Если первый игрок открывает ту же дверцу, что и второй в ящичке с одинаковым номером, то он вспыхивает одинаковым светом: красным или синим.
Первый игрок Скалли предполагает, что это обеспечивается заложенной в каждую пару программой цвета вспышки в зависимости от дверцы, второй игрок Малдер считает, что вспышки следуют равновероятно, но как-то связаны (нелокальным дальнодействием). По мнению второго игрока все решает опыт: если программа - то вероятность одинаковых цветов при случайном окрывании разных дверок должна быть больше 50%, вопреки истиной случайной вероятности. Он привел пример почему:
Просто для конкретности представим, что программа для сферы в отдельной коробочке производит синий (1-я дверца), синий (2-я дверца) и красный (3-я дверца) цвета. Теперь, поскольку мы оба выбираем одну из трех дверок, всего имеется девять возможных комбинаций дверок, которые мы можем выбрать для открывания для данной коробочки. Например, я могу выбрать верхнюю дверку на моей коробочке, тогда как ты можешь выбрать боковую дверку на твоей коробочке; или я могу выбрать фронтальную дверку, а ты можешь выбрать верхнюю дверку; и так далее."
"Да, конечно." – Скалли подскочила. – "Если мы назовем верхнюю дверку 1, боковую дверку 2, а фронтальную дверку 3, то девять возможных комбинаций дверок это просто (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2) и (3,3)."
"Да, все верно," – продолжает Малдер. – "Теперь важный момент: Из этих девяти возможностей отметим, что пять комбинаций дверок – (1,1), (2,2), (3,3), (1,2) и (2,1) – приводят к тому результату, что мы видим, как сферы в наших коробочках вспыхивают одинаковыми цветами.
Первые три комбинации дверок те самые, в которых мы выбираем одинаковые дверки, и, как мы знаем, это всегда приводит к тому, что мы видим одинаковые цвета. Остальные две комбинации дверок (1,2) и (2,1) приводят к тем же самым цветам, поскольку программа диктует, что сферы будут мигать одним цветом – синим – если или дверка 1 или дверка 2 открыты. Итак, поскольку 5 больше, чем половина от 9, это значит, что для более чем половины – более чем 50 процентов – возможных комбинаций дверок, которые мы можем выбрать для открывания, сферы будут вспыхивать одинаковым цветом."
"Но подожди," – протестует Скалли. – "Это только один пример особой программы: синий, синий, красный. В моем объяснении я предполагала, что коробочки с разными номерами могут и в общем случае будут иметь разные программы."
"В действительности, это не имеет значения. Вывод действует для любых из возможных программ.

И это - в самом деле так, если имеем дело с программой. Но вовсе не так, если имеем дело со случайными зависимостями для многих опытов, но каждая из этих случайностей имеет один и тот же вид в каждом опыте.
В случае электронов, когда они были вначале связаны в пару, что обеспечивает их полностью зависимые спины (взаимно противоположные) и разлетелись, эта взаимозависимость, конечно же, сохраняется при полной общей картине истинной вероятности выпаданий и в том, что заранее сказать как сложились спины двух электронов в паре невозможно до определения одного из них, но они "уже" (если так можно сказать в отношении того, что не имеет своей метрики времени и пространства) имеют определенное взаиморасположение.

Далее в книге Брайан Грина:
есть способ изучить, не вступили ли мы неосторожно в конфликт с СТО. Общим для материи и энерги и свойством является то, что они, переносясь с места на место, могут передавать информацию. Фотоны, путешествуя от радиопередающей станции к вашему приемнику, переносят информацию. Электроны, путешествуя через кабели Интернета к вашему компьютеру, переносят информацию. В любой ситуации, где нечто – даже нечто неидентифи цированное – подразумевается движущимся быстрее скорости света, безошибочным тестом будет спросить, передает ли оно или, как минимум, может ли оно передавать информацию. Если ответ нет, проходят стандартные рассуждения, что ничто не превышает скорости света и СТО остается неоспоренной. На практике этот тест физики часто применяют для определения, не нарушает ли некоторый тонкий процесс законы СТО. Ничто не пережило этот тест.

Что же касается подхода Р.Пенроуз а и т.п. интерпретаторов, то из его работы Penrouz.djvu постараюсь выделить то основополагающее отношение (мировоззре ние), которое напрямую приводит к мист ическим взглядам о нелокальности (с моими комментарниями - черным цаетом):

Необходимо было отыскать способ, который позволил бы отделять истину от предположений в математике, - некую формальную процедуру, применив которую можно было бы с уверенностью сказать, является данное математическое утверждение истинным или нет (возражение см. Метод Аристотеля и Истина, критерии истины) . Пока эта задача должным образом не разрешена, вряд ли можно всерьез надеяться на успех в решении других, значительно более сложных, задач - тех, что касаются природы движущих миром сил, какие бы взаимоотношения эти самые силы с математической истиной ни связывали. Осознание того, что ключом к пониманию Вселенной является неопровержимая математика, является, пожалуй, первым из важнейших прорывов в науке вообще. О математических истинах самого разного рода догадывались еще древние египтяне и вавилоняне, однако первый камень в фундамент математического понимания...
... людей впервые появилась возможность формулировать достоверные и заведомо неопровержимые утверждения - утверждения, истинность которых не вызывает сомнений и сегодня, несмотря на то что наука с тех времен шагнула далеко вперед. Людям впервые приоткрылась поистине вневременная природа математики.
Что же это такое - математическое доказательство? В математике доказательством называют безупречное рассуждение, использующее лишь приемы чистой логики (чистой логики не существует. Логика - аксиом атическая формализ ация найденных в природе закономерностей и взаимосвязей) позволяющее сделать однозначный вывод о справедливости того или иного математического утверждения на основании справедливости каких-либо других математических утверждений, либо заранее установленной аналогичным образом, либо не требующей доказательства вовсе (особые элементарные утверждения, истинность которых, по общему мнению, самоочевидна, называются аксиом ами). Доказанное математическое утверждение принято называть теор емой. Вот тут я его не понимаю: есть ведь и просто высказанные, но не доказанные теор емы.
... Объективные математические понятия следует представлять как вневременные объекты; не нужно думать, будто их существование начинается в тот момент, как только они в том или ином виде возникают в человеческом воображении.
... Таким образом, математическое существование отличается не только от существования физического, но и от того существования, которым способно наделить объект наше сознательное восприятие. Тем не менее оно явно связано с двумя последними формами существования - т. е. с физическим и ментальным существованием связь - вполне физическое понятие, что имеет в виду здесь Пенроуз ? - причем соответствующие связи настолько же фундаментальны, насколько и загадочны.
Рис. 1.3. Три «мира» - платоновский математический, физический и ментальный - и три связывающие их фундаментальные загадки...
... Итак, согласно изображенной на рис. 1.3 схеме, весь физический мир управляется математическими законами. В последующих главах книги мы увидим, что имеются веские (хоть и неполные) свидетельства в поддержку такой точки зрения. Если верить этим свидетельствам, то приходится признать, что все, существующее в физической Вселенной, вплоть до самых мельчайших мелочей, и в самом деле управляется точными математическими принципами - может быть, уравнениями. Тут я просто тихо балдею....
...Если это так, то и наши с вами физические действия целиком и полностью подчинены такому всеобщему математическому контролю, хотя «контроль» этот все же допускает определенную случайность в поведении, управляемую строгими вероятностными принципами.
Многие люди от таких предположений начинают чувствовать себя очень неуютно; у меня и у самого, признаться, эти мысли вызывают некоторое беспокойство.
... Возможно, в некотором смысл е три мира вовсе не являются отдельными сущностями, но лишь отражают различные аспекты некоей более фундаментальной ИСТИНЫ (выделил я) , описывающей мир, как целое, - истины, о которой в настоящее время мы не имеем ни малейшего понятия. - чистая мист ика....
.................
Оказывается даже, что на экране имеются области, не достижимые для частиц, испускаемых источником, несмотря на тот факт, что частицы могли вполне успешно попадать в эти области, когда была открыта лишь одна из щелей! Хотя пятна появляются на экране по одному в локализованных положениях и хотя каждой встрече частицы с экраном можно сопоставить определенный акт испускания частицы источником, поведение частицы между источником и экраном, включая неоднозначность, связанную с наличием двух щелей в барьере, подобно поведению волны, при котором волна-частица при столкновении с экраном чувствует сразу обе щели. Более того (и это особенно важно для наших непосредственных целей), расстояние между полосами на экране соответствует длине волны Л нашей волны-частицы, связанной с импульсом частиц р прежней формулой ХХХХ.
Всё это вполне возможно, скажет трезвомыслящий скептик, но это еще не заставляет нас проводить такое абсурдно выглядящее отождествление энерги и-импульса с каким-то оператором! Да, именно так и хочется сказать: оператор - лишь формализ м для описания явления в определенных его рамках, а не тождество с явлением.
Конечно, не заставляет, но должны ли мы отворачиваться от чуда, когда оно является нам?! В чем же состоит это чудо? Чудом является то, что эта кажущаяся абсурдность экспериментального факта (волны оказываются частицами, а частицы - волнами) может быть приведена в систему с помощью красивого математического формализ ма, в котором импульс действительно отождествляется с «дифференцированием по координате», а энерги я - с «дифференцированием по времени».
... Всё это прекрасно, но как быть с вектором состояния? Что мешает признать, что он представляет реальность? Почему физики зачастую крайне неохотно принимают такую философскую позицию? Не просто физики, а те, у кого все в порядке с целостным мировоззре нием и не склонны вестись на недоопределнные рассуждения.
.... При желании можно представить себе, что волновая функция фотона выходит из источника в виде четко очерченного волнового пакета малых размеров, затем, после встречи с расщепителем луча, она делится на две части, одна из которых отражается от расщепителя, а другая проходит сквозь него, например, в перпендикулярном направлении. В обоих мы заставляли волновую функцию разделиться на две части в первом расщепителе луча... Аксиома 1: квант не делится. Человек, говорящий про половинки кванта вне его длины волны воспринимается мной с не меньшим скептицизмом, чем человек, создающий новую вселенную при каждом изменении состояния кванта. Аксиома 2: фотон не меняет траекторию, а если она изменилась, то это - переизлучение фотона электроном. Потому как квант - не упругая частица и нет ничего, от чего бы он отскочил. Почему-то во всех описаниях подобных опытов эти две вещи избегается упоминать, хотя они имеют более базовое значение, чем те эффекты, которые описываются. Не понимаю, почему так говорит Пенроуз , он же не может не знать про неделимость кванта, мало того, он упоминал это в двухщелевом описании. В подобных чудесных случаях нужно все же стараться оставаться в рамках базовых аксиом и если они вступают в какое-то противоречие с опытом, это повод более тщательно подумать о методике и интерпретации.
Давайте пока примем, хотя бы в качестве математической модели квантового мира, это курьезное описание, согласно которому квантовое состояние эволюционирует какое-то время в виде волновой функции, обычно «размазанной» по всему пространству (но с возможностью фокусировки в более ограниченной области), а затем, когда проводится измерение, это состояние превращается в нечто локализованное и вполне определенное.
Т.е. всерьез говорится о возможности размазанности чего-то на несколько световых лет с возможностью мнгновенного взаимного изменения. Такое можно представить чисто абстрактно - как сохранение формализ ованного описания на каждой из сторон, но никак не в виде какой-то реальной сущности, представленной природой кванта. Здесь - явная преемственность идеи о реальности существования математических формализ мов.

Вот почему я воспринимаю как Пенроуз а, так и других подобных промист ически мыслящих физиков очень скептически, несмотря на их очень громкий авторитет...

В книге С. Вайнберг Мечты об окончательной теор ии :
Философия квантовой механики настолько не имеет отношения к ее реальному использованию, что начинаешь подозревать, что все глубокие вопросы о смысл е измерения на самом деле пусты, порождены несовершенством нашего языка, который создавался в мире, практически управляющемся законами классической физики.

В статье Что такое локальность и почему ее нет в квантовом мире? , где проблему обобщает на основе последних событий Александр Львовский, сотрудник РКЦ и профессор Университета Калгари:
Квантовая нелокальность существует только в рамках копенгагенской интерпретации квантовой механики. В соответствии с ней, при измерении квантового состояния происходит его коллапс. Если же брать за основу многомировую интерпретацию, которая говорит, что измерение состояния лишь распространяет суперпозицию на наблюдателя, то никакой нелокальности нет. Это лишь иллюзия наблюдателя, «не знающего», что он перешёл в запутанное состояние с частицей на противоположном конце квантовой линии.

Некоторые выводы из статьи и ее уже имеющегося обсуждения.
В настоящее время существует очень много интерпретаций разного уровня проработанности, пытающихся не просто описать явление запутанности и другие "нелокальные эффекты", но описать предположения о природе (механизмах) этих явлений, - т.е. гипотез ы. Причем преобладает мнение, что невозможно в этой предметной области что-то вообразить, а возможно только полагаться на те или иные формализ ации.
Однако, эти самые формализ ации примерно с одинаковой убедительностью могут показать все, что угодно интерпретатору, вплоть до описания возникновения новой вселенной всякий раз, в момент квантовой неопределенности. А так как такие моменты возникают при наблюдении, то привнести сознание - как непосредственный участник квантовых явлений.
Подробное обоснование - почему такой подход представляется совершенно неверным - смотрите в статье Эвристика .
Так что всякий раз, когда очередной крутой математик начнет доказывать нечто вроде единства природы двух совершенно разных явлений на основе сходства их математического описания (ну, к примеру, всерьез проделывается такое с законом Кулона и законом тяготения Ньютона) или "объяснять" квантовую запутанность особым "измерением" без представления его реального воплощения (или существованием меридианов в формализ ме землян), я буду держать наготове:)

Когда Альберт Эйнштейн поражался «жуткой» дальнодействующей связи между частицами, он не думал о своей общей теории относительности. Вековая теория Эйнштейна описывает, как возникает гравитация, когда массивные объекты деформируют ткань...

Когда Альберт Эйнштейн поражался «жуткой» дальнодействующей связи между частицами, он не думал о своей общей теории относительности. Вековая теория Эйнштейна описывает, как возникает гравитация, когда массивные объекты деформируют ткань пространства и времени. Квантовая запутанность, тот жуткий источник эйнштейновского испуга, как правило, затрагивает крошечные частицы, которые незначительно действуют на гравитацию. Пылинка деформирует матрас ровно так же, как субатомная частица искривляет пространство.

Тем не менее физик-теоретик Марк Ван Раамсдонк подозревает, что запутанность и пространство-время на самом деле связаны между собой. В 2009 году он рассчитал, что пространство без запутанности не смогло бы удержать себя. Он написал работу, из которой вытекало, что квантовая запутанность является иглой, которая сшивает воедино гобелен космического пространства-времени.

Многие журналы отказались публиковать его работу. Но спустя годы изначального скептицизма изучение идеи того, что запутанность формирует пространство-время, стало одной из самых горячих тенденций в области физики.

«Выходя из глубоких основ физики, все указывает на то, что пространство должно быть связано с запутанностью», - говорит Джон Прескилл, физик-теоретик из Калтеха.

В 2012 году появилась еще одна провокационная работа, представляющая парадокс запутанных частиц внутри и снаружи черной дыры. Менее чем через год два эксперта в этой области предложили радикальное решение: запутанные частицы соединяются червоточинами - туннелями пространства-времени, представленными еще Эйнштейном, которые в настоящее время одинаково часто появляются на страницах журналов по физике и в научной фантастике. Если это допущение верно, запутанность не является жутким дальнодействующим соединением, о котором думал Эйнштейн - а вполне реальным мостом, связывающим удаленные точки в пространстве.


Многие ученые находят эти идеи достойными внимания. В последние годы физики, казалось бы, несвязанных специальностей сошлись на этом поле запутанности, пространства и червоточин. Ученые, которые когда-то были сосредоточены на создании безошибочных квантовых компьютеров, сегодня размышляют, не является ли сама Вселенная квантовым компьютером, который тихо программирует пространство-время в сложной сети запутанностей. «Все прогрессирует невероятным образом», - говорит Ван Раамсдонк из Университета Британской Колумбии в Ванкувере.

Физики возлагают большие надежды на то, куда их заведет это соединение пространства-времени с запутанностью. ОТО блестяще описывает, как работает пространство-время; новые исследования могут приоткрыть завесу над тем, откуда берется пространство-время и на что оно похоже на мельчайших масштабах, лежащих во власти квантовой механики. Запутанность может быть секретным ингредиентом, который объединит эти пока что несовместимые области в теорию квантовой гравитации, позволив ученым понять условия внутри черной дыры и состояние Вселенной в первые моменты после Большого Взрыва.

Голограммы и банки с супом

Прозрение Ван Раамсдонка в 2009 году не материализовалось из воздуха. Оно уходит корнями в голографический принцип, идею того, что граница, ограничивающая объем пространства, может содержать всю информацию, в нем заключенную. Если применить голографический принцип к повседневной жизни, то любопытный сотрудник может идеально реконструировать все, что находится в офисе, - кипы бумаг, семейные фотографии, игрушки в углу и даже файлы на жестком диске компьютера - просто глядя на внешние стены квадратного офиса.

Эта идея противоречива, учитывая то, что стены имеют два измерения, а интерьер офиса три. Но в 1997 году Хуан Малдасена, струнный теоретик тогда из Гарварда, привел интригующий пример того, что голографический принцип мог бы раскрыть о Вселенной.

Он начал с анти-де-ситтеровского пространства, которое напоминает пространство-время, в котором преобладает гравитации, но обладает рядом странных атрибутов. Оно изогнуто таким образом, что вспышка света, излученного в определенном месте, в конечном счете вернется оттуда, где появилась. И хотя Вселенная расширяется, анти-де-ситтеровское пространство не растягивается и не сжимается. Из-за таких особенностей кусок анти-де-ситтеровского пространства с четырьмя измерениями (тремя пространственными и одним временным) может быть окружен трехмерной границей.

Малдасена обращался к цилиндру анти-де-ситтеровского пространства-времени. Каждый горизонтальный срез цилиндра представляет состояние его пространства в данный момент, тогда как вертикальное измерение цилиндра представляет время. Малдасена окружил свой цилиндр границей для голограммы; если бы анти-де-ситтеровское пространство было банкой супа, то граница была бы этикеткой.

На первый взгляд кажется, что эта граница (этикетка) не имеет ничего общего с наполнением цилиндра. Пограничная «этикетка», к примеру, соблюдает правила квантовой механики, а не гравитации. И все же гравитация описывает пространство внутри содержимого «супа». Малдасена показал, что этикетка и суп были одним и тем же; квантовые взаимодействия на границе отлично описывают анти-де-ситтеровское пространство, которое закрывает эта граница.

«Две этих теории кажутся совершенно разными, но точно описывают одно и то же», - говорит Прескилл.


Малдасена добавил запутанность в голографическое уравнение в 2001 году. Он представил пространство в двух банках с супом, каждая из которых содержит черную дыру. Затем создал эквивалент самодельного телефона из стаканчиков, соединяющего черные дыры с помощью червоточины - туннеля через пространство-время, впервые предложенного Эйнштейном и Натаном Розеном в 1935 году. Малдасена искал способ создать эквивалент такой связи пространства-времени на этикетках банок. Хитрость, как он понял, была в запутанности.

Как и червоточина, квантовая запутанность связывает объекты, которые не имеют очевидных отношений. Квантовый мир - расплывчатое место: электрон может вращаться в обе стороны одновременно, будучи в состоянии суперпозиции, пока измерения не предоставят точный ответ. Но если два электрона запутаны, измерение спина одного позволяет экспериментатору узнать спин другого электрона - даже если партнерский электрон находится в состоянии суперпозиции. Эта квантовая связь остается даже если электроны будут разделять метры, километры или световые годы.

Малдасена показал, что с помощью запутывания частиц на одной этикетке с частицами на другой можно идеально квантово-механически описать соединение червоточиной банок. В контексте голографического принципа, запутанность эквивалентна физическому связыванию кусков пространства-времени вместе.

Вдохновленный этой связью запутанности с пространством-временем, Ван Раамсдонк задался вопросом, насколько большую роль запутанность может играть в формировании пространства-времени. Он представил самую чистую этикетку на банке с квантовым супом: белую, соответствующую пустому диску анти-де-ситтеровского пространства. Но он знал, что, согласно основам квантовой механики, пустое пространство никогда не будет полностью пустым. Оно заполнено парами частиц, которые всплывают и исчезают. И этим мимолетные частицы запутаны.

Поэтому Ван Раамсдонк нарисовал воображаемую биссектрису на голографической этикетке и затем математически разорвал квантовую запутанность между частицами на одной половине этикетке и частицами на другой. Он обнаружил, что соответствующий диск анти-де-ситтеровского пространства начал делиться пополам. Будто бы запутанные частицы были крючками, которые удерживают полотно пространства и времени на месте; без них пространство-времени разлетается на части. По мере того, как Ван Раамсдонк понижал степень запутанности, часть подключенного к разделенным регионам пространства становилась тоньше, подобно резиновой нити, тянущейся от жвачки.

«Это навело меня на мысль, что присутствие пространства начинается с присутствия запутанности».

Это было смелое заявление, и потребовалось время, чтобы работа Ван Раамсдонка, опубликованная в General Relativity and Gravitation в 2010 году, привлекла серьезное внимание. Огонь интереса всполыхнул уже в 2012 году, когда четверо физиков из Калифорнийского университета в Санта-Барбаре написали работу, бросающую вызов общепринятым убеждениям о горизонте событий, точки невозврата черной дыры.

Истина, скрытая файрволом

В 1970-х годах физик-теоретик Стивен Хокинг показал, что пары запутанных частиц - тех же видов, которые Ван Раамсдонк позже анализировал в своей квантовой границе - могут распадаться на горизонте событий. Одна падает в черную дыру, а другая убегает вместе с так называемым излучением Хокинга. Этот процесс постепенно подтачивает массу черной дыры, в конечном итоге приводя к ее гибели. Но если черные дыры исчезают, вместе с ней должна исчезать и запись всего, что падало внутрь. Квантовая теория же утверждает, что информация не может быть уничтожена.

К 90-м годам несколько физиков-теоретиков, включая Леонарда Сасскинда из Стэнфорда, предложили решение этой проблемы. Да, сказали они, материя и энергия падает в черную дыру. Но с точки зрения внешнего наблюдателя, этот материал никогда не преодолевает горизонт событий; он словно балансирует на его грани. В результате горизонт событий становится голографической границей, содержащей всю информацию о пространстве внутри черной дыры. В конце концов, когда черная дыра испаряется, эта информация утекает в виде излучения Хокинга. В принципе, наблюдатель может собрать это излучение и восстановить всю информацию о недрах черной дыры.

В своей работе 2012 года физики Ахмед Альмхейри, Дональд Марольф, Джеймс Салли и Джозеф Полчинский заявили, что в этой картине что-то не так. Для наблюдателя, пытающегося собрать головоломку того, что находится внутри черной дыры, отметили одни, все отдельные части головоломки - частицы излучения Хокинга - должны быть запутаны между собой. Также каждая хокингова частица должна быть запутана со своим оригинальным партнером, который упал в черную дыру.

К сожалению, одной запутанности недостаточно. Квантовая теория утверждает, что для того, чтобы запутанность присутствовала между всеми частицами снаружи черной дыры, должна быть исключена запутанность этих частиц с частицами внутри черной дыры. Кроме того, физики обнаружили, что разрыв одной из запутанностей породил бы непроницаемую энергетическую стену, так называемый файрвол, на горизонте событий.

Многие физики усомнились в том, что черные дыры на самом деле испаряют все, что пытается проникнуть внутрь. Но сама возможность существования файрвола наводит на тревожные мысли. Ранее физики уже задумывались о том, как выглядит пространство внутри черной дыры. Теперь они не уверены в том, есть ли у черных дыр это «внутри» вообще. Все будто смирились, отмечает Прескилл.

Но Сасскинд не смирился. Он потратил годы, пытаясь доказать, что информация не исчезает внутри черной дыры; сегодня он так же убежден, что идея файрвола ошибочна, но доказать этого пока не смог. Однажды он получил загадочное письмо от Малдасены: «В нем было немного, - говорит Сасскинд. - Только ЭР = ЭПР». Малдасена, работающий сейчас в Институте продвинутых исследований в Принстоне, задумался о своей работе с банками супа 2001 года и заинтересовался, могут ли червоточины разрешить мешанину запутанности, порожденную проблемой файрвола. Сасскинд быстро подхватил эту идею.

В статье, опубликованной в немецком журнале Fortschritte der Physik в 2013 году, Малдасена и Сасскинд заявили, что червоточина - технически мост Эйнштейна-Розена, или ЭР - является пространственно-временным эквивалентом квантовой запутанности. (Под ЭПР понимают эксперимент Эйнштейна-Подольского-Розена, который должен был развеять мифологическую квантовую запутанность). Это означает, что каждая частица излучения Хокинга, независимо от того, как далеко она находится от начала, напрямую связана с недрами черной дыры посредством короткого пути через пространство-время.

«Если двигать через червоточину, далекие вещи оказываются не такими уж и далекими», - говорит Сасскинд.

Сасскинд и Малдасена предложили собрать все частицы Хокинга и столкнуть их вместе, пока они не коллапсируют в черную дыру. Эта черная дыра была бы запутана, а значит соединена червоточиной с оригинальной черной дырой. Этот трюк превратил запутанную мешанину хокинговых частиц - парадоксально запутанных с черной дырой и между собой - в две черные дыры, соединенные червоточиной. Перегрузка запутанности разрешилась, и проблема файрвола была исчерпана.

Не все ученые прыгнули на подножку трамвая ЭР = ЭПР. Сасскинд и Малдасена признают, что им предстоит проделать еще много работы, чтобы доказать эквивалентность червоточин и запутанности. Но после обдумывания последствий парадокса файрвола, многие физики соглашаются, что пространство-время внутри черной дыры обязано своим существованием запутанности с излучением снаружи. Это важное прозрение, отмечает Прескилл, поскольку оно также означает, что вся ткань пространства-времени Вселенной, включая тот клочок, который занимаем мы, является продуктом квантового жуткого действия.

Космический компьютер

Одно дело сказать, что вселенная конструирует пространство-время посредством запутанности; совсем другое - показать, как вселенная это делает. Этой сложной задачей занялись Прескилл и коллеги, которые решили рассмотреть космос как колоссальный квантовый компьютер. Почти двадцать лет ученые работали над строительством квантовых компьютеров, которые используют информацию, зашифрованную в запутанных элементах, вроде фотонов или крошечных микросхем, чтобы решать проблемы, с которыми традиционные компьютеры справиться не могут. Команда Прескилла использует знание, полученное в результате этих попыток, чтобы предсказать, как отдельные детали внутри банки с супом могли бы отразиться на заполненной запутанностью этикетке.

Квантовые компьютеры работают, эксплуатируя компоненты, которые находятся в суперпозиции состояний, как носители данных - они могут быть нулями и единицами одновременно. Но состояние суперпозиции очень хрупкое. Избыток тепла, например, может разрушить состояние и всю заключенную в нем квантовую информацию. Эти потери информации, которые Прескилл сравнивает с рваными страницами в книге, кажутся неизбежными.

Но физики ответили на это, создав протокол квантовой коррекции ошибок. Вместо того чтобы полагаться на одну частицу для хранения квантового бита, ученые разделяют данные между несколькими запутанными частицами. Книга, написанная на языке квантовой коррекции ошибок, будет полна бреда, говорит Прескилл, но все ее содержимое можно будет восстановить, даже если половина страниц пропадет без вести.

Квантовая коррекция ошибок привлекла много внимания в последние годы, но теперь Прескилл и его коллеги подозревают, что природа придумала эту систему уже давно. В июне, в журнале Journal of High Energy Physics, Прескилл и его команда показали, как запутывание множества частиц на голографической границе идеально описывает одну частицу, притягиваемую гравитацией внутри куска анти-де-ситтеровского пространства. Малдасена говорит, что эта находка может привести к лучшему пониманию того, как голограмма кодирует все детали пространства-времени, которое окружает.

Физики признают, что их размышления должны пройти долгий путь, чтобы соответствовать реальности. В то время как анти-де-ситтеровское пространство предлагает физикам преимущество работы с хорошо определенной границей, у Вселенной нет такой четкой этикетки на банке с супом. Ткань пространства-времени космоса расширяется с момента Большого Взрыва и продолжает делать это в нарастающем темпе. Если вы отправите луч света в космос, он не развернется и не вернется; он будет лететь. «Непонятно, как определить голографическую теорию нашей Вселенной, - писал Малдасена в 2005 году. - Просто нет удобного места для размещения голограммы».

Тем не менее, как бы странно ни звучали все эти голограммы, банки с супом и червоточины, они могут стать перспективными дорожками, которые приведут к слиянию квантовых жутких действий с геометрией пространства-времени. В своей работе над червоточинами Эйнштейн и Розен обсудили возможные квантовые последствия, но не провели соединения со своими ранними работами по запутанности. Сегодня эта связь может помочь объединить квантовую механику ОТО в теорию квантовой гравитации. Вооружившись такой теорией, физики могли бы разобрать загадки состояния юной Вселенной, когда материя и энергия умещались в бесконечно малой точке пространства. опубликовано