Внеклассное мероприятие по химии- химический хамелеон. Химия цвета

Пантелеев Павел Александрович

В работе даются объяснения возникновения цвета у различных соединений, а также исследуются свойства веществ-хамелеонов.

Скачать:

Предварительный просмотр:

Химия цвета. Вещества-хамелеоны

Секция: естествознание

Выполнил: Пантелеев Павел Николаевич,

Ученик 11 «А» класса

Средней общеобразовательной школы №1148

им. Ф. М. Достоевского

Преподаватель: Кармацкая Любовь Александровна

1. Введение. Стр.2

2. Природа цвета:

2.1. органических веществ; Стр.3

2.2. неорганических веществ. Стр.4

3. Воздействие среды на цвет. Стр.5

4. Вещества-хамелеоны. Стр.7

5. Экспериментальная часть:

5.1. Переход хромата в бихромат и обратно; Стр.8

5.2. Окислительные свойства солей хрома (VI); Стр.9

5.3. Окисление этанола хромовой смесью. Стр.10

6. Фотохромизм. Стр.10

7. Выводы. Стр.13

8.Список использованных источников. Стр.14

1. Введение.

На первый взгляд, может показаться трудным дать объяснение природы цвета. Почему вещества имеют разные цвета? Каким образом цвет вообще возникает?

Интересно, что в глубинах океана обитают существа, в теле которых течёт кровь голубого цвета. Одни из таких представителей – голотурии. При этом кровь рыб, выловленных в море, красная, подобно крови многих других крупных существ.

От чего же зависит цвет различных веществ?

Прежде всего, цвет зависит не только от того, как окрашено вещество, но и от того, как оно освещено. Ведь в темноте всё кажется чёрным. Цвет также определяют химические структуры, преобладающие в веществе: например, цвет листьев растений бывает не только зелёным, но и синим, фиолетовым и др. Это объясняется тем, что в таких растениях помимо хлорофилла, придающего зелёный окрас, преобладают и другие соединения.

Голубая кровь у голотурий объясняется тем, что у них в пигменте, обеспечивающим цвет крови, вместо железа содержится ванадий. Именно его соединения придают голубую окраску жидкости, содержащейся в голотуриях. В глубинах, где они обитают, содержание кислорода в воде очень мало и им приходится приспосабливаться к этим условиям, поэтому в организмах возникли соединения, совершенно иные, чем у обитателей воздушного окружения.

Но мы ещё не ответили на поставленные выше вопросы. В данной работе мы постараемся дать полные, развёрнутые ответы на них. Для этого следует провести ряд исследований.

Целью данной работы и будет дать объяснение возникновения цвета у различных соединений, а также исследовать свойства веществ-хамелеонов.

В соответствии с целью поставлены задачи

Вообще, цвет является результатом взаимодействия света с молекулами вещества. Этот результат объясняется несколькими процессами:
* взаимодействием магнитных колебаний светового луча с молекулами вещества;

* избирательным поглощением тех или иных световых волн молекулами с разными структурами;

* воздействием лучей, отражённых или прошедших через вещество, на сетчатку глаза или на оптический прибор.

Основой для объяснения цвета является состояние электронов в молекуле: их подвижность, способность переходить с одного энергетического уровня на другой, перемещаться от одного атома к другому.

Цвет связан с подвижностью электронов в молекуле вещества и с возможностью перехода электронов на ещё свободные уровни при поглощении энергии кванта света (элементарная частица светового излучения ).

Цвет возникает в результате взаимодействия квантов света с электронами в молекулах вещества. Однако, из-за того, что состояние электронов в атомах металлов и неметаллов, органических и неорганических соединениях различно, механизм появления цвета у веществ также отличается .

2.1 Цвет органических соединений.

У органических веществ , обладающих цветом (а далеко не все они имеют это свойство), молекулы схожи по своей структуре: они, как правило, большие, состоят из десятков атомов. Для возникновения цвета в этом случае значение имеют не электроны отдельных атомов, а состояние системы электронов всей молекулы .

Обычный солнечный свет - это поток электромагнитных волн. Световая волна характеризуется длиной – расстоянием между соседними максимумами или двумя соседними впадинами. Она измеряется в нанометрах (нм). Чем короче волна, тем больше её энергия, и наоборот.

Окраска вещества зависит от того, какие волны (лучи) видимого света оно поглощает. Если солнечный свет веществом совсем не поглощается, а отражается и рассеивается, то вещество будет казаться белым (бесцветным). Если же вещество поглощает все лучи, то оно кажется чёрным.

Процесс поглощения или отражения определённых лучей света связан с особенностями строения молекулы вещества. Поглощение светового потока всегда связано с передачей энергии электронам молекулы вещества. Если в молекуле содержатся s-электроны (образующие сферическое облако ), то для возбуждения их и перевода на другой энергетический уровень требуется большая энергия. Поэтому соединения, имеющие s-электроны, всегда кажутся бесцветными. В то же время p-электроны (образующие облако в форме восьмёрки ) возбуждаются легко, так как связь, осуществляемая ими менее прочная. Такие электроны содержатся в молекулах, имеющих сопряжённые двойные связи. Чем длиннее цепь сопряжения, тем больше p-электронов и тем меньше требуется энергии для их возбуждения. Если энергия волн видимого света (длины волн от 400 до 760 нм) будет достаточной для возбуждения электронов, то появляется окраска, которую мы видим. Лучи, затраченные на возбуждение молекулы, будут ей поглощаться, а непоглощённые будут восприниматься нами как окраска вещества .

2.2 Цвет неорганических веществ.

У неорганических веществ цвет обусловлен электронными переходами и переносом заряда от атома одного элемента к атому другого. Решающую роль здесь играет внешняя электронная оболочка элемента.

Как и в органических веществах, возникновение цвета здесь связано с поглощением и отражением света.

Вообще, окраска вещества складывается из суммы отражённых волн (или прошедших через вещество без задержки). При этом цвет вещества означает, что из всего диапазона длин волн видимого света им поглощаются определённые кванты. В молекулах окрашенных веществ энергетические уровни электронов расположены близко друг к другу. Например, вещества: водород, фтор, азот – кажутся нам бесцветными. Это происходит из-за того, что кванты видимого света не поглощаются ими, так как не могут перенести электроны на более высокий уровень. То есть, через эти вещества проходят ультрафиолетовые лучи, не воспринимаемые человеческим глазом, поэтому и сами вещества для нас не имеют цвета. У цветных веществ, например, хлора, брома, йода, электронные уровни расположены теснее друг к другу, поэтому кванты света в них способны перевести электроны из одного состояния в другое .

Опыт. Влияние иона металла на окраску соединений.

Приборы и реактивы: четыре пробирки, вода, соли железа(II), кобальта(II), никеля (II), меди (II).

Выполнение опыта. В пробирки наливаем 20-30 мл воды, вносим по 0,2 г солей железа, кобальта, никеля и меди и перемешиваем до растворения. Окраска раствора железа стала жёлтой, кобальта – розовой, никеля - зелёной, а меди – синей.

Вывод: Как известно из химии, структура этих соединений одинакова, однако они имеют различное число d-электронов: у железа – 6, у кобальта – 7, у никеля – 8, у меди – 9. Это число влияет на окраску соединений. Поэтому и видно различие в цвете.

3. Воздействие среды на цвет.

Ионы в растворе окружены оболочкой растворителя. Слой таких молекул, непосредственно примыкающих к иону, называют сольватной оболочкой .

В растворах ионы могут воздействовать не только друг на друга, но и на окружающие их молекулы растворителя, а те в свою очередь на ионы. При растворении и в результате сольватации возникает цвет у иона ранее бесцветного. Замена воды на аммиак углубляет цвет. Аммиачные молекулы деформируются легче и интенсивность окраски усиливается.

Теперь сравним интенсивность окраски соединений меди.

Опыт №3.1. Сравнение интенсивности окраски соединений меди.

Приборы и реактивы: четыре пробирки, 1-процентный раствор CuSO 4, вода, НCl, раствор аммиака NH 3, 10-процентный раствор гексацианоферрата(II) калия.

Выполнение опыта. В одну пробирку помещаем 4 мл CuSO 4 и 30 мл H 2 O, в другие две – 3 мл CuSO 4 и 40 мл H 2 O. Добавляем в первую пробирку 15 мл концентрированной НCl – появляется жёлто-зелёная окраска, во вторую – 5 мл 25-процентного раствора аммиака – появляется синяя окраска, в третью – 2 мл 10-процентного раствора гексацианоферрата(II) калия – наблюдаем красно-бурый осадок. В последнюю пробирку добавляем раствор CuSO 4 и оставляем для контроля.

2+ + 4Cl - ⇌ 2- + 6H 2 O

2+ + 4NH 3 ⇌ 2+ + 6H 2 O

2 2 + 4- ⇌ Cu 2 + 12 H 2 O

Вывод: При уменьшении количества реагента (вещества, участвующего в химической реакции ), необходимого для образования соединения, происходит увеличение интенсивности окраски. При образовании новых соединений меди происходит перенос заряда и изменение цвета.

4. Вещества-хамелеоны.

Понятие «хамелеон» известно, прежде всего, как биологический, зоологический термин, обозначающий пресмыкающееся, обладающее способностью менять окраску своего кожного покрова при раздражении, перемене цвета окружающей среды и т. п.

Однако «хамелеонов» можно встретить и в химии. Так в чём же связь?

Обратимся к химическому понятию:
Вещества-хамелеоны - это вещества, меняющие свою окраску в химических реакциях и свидетельствующие об изменениях в исследуемой среде. Выделяем общее – изменение цвета (окраски). Именно это и связывает данные понятия. Вещества-хамелеоны известны с давних времён. В старинных руководствах по химическому анализу рекомендуется использовать «раствор хамелеона» для определения в образцах неизвестного состава содержания сульфита натрия Na 2 SO 3 , пероксида водорода Н 2 O 2 или щавелевой кислоты Н 2 С 2 O 4 . «Раствор хамелеона» - это раствор перманганата калия КМnO 4 , который при химических реакциях, в зависимости от среды, меняет свою окраску по-разному. Например, в кислотной среде ярко-фиолетовый раствор перманганата калия обесцвечивается из-за того, что из перманганат-иона МnO 4 - образуется катион, т.е. положительно заряженный ион Мn 2+ ; в сильнощелочной среде из ярко-фиолетового МnO 4 - получается зелёный манганат-ион МnO 4 2- . А в нейтральной, слабокислой или слабощелочной среде конечным продуктом реакции будет нерастворимый чёрно-бурый осадок диоксида марганца МnO 2 .

Добавим, что благодаря своим окислительным свойствам, т.е. способности отдавать электроны или забирать их у атомов других элементов, и наглядному изменению окраски в химических реакциях перманганат калия нашел широкое применение в химическом анализе.

Значит, в данном случае «раствор хамелеона» (перманганата калия) используется в качестве индикатора, т.е. вещества, показывающего наличие химической реакции или изменения, произошедшие в исследуемой среде.
Существуют и другие вещества, называемые «хамелеонами». Мы рассмотрим вещества, содержащие элемент хром Cr.

Хромат калия - неорганическое соединение, соль металла калия и хромовой кислоты с формулой K 2 CrO 4 , жёлтые кристаллы, растворимые в воде.

Бихрома́т ка́лия (двухромовокислый калий, ка́лиевый хро́мпик) - K 2 Cr 2 O 7 . Неорганическое соединение, оранжевые кристаллы, растворимые в воде. Высокотоксичен.

5. Экспериментальная часть.

Опыт №5.1. Переход хромата в бихромат и обратно.

Приборы и реактивы: раствор хромата калия К 2 СrO 4 , раствор бихромата калия К 2 Cr 2 O 7 , серная кислота, гидроксид натрия.

Выполнение опыта. К раствору хромата калия добавляем серную кислоту, в результате происходит изменение окраски раствора из жёлтого в оранжевый цвет.

2К 2 CrO 4 + Н 2 SO 4 = К 2 Cr 2 O 7 + К 2 SO 4 + Н 2 О

К раствору бихромата калия добавляю щёлочь, в результате происходит изменение окраски раствора из оранжевой в жёлтую.

К 2 Cr 2 O 7 + 4NaOH = 2Na 2 CrO 4 + 2КOH + Н 2 О

Вывод: В кислой среде хроматы неустойчивы, ион жёлтого цвета превращается в ион Cr 2 O 7 2- оранжевого цвета, а в щелочной среде реакция протекает в обратном направлении:
2 Cr
2 O 4 2- + 2Н + кислая среда - щелочная среда Cr 2 O 7 2- + Н 2 О.

Окислительные свойства солей хрома (VI).

Приборы и реактивы: раствор бихромата калия К 2 Cr 2 O 7 , раствор сульфита натрия Na 2 SO 3 , серная кислота H 2 SO 4 .

Выполнение опыта. К раствору К 2 Cr 2 O 7 , подкисленному серной кислотой, добавляем раствор Na 2 SO 3. Наблюдаем изменение окраски: оранжевый раствор стал зелёно-синим.

Вывод: В кислой среде хром восстанавливается сульфитом натрия от хрома (VI) до хрома (III): К 2 Cr 2 O 7 + 3Na 2 SO 3 + 4H 2 SO 4 = К 2 SO 4 + Cr 2 (SO 4 ) 3 + 3Na 2 SO 4 + 4H 2 O.

Опыт №5.4. Окисление этанола хромовой смесью.

Приборы и реактивы: 5%-ный раствор бихромата калия К 2 Cr 2 O 7 , 20%-ный раствор серной кислоты H 2 SO 4 , этиловый спирт (этанол).

Выполнение опыта: К 2 мл 5%-ного раствора бихромата калия приливаем 1 мл 20%-ного раствора серной кислоты и 0,5 мл этанола. Наблюдаем сильное потемнение раствора. Разбавляем раствор водой, чтобы лучше увидеть его оттенок. Получаем раствор жёлто-зелёного цвета.
К 2 Cr 2 O 7 + 3C 2 H 5 OH+ H 2 SO 4 → 3CH 3 -CОН + Cr 2 О 3 + K 2 SO 4 + 4H 2 O
Вывод: В кислотной среде этиловый спирт окисляется бихроматом калия. При этом образуется альдегид. Этот опыт показывает взаимодействие химических хамелеонов с органическими веществами.

Опыт 5.4. наглядно иллюстрирует принцип, по которому действуют индикаторы для обнаружения алкоголя в организме. Принцип основан на специфическом ферментативном окислении этанола, сопровождающегося образованием пероксида водорода (Н 2 О 2 ), вызывающего образование окрашенного хромогена, т.е. органического вещества, содержащего хромофорную группу (хим. группа, состоящая из атомов углерода, кислорода, азота).

Таким образом, эти индикаторы визуально (по цветовой шкале) показывают содержание алкоголя в слюне человека. Они применяются в медицинских учреждениях, при установлении фактов употребления алкоголя и алкогольного опьянения. Область применения индикаторов – любая ситуация, когда необходимо установить факт употребления алкоголя: проведение предрейсовых осмотров водителей транспортных средств, выявление нетрезвых водителей на автодорогах автоинспекцией, использование при экстренной диагностике, как средство самоконтроля и др.

6. Фотохромизм.

Познакомимся с интересным явлением, где также происходит изменение цвета веществ, фотохромизмом.

Сегодня очками со стеклами-хамелеонами вряд ли кого-то удивишь. Но история открытия необычных веществ, меняющих свой цвет в зависимости от освещенности, очень интересна. В 1881 году английский химик Фипсон получил от своего друга Томаса Гриффита письмо, в котором тот описывал свои необычные наблюдения. Гриффит писал, что входная дверь почты, расположенной напротив его окон, в течение дня меняет свой цвет - темнеет, когда солнце в зените, и светлеет в сумерках. Заинтересовавшись сообщением, Фипсон исследовал литопон - краску, которой была окрашена дверь почты. Наблюдение его друга подтвердилось. Фипсон не смог объяснить причину явления. Однако обратимой цветной реакцией не на шутку заинтересовались многие исследователи. И в начале ХХ века им удалось синтезировать несколько органических веществ, названных "фотохромами", то есть "светочувствительными красками". Со времен Фипсона ученые многое узнали о фотохромах – веществах, меняющих окраску под действием света.

Фотохромизм, или тенебресценция - явление обратимого изменения окраски вещества под действием видимого света, ультрафиолета.

Воздействие света вызывает в фотохромном веществе , атомарные перестройки, изменение заселённости электронных уровней. Параллельно с изменением цвета вещество может менять показатель преломления, растворимость, реакционную способность, электропроводимость, другие химико-физические характеристики. Фотохромизм присущ ограниченному числу органических и неорганических, природных и синтетических соединений.

Различают химический и физический фотохромизм:

  • химический фотохромизм: внутримолекулярные и межмолекулярные обратимые фотохимические реакциями (таутомеризация (обратимая изомерия), диссоциация (расщепление), цис-транс-изомеризация и др.);
  • физический фотохромизм: результат перехода атомов или молекул в разные состояния. Изменение окраски в этом случае обусловлено изменением заселённости электронных уровней. Такой фотохромизм наблюдается при воздействии на вещество только мощных световых потоков.

Фотохромы в природе:

  • Минерал тугтупит способен менять цвет от белого или бледно-розового до ярко-розового.

Фотохромные материалы

Существуют следующие типы фотохромных материалов: жидкие растворы и полимерные плёнки (высокомолекулярные соединения ), содержащие фотохромные органические соединения, стекла с равномерно распределёнными в их объёме микрокристаллами галогенидов серебра (соединения серебра с галогенами ), фотолиз (распад под действием света ) которых обусловливает фотохромизм; кристаллы галогенидов щелочных и щёлочно-земельных металлов, активированные различными добавками (например, CaF 2 /La,Ce; SrTiO 3 /Ni,Mo).

Эти материалы применяются в качестве светофильтров переменной оптической плотности (т. е. регулируют поток света) в средствах защиты глаз и приборов от светового излучения, в лазерной технике и т.д.

Фотохромные линзы

Фотохромная линза на свету, частично прикрытая бумагой. Между светлой и темной частями виден второй уровень цвета, так как фотохромные молекулы расположены на обеих поверхностях линзы поликарбоната и других пластмасс . Фотохромные линзы обычно темнеют в присутствии ультрафиолета и светлеют при его отсутствии меньше чем за минуту, но полный переход из одного состояния в другое происходит от 5 до 15 минут.

Выводы.

Итак, цвет различных соединений зависит:

*от взаимодействия света с молекулами вещества;

*у органических веществ цвет возникает в результате возбуждения электронов элемента и их перехода на другие уровни. Важно состояние системы электронов всей большой молекулы;

*у неорганических веществ цвет обусловлен электронными переходами и переносом заряда от атома одного элемента к атому другого. Большую роль играет внешняя электронная оболочка элемента;

*на окраску соединения влияет внешняя среда;

*важную роль играет число электронов в соединении.

Список использованных источников

1. Артеменко А. И. «Органическая химия и человек» (теоретические основы, углублённый курс). Москва, «Просвещение», 2000.

2. Фадеев Г. Н. «Химия и цвет» (книга для внеклассного чтения). Москва, «Просвещение», 1977.

Всего две капли глицерина - и марганцовка меняет свой цвет!

Сложность:

Опасность:

Сделайте этот эксперимент дома

Почему раствор поначалу синеет?

Если внимательно следить за хамелеоном, вы заметите, что через несколько секунд после добавления глицерина в раствор он приобретёт синюю окраску. Синий цвет образуется при смешении фиолетового (от перманганата MnO 4 -) и зелёного (от манганата MnO 4 2-) растворов. Однако он достаточно быстро зеленеет – в растворе становится всё меньше MnO 4 - и больше MnO 4 2- .

Дополнение

Учёным удалось обнаружить, в какой форме марганец способен окрашивать раствор в синий цвет. Это происходит, когда он образует гипоманганат-ион MnO 4 3- . Здесь марганец находится в степени окисления +5 (Mn +5). Однако MnO 4 3- очень неустойчив, и для его получения необходимы особые условия, поэтому в нашем опыте его увидеть не получится.

Что происходит с глицерином в нашем опыте?

Глицерин взаимодействует с перманганатом калия, отдавая ему свои электроны. Глицерин взят в нашей реакции в большом избытке (его примерно в 10 раз больше, чем перманганата калия KMnO 4). Сам глицерин в условиях нашей реакции превращается глицериновый альдегид, а затем − в глицериновую кислоту.

Дополнение

Как мы уже выяснили, глицерин C 3 H 5 (OH) 3 окисляется перманганатом калия. Глицерин – это весьма сложная органическая молекула, поэтому и реакции с его участием зачастую непросты. Окисление глицерина – сложная реакция, в ходе которой образуется много различных веществ. Многие из них существуют совсем недолго и превращаются в другие, а некоторые можно найти в растворе и после окончания реакции. Такая ситуация характерна для всей органической химии в целом. Обычно те вещества, которых по итогам химической реакции получается больше всего, называют основными продуктами, а остальные – побочными.

В нашем случае основной продукт окисления глицерина перманганатом калия – это глицериновая кислота.

Для чего мы добавляем гидроксид кальция Ca(OH) 2 в раствор KMnO 4 ?

В водном растворе гидроксид кальция Ca(OH) 2 распадается на три заряженные частицы (ионы):

Ca(OH) 2 → Ca 2+ (раствор) + 2OH - .

В транспорте, магазине, кафе или в школьном классе – везде нас окружают разные люди. И ведём мы себя в таких местах по-разному. Даже если делаем одно и то же дело – например, читаем книгу. В окружении разных людей мы делаем это немного по-разному: где-то медленнее, где-то быстрее, иногда запоминаем прочитанное хорошо, а другой раз не можем вспомнить и строчки уже на следующий день. Так и перманганат калия в окружении ионов OH - ведёт себя по-особенному. У глицерина он забирает электроны «нежнее», никуда не торопясь. Именно поэтому мы можем наблюдать изменение окраски хамелеона.

Дополнение

А что произойдёт, если не добавлять раствор Ca(OH) 2 ?

Когда в растворе присутствует избыток ионов OH - , такой раствор называют щелочным (или говорят, что он имеет щелочную реакцию). Если же, наоборот, в растворе есть избыток ионов H + , такой раствор называют кислым. Почему «наоборот»? Потому что вместе ионы OH - и H + образуют молекулу воды H 2 O. А вот если ионы H + и OH - присутствуют поровну (то есть мы имеем фактически воду), раствор называют нейтральным.

В кислом растворе активный окислитель KMnO 4 становится крайне невоспитанным, даже грубым. Он очень быстро отнимает электроны у глицерина (целых 5 за раз!), и марганец превращается из Mn^+7 (в перманганате MnO 4 -) в Mn 2+ :

MnO 4 - + 5e - → Mn 2+

Последний (Mn 2+) не придаёт воде никакой окраски. Поэтому в кислом растворе марганцовка очень быстро обесцветится, и хамелеон не получится.

Похожая ситуация произойдёт и в случае нейтрального раствора перманганата калия. Только мы «потеряем» не все цвета хамелеона, как в кислом растворе, а только два – зелёный манганат MnO 4 2- получаться не будет, а значит, синее окрашивание тоже исчезнет.

Можно ли сделать хамелеона, используя что-нибудь, кроме KMnO 4 ?

Можно! Хамелеон из хрома (Cr) будет иметь следующую окраску:

оранжевый (бихромат Cr 2 O 7 2-) → зелёный (Cr 3+) → голубой (Cr 2+).

Ещё один хамелеон – из ванадия (V):

жёлтый (VO 3+) → голубой (VO 2+) → зелёный (V 3+) → лиловый (V 2+).

Вот только заставить растворы соединений хрома или ванадия менять свой цвет так красиво, как это происходит в случае марганца (марганцовки), намного сложнее. Кроме того, придётся постоянно добавлять новые вещества в смесь. Поэтому настоящий хамелеон − такой, что будет менять свой цвет «самостоятельно», − получается только из марганцовки.

Дополнение

Марганец Mn, как и хром Cr и ванадий V, – это переходные металлы – большая группа химических элементов, обладающих целым набором интересных свойств. Одна из особенностей переходных металлов – яркая и разнообразная окраска соединений и их растворов.

Например, из растворов соединений переходных металлов легко получить химическую радугу:

Каждый Охотник Желает Знать, Где Сидит Фазан:

    Красный (тиоционат железа (III) Fe(SCN) 3), железо Fe;

    Оранжевый (бихромат Cr 2 O 7 2-), хром Cr;

    Жёлтый (VO 3+), ванадий V;

    Зелёный (нитрат никеля, Ni(NO 3) 2), никель Ni;

    Голубой (сульфат меди, CuSO 4), медь Cu;

    Синий (тетрахлоркобальтат, 2-), кобальт Co;

    Фиолетовый (перманганат MnO 4 -), марганец Mn.

Развитие эксперимента

Как изменить хамелеона дальше?

Можно ли обратить реакцию и снова получить фиолетовый раствор?

Некоторые химические реакции могут протекать как в одном направлении, так и в обратном. Такие реакции называют обратимыми и, по сравнению с общим числом химических реакций, их известно не так уж много. Можно обратить реакцию, создав особые условия (например, сильный нагрев реакционной смеси) или добавив какой-то новый реагент. Окисление глицерина перманганатом калия KMnO 4 не относится к реакциям такого типа. Более того, в рамках нашего эксперимента обратить эту реакцию невозможно. Поэтому заставить хамелеона менять свой цвет в обратном порядке у нас не получится.

Дополнение

Давайте разберёмся, существует ли способ обратить нашего хамелеона?

Сначала простой вопрос: может ли окисленный глицерин (глицериновая кислота) превратить диоксид марганца MnO 2 обратно в фиолетовую марганцовку KMnO 4 ? Нет, не может. Даже если мы будем ему сильно помогать (например, греть раствор). А всё потому, что KMnO 4 – сильный окислитель (с этим мы разобрались немного выше), в то время как глицериновая кислота обладает слабыми окислительными свойствами. Слабому окислителю невероятно трудно что-либо противопоставить сильному!

Можно ли превратить MnO 2 обратно в KMnO 4 , используя другие реагенты? Да, можно. Вот только для этого вам придётся работать в настоящей химической лаборатории! Один из лабораторных способов получения KMnO 4 – это взаимодействие MnO 2 с хлором Cl 2 в присутствии избытка гидроксида калия KOH:

2MnO 2 + 3Cl 2 + 8KOH → 2KMnO 4 + 6KCl + 4 H 2 O

Дома такую реакцию не провести – это и сложно (понадобится специальное оборудование), и небезопасно. Да и сама она будет иметь мало общего с ярким и красивым хамелеоном из нашего опыта.

Посвящение в химики

Предлагаемое внеклассное мероприятие я провожу как театрализованное представление, в котором участвуют не только ученики старших классов, но и учащиеся, начинающие изучать курс химии. Рекомендуется проводить этот праздник в конце первой – начале второй четверти, когда восьмиклассники уже изучат некоторые основы предмета.

Действующие лица : ведущий, Винни-Пух, Кролик, Пятачок, Химик-волшебник, ассистенты
(2–3 человека).

На сцене появляется ведущий, он обращается к зрителям.
Ведущий . «Я хочу стать химиком!» – так ответил гимназист Юстус Либих на вопрос директора Дармштадской гимназии о выборе будущей профессии. Это вызывало смех присутствовавших при разговоре учителей и гимназистов. Дело в том, что в начале XIX в. в Германии и в большинстве других стран к такой профессии не относились серьезно. Химию рассматривали как прикладную часть естествознания.
В наше время желание стать химиком никого не рассмешит, напротив, химическая отрасль промышленности постоянно нуждается в людях, у которых обширные знания и экспериментальные навыки сочетаются с любовью к химии. Друзья, а вы хотели бы стать настоящими химиками?

Учащиеся из зала отвечают ведущему.
Ведущий . Конечно, да! Я в этом не сомневался. Ведь химия – это наука о веществах и их превращениях. Знать свойства веществ необходимо, чтобы найти им применение. Хотя вы недавно начали изучать химию, я уверен, что со многими веществами вы уже успели познакомиться. Назовите известные вам вещества .
Ответ учащихся из зала.
Ведущий. Итак, мы начинаем праздник. Я призываю вас внимательно наблюдать за всем происходящим на сцене, активно участвовать во всех играх и конкурсах. И только тогда мы сможем зажечь «химический огонь» и представить вас к званию «Химик».
На сцене появляется Винни-Пух (в одной руке он держит колбу с водой, а в другой – кусочек мела), за ним, спотыкаясь, бежит Пятачок.
Винни-пух (поет).
Кто любит химию учить,
Тот поступает мудро,
Любое чудо сотворить
Совсем тогда нетрудно
.
Вот это колба (показывает зрителям колбу), да-да-да (чешет в затылке). Я в ней творю такое! Вот это мел (показывает зрителям кусочек мела), а вот вода (бросает мел в колбу с водой). Что получилось? Ерунда! Как ерунда? Нет, тут что-то не так! Надо попробовать еще раз. (Собирается повторить эксперимент, но тут его догоняет Пятачок и дергает за руку.)
Пятачок . Винни, Винни…
Винни-пух . Что случилось, Пятачок?
Пятачок . Объясни, что ты делаешь? Куда ты так торопишься? Я просто не могу угнаться за тобой .
Винни-пух . Пятачок, я решил стать знаменитым химиком. Видишь, я уже знаю, что это колба (показывает колбу Пятачку), а в колбе смесь из мела и воды. И теперь я направляюсь к Кролику, чтобы он подсказал мне, что еще надо сделать, чтобы стать великим и знаменитым химиком .
Пятачок . А химия, это про что?
Винни-пух (задумываясь). Химия – это… А вот ты лучше послушай .
Группа учащихся исполняет песню на мотив «Маленькая страна».
Учащиеся .

Химия всех цариц наука,
Химия всех важней.
Синтез различных компонентов –
Это подвластно ей.
Может помочь в беде больному
И чудо сотворить,
Может согреть зимой холодной –
Нам без нее не жить.

Припев. Химия, химия,
Ты для людей важна
.
Химия – будущее наше,
Нет жизни без тебя.

Ты подчинила все стихии:
Воду, металл, огонь.
Без кислорода нет жизни в мире,
Свет нам дает неон.
«Феррум» находится в клетках
крови,

Без «аш-два-о» нам не жить.
Химию в школе изучают,
Чтобы ей жизнь посвятить.
Припев . Химия – это я,
Химия – жизнь моя.
Химия – будущее наше,
Нет жизни без тебя.

Винни-пух . Ну что, Пятачок, все понял? Пойдешь со мной к Кролику?
Пятачок . Да, Винни, мне все понятно, я иду с тобой! О, а вот и Кролик .
На сцену выходит Кролик.
Кролик . Здравствуй, Винни! Здравствуй, Пятачок! Здравствуйте, ребята! Слышу, что речь у вас идет о химии. А знаете ли вы (поднимает вверх указательный палец), что химия – это интереснейшая наука?! Химия появилась еще в древности, и наиболее выдающимися химиками древнего мира являлись представители Египта. Даже само слово «химия», по мнению ученых, появилось в Египте. Первое, что свидетельствует о том, как высоко была развита там химия, – это искусство египтян бальзамировать трупы, представляющее загадку, не раскрытую полностью учеными и до настоящего времени. Несмотря на то, что современные ученые владеют сотнями тысяч веществ, они не могут сделать мумию точно так, как это делали во времена фараонов.
Вторая область, где египтяне достигли большого совершенства, – это краски. Тысячи лет прошли с тех пор, как были окрашены в Египте предметы, а краски и до настоящего времени сохранили свою яркость и прочность.
Развиты были у египтян и парфюмерия, и умение изготовлять косметические вещества. Они, например, умели приготовлять черную краску для бровей, различные благовонные мази и масла, душистые воды.
За 1600 лет до н. э. египтяне знали производство папирусов, которые вывозили даже в другие страны. В производстве этих папирусов кроется какая-то загадка, которую не могут разгадать современные ученые. Как склеивались отдельные листы папируса? Что это был за клей, который не дал рассыпаться листам даже по прошествии нескольких тысячелетий?
Конечно, у египтян не было настоящей науки, но нужно сказать, что они имели в отдельных случаях более правильные взгляды на химическую природу веществ, чем даже жившие спустя тысячи лет после них алхимики. Вся египетская наука, в том числе и зарождающаяся химия, считалась священной. Она была доступна только избранным: занимались ею только жрецы. Наука составляла тайну господствующего класса и охранялась как ценный клад. Но все же некоторым любознательным иностранцам удалось войти в доверие египтян и выведать у них часть тайн египетской науки. Это были греческие мудрецы Солон, Пифагор, Демокрит, Геродот и Платон. Через них Греция заимствовала у египтян химические знания.

Винни-пух . А я знаю, что вместе с египтянами наиболее выдающимся народом Древнего Востока нужно считать вавилонян. Они не хуже египтян знали металлы, способы их получения и обработки.
Из пальмовых плодов вавилоняне умели приготовлять спиртные напитки. Знали они и химические способы обеззараживания воды, не имея никаких представлений о бактериях как возбудителях болезней.
Финикийцы – эти древние мореплаватели – заимствовали химические познания от тех народов, с которыми поддерживали торговлю. Они же и распространяли эти знания по странам Востока и по берегам Средиземного мора.
Существует легенда, что финикийцы изобрели стекло. У римского историка Плиния есть рассказ о том, как финикийские моряки везли на своем корабле соду и высадились на берегу одной реки в Палестине. При постройке очага для варки пищи им понадобились камни, но камней нигде не было. Тогда моряки употребили для постройки очага куски соды. Костер разгорелся и достиг большой силы. Вдруг моряки увидели, что сода расплавилась и вместе с песком образовала прозрачную тягучую массу. Эта масса застыла, и моряки увидели твердые прозрачные куски. Так и был открыт способ изготовления стекла. Жители той местности, где останавливались финикийцы, усовершенствовали способ получения стекла. Так рассказывает легенда. А как думаете вы, ребята? Можно ли таким способом получить стекло?

Зрители отвечают, что вряд ли таким способом можно получить стекло, т. к. температура от обычного костра недостаточна для производства стекла.
Кролик . Правильно, ребята! А вот персы, как рассказывает греческий историк Геродот, умели добывать золото, серебро, железо, выделывать шкуры зверей. Искусство окрашивания тканей они переняли у индусов. Индусы владели значительными химическими знаниями. Знаменитая краска индиговая синь служила им для живописи и для окрашивания тканей. Они даже печатали рисунки на тканях. А в Европе этот способ был применен только в XV в.
Химические познания индусов и сейчас вызывают изумление. Особенно высоко стояла металлургия. Подтверждением этого является чудо металлургического искусства древних – знаменитая Кутубская колонна близ города Дели. Колонна эта высотой 7 метров весит свыше 6 тонн. Точные анализы показали, что она состоит из химически чистого железа. А такое железо совершенно не ржавеет. Исследователи колонны не обнаружили на ней и следа влияния атмосферы. На колонне имеется надпись, по которой можно установить, что она поставлена в IX в. до н. э. С тех пор прошло почти 2800 лет. И за все это время не образовалось ни малейшего пятнышка ржавчины, а условия для ржавчины в сыром и теплом климате Индии очень благоприятны. В современном производстве получают только небольшие количества химически чистого железа. Как изготовили индусы столько чистейшего железа для колонны? На колонне нет ни одного шва. Как же они ковали такую громадину? Даже в настоящее время такую массу железа можно отковать только на крупнейших заводах гигантскими паровыми молотами. Все это остается совершенной загадкой для нас.
Ребята, Винни, Пятачок, а известно ли вам, кто такие алхимики и чем они занимались?

Сначала зрители из зала рассказывают известные им сведения, а потом герои – Кролик, Винни-Пух и Пятачок – дополняют.
Пятачок . Алхимики верили в materia prima – первичную материю, которая находится везде и всюду, но загрязнена различными примесями. Удаляя примеси от первичной материи, можно получить «квинтэссенцию», «философский камень», который превращает неблагородные металлы в благородные (свинец – в серебро, ртуть – в золото и т. д.), исцеляет все болезни, возвращает молодость старикам и продляет жизнь за ее естественные пределы.

Винни-пух . Алхимики признавали четыре элемента Аристотеля – воду, огонь, воздух, землю – и рассматривали их свойства – сухость, влажность, теплоту, холод. Они полагали, что путем соединения этих элементов и качеств можно получить все вещи в мире. Следовательно, алхимики считали возможным отрыв от вещества присущих ему свойств и перенос этих свойств на другие вещества. Иногда свойствам они приписывали и самостоятельное существование.

Пятачок . Алхимики были убеждены в том, что солнце, звезды и планеты влияют на все процессы, происходящие на земле, в частности, что металлы зарождаются и развиваются в земных недрах под влиянием небесных светил, подобно органическим веществам .
Кролик . Эта мистическая вера привела их к убеждению, что на земле существует всего лишь семь металлов. Наивное верование алхимиков в этой части прекрасно выражено Н.А.Морозовым в небольшом стихотворении:
«Семь металлов создал свет,
По числу семи планет:
Дал нам Космос на добро
Медь, железо, серебро,
Злато, олово, свинец…
Сын мой! Сера их отец!
И спеши, мой сын, узнать:
Всем им ртуть родная мать!»

Винни-пух . Время господства алхимических взглядов – это время не только заблуждений, разочарований и обмана. Несмотря на ложность основной идеи алхимиков, эта эпоха характеризуется значительным накоплением знаний в области химии и химической технологии. Такому развитию событий способствовала основная тенденция алхимиков – смешивать, нагревать, растворять, дистиллировать и т. п. все, что попадало под руку, в целях поисков философского камня. Алхимики изучили многие реакции и получили большое число важнейших соединений. Им были известны свойства серной, азотной и соляной кислот, селитры, пороха, царской водки, щелочей, винного спирта. Алхимики открыли фосфор и ряд новых металлов (цинк, сурьму, висмут, кобальт, никель) и ввели препараты на их основе во врачебную практику.
Пятачок . Сегодня известны миллионы веществ. А какие вещества знаете вы, юные химики? Вот сейчас мы проверим ваши познания. Предлагаем вам несколько загадок.

«Примерно века два назад
Открыт он был случайно.
Сейчас знаком с ним стар
и млад,
Он и для вас не тайна.
Известно, что горят отлично
В нем сера, фосфор, углерод,
Железо, магний. Энергично
Сгорает также водород».

(Кислород.)

«Получишь газы из воды,
Смешаешь вместе – жди беды».

(Гремучая смесь
из водорода и кислорода.)

«Газ – ненужный нам отброс –
В поле в пищу перерос».

(Углекислый газ.)

«Красноватый будто цветом,
Ковкий, мягкий, как металл.
Из кислот же он при этом
Водород не выделял.
Только может окисляться,
Коль нагреем в кислоте.
Право, можно догадаться
Вам теперь уже вполне».

«Порознь каждый ядовит,
Вместе – будит аппетит».

(Хлорид натрия.)

«В воду шел и чист, и бел,
Окунулся – посинел».

(Сульфат меди(II).)

«Он безжизненным зовется,
Но жизнь без него не создается».

«По прозванью инвалид,
Но крепок в деле и на вид».

«Он яркой звездой загорится,
Белый и легкий металл,
В тринадцатой клетке таблицы
Почетное место занял.
Для легкости в сплавы дается,
Мощь самолета создал.
Тягуч и пластичен, отлично
куется
Серебряный этот металл.
В составе багровых рубинов,
В сапфировой сини огней,
В серой обыденной глине,
В виде наждачных камней».

(Алюминий.)

«Только в воду соль попала,
Холодней в стакане стало».

(Нитрат аммония.)

Кролик . Какие же вы молодцы, ребята! Как много известно вам из области химии. А вот я изучил всевозможную литературу по химии и немного владею премудростями химического эксперимента. Сейчас я постараюсь вызвать к нам на праздник Химика-волшебника .
Под плавную музыку, совершая руками магические движения, Кролик проводит химический опыт «Вулкан».

Опыт «Вулкан» на столе

В тигель насыпать холмиком кристаллический дихромат аммония, смешанный с металлическим магнием. Вершину холмика смочить спиртом. Поджечь спирт горящей лучинкой.
На сцену выходит Химик-волшебник.

Химик-волшебник. Здравствуйте, дети! Здравствуйте, Кролик, Винни-Пух, Пятачок! Я прибыл к вам доказать, что химия – это не просто слова, это еще и сказка .
Химик-волшебник проводит химический опыт, имитируя колдовство.

Опыт «Фейерверк на столе»

В сухой ступке хорошо перемешать равные объемы порошков перманганата калия, восстановленного железа и древесного угля (можно взять угольные таблетки). Полученную смесь насыпать в железный тигель, который установить на штативе и сильно нагреть пламенем горелки. Вскоре происходит реакция, и из тигля начинается выбрасывание продуктов реакции в виде искр или огненного фейерверка. (В целях обеспечения пожарной безопасности под штатив подложить лист жести или асбеста.)
Химик-волшебник . Ребята, кто из вас сможет объяснить вот такое явление?

На обычную дощечку
наливается вода,
И стаканчик с талым снегом
тоже ставится туда.
Насыпаю в стакан соль (нитрат аммония), а ты, дружок (обращается к Винни),
Мешать изволь.
(Химик-волшебник медленно считает до десяти.)
Примерз стакан химический,
Процесс?
(Зрители отвечают: «Эндотермический!»)

Опыт «Змейки»

Для демонстрации «змеек» надо заранее сделать заготовки. Для этого смешать растертые в порошок 10 г дихромата калия, 10 г сахара и 5 г нитрата натрия. Смесь слегка увлажнить до достижения вязкости, сформировать в палочки диаметром 4–5 мм и длиной 8–9 см, палочки подсушить. Заготовленные «змейки» укрепить в песке и поджечь.
Химик-волшебник.
Я еще не то умею,
Из песка полезут змеи,
Страшные, кусачие.
От страха не заплачете?

Звучит восточная музыка, и исполняется танец, в котором девушки, одетые в восточные костюмы, изображают змей. Химик-волшебник в это время проводит эксперимент.

Опыт «Химический хамелеон»

В три колбы налить на 1/3 объема малиновый раствор перманганата калия. Прибавить в первый цилиндр немного разбавленной серной кислоты, во второй – воды, а в третий – концентрированный раствор гидроксида калия. Окраска растворов при этом не изменяется. Добавить во все цилиндры по 5 мл раствора сульфита калия и хорошо перемешать смеси стеклянной палочкой. В первом цилиндре мгновенно обесцвечивается раствор, во втором наряду с обесцвечиванием выпадает бурый хлопьевидный осадок, а в третьем – малиновая окраска переходит в ярко-зеленую.
Химик-волшебник.
А сейчас вам предлагаю
Явление химическое.
Но название у опыта
Чисто биологическое.
Объясните почему
Имя «Хамелеон»
Дано ему?

Химик-волшебник демонстрирует опыт «Химический хамелеон», после которого зрители высказывают суждения.

Опыт «Волшебный кувшин»

В первый стакан поместить 10–20 мг гидросульфата натрия, во второй – столько же карбоната натрия, а в третий – несколько капель раствора фенолфталеина. Четвертый и пятый стаканы предназначены для эффектности опыта. Во все стаканы прилить по 1 мл воды, чтобы растворились соли. Стакан с гидросульфатом натрия надо отметить незаметно для зрителей. Взять чистый кувшин и налить в него воду из водопроводного крана. Далее во все стаканы поровну налить всю воду из кувшина. Затем только из четырех стаканов, оставив как бы случайно стакан с гидросульфатом натрия, влить «воду» обратно в кувшин. Затем вылить вновь из кувшина «воду» в четыре стакана: она будет уже окрашена в малиновый цвет. Тогда вылить содержимое уже всех пяти стаканов в кувшин. После непродолжительной паузы разлить «воду» из кувшина по стаканам, и она опять станет бесцветной.
Химик-волшебник.
Из волшебного кувшина
Наливается вода.
Посмотрите, как в сосудах
Происходят чудеса
.

Химик-волшебник демонстрирует опыт «Волшебный кувшин».

Опыт «Скрытое письмо»

На листе плотной бумаги заранее надо написать слова «Хочу стать химиком!». При помощи кисточки слова «хочу» и «химиком» пропитать разбавленным раствором сульфата меди, слово «стать» –
разбавленным раствором хлорида железа(III) и просушить. Наполнить пульверизатор раствором гексацианоферрата(II) калия. Во время представления Химик-волшебник должен обработать им лист бумаги. Перед зрителями проявляется текст: слова «хочу» и «химиком» написаны красно-бурым цветом, а слово «стать» – синим.
Химик-волшебник.
Волею Аллаха
Я на бумаге этой
Могу мгновенно рисовать
Волшебные портреты.
Лишь стоит мне поколдовать,
Шепнуть Аллаху заклинания,
И может каждый увидать
Свои заветные желания.

Химик-волшебник проводит опыт «Скрытое письмо».

Опыт «Кровь без раны»

Для проведения опыта используют 100 мл хлорида железа(III) с массовой долей 3% и 100 мл роданида калия KSCN c массовой долей 3%. Для демонстрации опыта используют тупой нож (можно использовать детскую посудку). Вызывают кого-нибудь из зрителей на сцену. Ваткой промывают его ладонь раствором хлорида железа («йод»), а бесцветным раствором роданида калия смачивают нож. Далее ножом проводят по ладони: на бумагу обильно течет «кровь». «Кровь» с ладони смывают ватой, смоченной раствором фторида натрия.
Химик-волшебник.
Вот еще одно развлеченье
(одевает белый халат).
Кто даст руку на отсеченье?
Жалко руку на отсеченье –
Тогда нужен больной
для леченья.

(Приглашает зрителя на сцену.)
Оперирую без боли,
Правда, будет много крови.
При каждой операции
Нужна стерилизация.
Помогите, ассистент

(обращается к ассистенту),
Дайте йод.

Ассистент . Один момент!
Химик-волшебник.
Йодом смочим мы обильно,
Чтобы было все стерильно.
Не вертитесь, пациент!
Нож подайте, ассистент!

(Химик-волшебник делает «надрез ножом», течет «кровь».)
Посмотрите, прямо струйкой
Кровь течет, а не вода.
А сейчас я вытру руку –
От разреза ни следа!

Химик-волшебник показывает зрителям, что раны нет и ладонь совершенно чистая.
Ведущий . Спасибо вам, уважаемый волшебник. Вы действительно великий маг. Вы доказали нам, что химия – это наука, которая творит чудеса. И, как всякая наука, химия требует к себе самого ответственного отношения. И только для непосвященных чудеса химии кажутся чудом. Предлагаю вам, ребята, проверить вашу профессиональную пригодность. Итак, первый конкурс – «Кто быстрее?».

Конкурс «Кто быстрее?»

Ведущий приглашает на сцену двух участников из числа зрителей. Пользуясь периодической системой элементов Д.И.Менделеева, они должны поочередно назвать пять химических элементов: один называет элемент, а другой как можно быстрее должен назвать порядковый номер названного элемента. При помощи шахматных часов или секундомера учитывается время, затраченное на поиски порядкового номера элемента. Побеждает тот участник, который затратил меньше времени на поиски порядковых номеров пяти элементов, названных соперником.
Ведущий . А теперь конкурс «Кто дальше?».

Конкурс «Кто дальше?»

На сцену приглашаются два-три участника. Играющий должен прошагать как можно дальше, называя на каждый шаг химический элемент. Игру можно усложнить, изменив перечень названий (любые элементы, только металлы, только неметаллы, элементы определенного периода или группы и т. п.). Выигрывает тот, кто прошагает дальше без ошибок, запинок и повторений.
Ведущий . Молодцы, ребята! Теперь предлагаю вам заполнить таблицу.
На экран через проектор проецируется таблица:

А З О Т

Зрителям предлагают заполнить пустые клетки таблицы так, чтобы в каждой графе было пять химических терминов, начинающихся с указанной буквы. Выигрывает тот, кто быстрее напишет все слова. В конце игры несколько учащихся зачитывают придуманные ими слова, а остальные проверяют, являются ли эти слова химическими терминами. Например, в первой графе можно записать следующие слова: атом, анион, аммиак, аргон, ацетилен.
Ведущий . Прекрасно, ребята! Вы уже многое знаете о химии, а сейчас я попробую угадывать ваши мысли. Приглашаю на сцену желающего участвовать в следующем номере. Прошу вас задумать любой химический элемент по периодической системе. Теперь прошу удвоить номер задуманного элемента. К полученному числу прибавьте число 5. Полученную сумму умножьте на 5. Какое число вы получили? Назовите его.
Участник называет число, а ведущий тотчас объявляет задуманный играющим элемент. Разгадка заключается в следующем. Пусть задуман элемент № 25 (марганец). Проведем с числом 25 соответствующие математические действия: 25 2 = 50; 50 + 5 = 55; 55 5 = 275. Число 275 сообщается ведущему, который в уме отбрасывает последнюю цифру, получается 27, затем отнимает от полученного числа число 2, получается 25. Это и есть номер задуманного элемента. После этого ведущему остается только назвать этот элемент – марганец.
Ведущий .
Чего только нету, чего только
нет
На этом на белом на свете.
Химия – трудный, но важный
предмет,
Ее изучают все дети.
Метан, аммиак и бензол –
все равно
Раскроют секреты однажды.
Нам жить интересно и весело,
но
Всем похимичить нам хочется
страшно.
А вам, друзья, хочется
похимичить?

Зрители отвечают утвердительно.
Ведущий . Да, да, конечно, я и не сомневался. Но сначала я хочу попросить моих помощников напомнить вам правила техники безопасности.
Винни-пух.
При работе с веществами
Не берите их руками
И не пробуйте на вкус.
Реактивы – это не арбуз:
Слезет кожа с языка,
И отвалится рука.

Кролик.
Задавай себе вопрос,
Но не суй в пробирку нос.
Будешь кашлять и чихать,
Слезы градом проливать.
Помаши рукой ты к носу –
Вот ответ на все вопросы.

Пятачок.
С веществами неизвестными
Не проводи смешивания
неуместные:
Незнакомые растворы ты друг
с другом не сливай,
Не ссыпай в одну посуду,
не мешай, не поджигай.
Винни-пух.
Если ты работаешь
с твердым веществом,
Не бери его лопатой
и не вздумай брать ковшом.
Ты возьми его немножко –
одну восьмую чайной ложки.
При работе с жидкостью
каждый должен знать:
Мерить надо в каплях –
ведром не наливать.

Кролик.
Если на руку тебе кислота
или щелочь попала
Руку быстро ты водой промой
из крана.
И, чтоб осложнений себе
не доставить,
Не забудь учителя
в известность поставить
.
Пятачок.
В кислоту не лей ты воду,
наоборот –
Осторожненько мешая,
тонкой струйкой подливая,
Лей в водичку кислоту –
Так отвадишь ты беду.

Винни-пух.
Чистота – друг человека.
Не забывай об этом никогда.
И пользуйся чистой посудой
На лабораторных работах
всегда!

Ведущий . Правила техники безопасности мы вспомнили, теперь предлагаю вам отгадать несколько загадок.

Первая загадка.

«Не страшны кислоты мне,
Даже очень сильные,
Но в растворах щелочей
Становлюсь малиновым.
Ярче сока всех малин.
Кто я?»

(Фенолфталеин.)

Вторая загадка.

«В щелочах я очень желтый,
А в кислотах – очень красный.
Индикатор – очень важный!
Как зовусь я?»

(Метилоранжевый.)

Третья загадка.

«Эта желтая бумага
Все укажет без труда.
Посинеет – в колбе щелочь,
Покраснеет – кислота.
Коль нейтральная среда,
Не изменит цвет она.
Как зовут ее?»

(Универсальная.)

Ребята, как называются те вещества,
о которых шла речь в загадках?

(Индикаторы.)

Теперь настало время пригласить на сцену юного экспериментатора. Кто желает похимичить?

На сцену выходит желающий провести эксперимент.
Ведущий . В штативе находятся три пронумерованные пробирки, содержащие бесцветные жидкости: воду, раствор кислоты и раствор щелочи. Прошу вас исследовать, в какой из пробирок находятся вода, кислота и щелочь?
Ученик-восьмиклассник проводит эксперимент по решению качественной задачи на распознавание веществ.
Ведущий . Друзья, какие же вы молодцы! Вы уже научились обращаться с лабораторным оборудованием и химической посудой, проводить химические опыты. А сейчас учащиеся старших классов проведут с вами викторину .

Химическая викторина

1 . Какой химический элемент принес химикам разных стран много бед?
(Ответ. Много трагических событий связано с фтором. Погиб один из членов Ирландской академии наук Томас Нокс, потерял трудоспособность другой ученый той же академии – Георг Нокс, мученическую смерть принял известный химик Джером Никлес из Нанси. Поплатился жизнью брюссельский химик П.Лайет, отравились фтором и пострадали французские химики Ж.Гей-Люссак и Л.Ж.Тенар, английский химик Г.Дэви и многие другие. И сейчас работа с фтором требует большой осторожности и продуманных мер защиты. При соприкосновении с кожей фтор вызывает сильные ожоги, вдыхание его приводит к тяжелому воспалению дыхательных путей и легких, которое часто заканчивается отеком легких и смертельным исходом. Малейшая неосторожность в работе с фтором – и у человека будут разрушены зубы, испорчены ногти.)
2 . Какой элемент впервые был открыт на Солнце? Кем и когда было сделано это открытие?
(Ответ. В 1868 г. во время солнечного затмения два астронома – француз П.Ж.Жансен (в Индии) и англичанин Дж.Н.Локьер (в Англии), – исследуя с помощью спектроскопа оранжево-красные языки пламени, вырывавшиеся с поверхности Солнца, увидели в спектре кроме трех знакомых линий водорода (красной, зелено-голубой и синей) новую – ярко-желтую. Каждый сообщил об открытии в Парижскую академию наук. В честь этого открытия была выпущена золотая медаль, украшенная портретами Жансена, Локьера и бога Солнца Аполлона, восседающего на колеснице.
Открытое вещество Локьер предложил назвать именем Солнца – гелием. Только через 27 лет английским ученым У.Рамзаю и У.Круксу удалось обнаружить земной гелий в минерале клевеите.)
3 . Один из ученых-химиков был талантливым музыкантом. Им написана даже опера. Кто этот ученый и что создано им в науке и музыке?
(Ответ. Александр Порфирьевич Бородин. Работал в области органической химии, оставил 91 печатный труд по органической химии, в том числе по исследованию альдолей и бромированию органических кислот. Он написал всемирно известную оперу «Князь Игорь», ряд симфонических и камерных произведений.)
4 . Представьте себе труд по химии, написанный не прозой, а в стихотворной форме. Сложные химические выводы… в стиxаx. Назовите имя химика-поэта .
(Ответ. Древнегреческий философ Тит Лукреций Кар, поэма «О природе вещей»:

О химии в стихах писал также М.В.Ломоносов, например «Письмо о пользе стекла»:

«Неправо о вещах те думают,

Шувалов,

Которые стекло чтут ниже

минералов,

Приманчивым лучом

блистающих в глаза.

Не меньше польза в нем,

не меньше в нем краса.

Не редко я для той
с Парнасских гор спускаюсь;
И ныне от нея на верх их

возвращаюсь,

Пою перед тобой в восторге

похвалу,

Не камням дорогим,

ни злату, но стеклу.

И как я оное хваля

воспоминаю,

Не ломкость лживого

я счастья представляю.

Не должно тленности

примером тое быть,

Чего и сильный огнь

не может разрушить,

Других вещей земных

конечных разрешитель:

Стекло им рождено; огонь его

родитель».)

5. «Плодом его усиленной педагогической деятельности, – писал Д.И.Менделеев, – является множество русских химиков, которые дали ему прозвище «дедушка русских химиков». О каком ученом-химике идет речь?
(Ответ. А.А.Воскресенский. Его исследования имели громадное значение для развития химии и химических производств. Благодаря его блестящим организаторским способностям, широкой и плодотворной педагогической деятельности была подготовлена благоприятная почва для проявления талантов выдающихся ученых России – учеников Воскресенского: Д.И.Менделеева, Н.Н.Бекетова, Н.А.Меншуткина и др.)
6 . В фамилии какого ученого девять букв, из них четыре «о»? Какова роль этого ученого в науке?
(Ответ. М.В.Ломоносов. Он ввел понятие о молекулах (корпускулах) и атомах (элементах), ввел взвешивание, развенчал теорию флогистона, обосновав природу горения; разработал способ изготовления цветного стекла, создал современный русский язык, внес вклад в развитие физики, геологии, географии, астрономии, металлургии и др.)
7 . Какой химический элемент и какому химику помог открыть кот?
(Ответ. В 1811 г. французским химиком Б.Куртуа был получен свободный йод. Произошло это так. У Куртуа были приготовлены в двух разных бутылках смеси веществ. В одной – серная кислота с железом, в другой – зола морских водорослей со спиртом. На плече у ученого во время опыта сидел кот. Вдруг кот прыгнул и опрокинул содержимое бутылок. Жидкости смешались, и от них стали подниматься клубы фиолетового пара, образующие при оседании кристаллы с металлическим блеском и едким запахом. Это был йод.)
8 . Названия какиx химических элементов связаны с окраской простых веществ или соединений?
(Ответ. Хлор – зеленоватый, хром – краска, рубидий – красный, родий – розовый, индий – синий, йод – фиалковый, цезий – голубой, иридий – радужный, фосфор – светоносец.)
9 . Названия каких химических элементов связаны с географией их открытия?
(Ответ. Скандий – Скандинавский полуостров, медь – остров Кипр, галлий – Галлия – древнее латинское название Франции, рутений – Россия, гафний – старое название Копенгагена, лютеций – древнее название Парижа, полоний – Польша, франций – Франция, америций – Америка, калифорний – штат Калифорния в США.)
10. Какие химические элементы названы в честь ученых?
(Ответ. Гадолиний – Ю.Гадолин, кюрий – Пьер и Мария Кюри, эйнштейний – А.Эйнштейн, фермий – Э.Ферми, менделевий – Д.И.Менделеев, лоуренсий – Э.Лоуренс, резерфор-
дий – Э.Резерфорд, нобелий – А.Б.Нобель, борий – Н.Бор, мейтнерий – Л.Мейтнер.)
11 . Какой элемент называется как планета Солнечной системы?

(Ответ. Уран.)

12 . Какой элемент по древнегреческой мифологии «обречен» на вечные муки?

(Ответ. Тантал.)

13 . В названии какого металла встречается дерево?

(Ответ. Никель.)

14 . Название какого благородного металла состоит из болотных водорослей?

(Ответ. Платина.)

15 . Химический элемент, частью которого любят играть на досуге взрослые и дети?

(Ответ. Золото.)

Ведущий . Дорогие восьмиклассники! Вы успешно справились со всеми заданиями, которые мы предложили вам. И теперь настал долгожданный момент. Мы зажигаем «химический огонь», огонь без использования спичек или каких-либо зажигательных приборов, огонь, который символизирует, что вы удостоены почетного звания «Химик». А честь зажечь этот огонь предоставляется победителю химической олимпиады (называет фамилию и имя олимпийца).
Победитель олимпиады проводит эксперимент «Огонь без спичек».

Опыт «Огонь без спичек»

В чистой сухой фарфоровой чашке приготовить маслянистую смесь, состоящую из мелко истолченного перманганата калия и концентрированной серной кислоты. На асбестовую сетку поставить чашку с приготовленной смесью, обложить ее деревянными щепками. Олимпиец берет небольшой кусочек ваты, смоченный спиртом, и выжимает спирт над щепками так, чтобы его капли попали в фарфоровую чашку со смесью веществ. После щелчка загорается «химический огонь».

Все участники праздника . Ура! Ура! Ура!
Ведущий.
Вечер наш занимательный
На этом закончить хотим мы.
И желаем всем обязательно
Отличных успехов по химии!

Учащиеся старших классов вручают восьмиклассникам сувениры и прикрепляют эмблемы со званием «Химик».

ЛИТЕРАТУРА

Штремплер Г.И. Химия на досуге. М.: Просвещение, 1993;
Титова И.М., Угрюмов П.Г. Методические рекомендации по использованию химических загадок во внеклассной работе по химии. Л.: ЛГПИ им. А.И.Герцена, 1989;
Куликова Е.Л . Вечера занимательной химии. Минск: Народная асвета, 1966;
Кукушкин Ю.Н., Буданова В.Ф., Власова А.Р., Крылов В.К., Панина Н.С., Симанова С.А. Что мы знаем о химии. М.: Высшая школа, 1993;
Сомин Л.Е . Увлекательная химия. М.: Просвещение, 1978;
Гаврусейко Н.П., Дебалтовская В.И . Химические викторины. Минск: Народная асвета, 1972; Парменов К.Я., Сморгонский Л.М . Книга для чтения по химии. М.: Государственное учебно-педагогическое издательство Министерства просвещения РСФСР, 1955;
Алексинский В.Н . Занимательные опыты по химии. М.: Просвещение – АО «Учебная литература», 1995.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Оглавление

Введение 3

Теоретическая часть 5

История открытия индикаторов 5

Классификация школьных индикаторов и способы их использования 6

Водородный показатель 6

Экспериментальная часть 8

Социологический опрос 8

Приготовление индикатора из природного материала 9

Лабораторное исследование «Измерение уровня рН в средствах для умывания»………………………………………………………………………10

Заключение 14

Список используемых источников 15

Введение

В современном мире практически невозможно обойтись без косметических средств. Мыло, шампуни, скрабы, лосьоны, тоники, крема…Нам трудно представить свою жизнь без этого. Косметика сопровождает нашу жизнь с самого рождения. На прилавках магазинов множество средств разных производителей: «UNILEVER», «Beiersdorf», «Oriflame» и др. Производители - и отечественные, и зарубежные - наперебой предлагают новинки, расхваливая их замечательные свойства. Косметикой можно пользоваться с раннего возраста (например «Jonson"s Baby», «Bubchen» предназначены для детей). Основное назначение современной косметики - дать людям возможность оставаться красивыми всю жизнь. Каждое утро мы умываемся специальными косметическими средствами, в то время как наши бабушки умывались родниковой водой. А иначе нельзя: мы живем совершенно в других экологических условиях. Вода не растворит потожировые выделения кожи, смешанные с пылью и городскими выхлопами. К тому же наша вода из-под крана с хлоркой. А обычное мыло - щелочь, пересушит кожу. Необходимо использовать специальные средства для умывания, которые содержат более мягкие вещества в сравнении с мылом, и помимо очищения, ухаживают за кожей, учитывая ее тип.

Купив неподходящую одежду или обувь, ее без труда можно вернуть обратно в магазин. С косметикой такое, увы, невозможно. Чтобы не было до слез обидно из-за неудачного средства, выбирать косметику нужно тщательнее. Одним из важных ориентиров при выборе косметического средства является показатель рH.

Научившись определять РН, мы сможем изготовить косметические средства в домашних условиях, используя только экологически чистые натуральные ингредиенты. Для определения РН необходимы специальные индикаторы или индикаторные полоски. 0000000Цель: изготовление индикатора в домашних условиях; определение качества различных средств для умывания при помощи индикатора.

Задачи исследования:

    Провести анализ научной литературы по данному вопросу;

    Узнать историю появления индикаторов;

    Изучить способы образования индикаторов;

    Приготовить индикаторы из природных материалов в домашних условиях;

    Провести анализ косметических средств, сделать видеосъемку исследований

Гипотеза: предположим, что индикаторы можно приготовить в домашних условиях.

Объект исследования: индикаторы

Предмет исследования: состав индикаторов

Методы: анализ научной литературы, наблюдение, лабораторный эксперимент, опыт, анкетирование, анализ полученных результатов.

Теоретическая часть

История открытия индикаторов

Индикаторы - значит «указатели». Это вещества, которые меняют цвет в зависимости от того, попали они в кислую, щелочную или нейтральную среду. Больше всего распространены индикаторы - лакмус, фенолфталеин, метиловый оранжевый.

Самым первым появился кислотно-основный индикатор лакмус. Лакмус - водный настой лакмусового лишайника, растущего на скалах в Шотландии.

Впервые индикаторы обнаружил в 17 веке английский физик и химик Роберт Бойль. Бойль проводил различные опыты. Однажды, когда он проводил очередное исследование, зашел садовник. Он принес фиалки. Бойль любил цветы, но ему необходимо было проводить эксперимент. Бойль оставил цветы на столе. Когда ученый закончил свой опыт он случайно посмотрел на цветы, они дымились. Чтобы спасти цветы, он опустил их в стакан с водой. И - что за чудеса- фиалки, их темно- фиолетовые лепестки, стали красными. Бойль заинтересовался и проводил опыты с растворами, при этом каждый раз добавлял фиалки и наблюдал, что происходит с цветками. В некоторых стаканах цветы немедленно начали краснеть. Ученый понял, что цвет фиалок зависит от того, какой раствор находится в стакане, какие вещества содержатся в растворе. Лучшие результаты дали опыты с лакмусовым лишайником. Бойль опустил в настой лакмусового лишайника обыкновенные бумажные полоски. Дождался, когда они пропитаются настоем, а затем высушил их. Эти хитрые бумажки Роберт Бойль назвал индикаторами, что в переводе с латинского означает «указатель», так как они указывают на среду раствора. Именно индикаторы помогли ученому открыть новую кислоту - фосфорную, которую он получил при сжигании фосфора и растворении образовавшегося белого продукта в воде.

Если нет настоящих химических индикаторов, для определения кислотности среды можно успешно применять домашние, полевые и садовые цветы и даже сок многих ягод - вишни, черноплодной рябины, смородины. Розовые, малиновые или красные цветы герани, лепестки пиона или цветного горошка станут голубыми, если опустить их в щелочной раствор. Так же посинеет в щелочной среде сок вишни и смородины. Наоборот, в кислоте те же «реактивы» примут розово - красный цвет.

Растительные кислотно-основные индикаторы здесь - красящие вещества — антоцианы.Именно антоцианы придают разнообразные оттенки розового, красного, голубого и лилового многим цветам и плодам.

Красящее вещество свеклы бетаин или бетанидин в щелочной среде обесцвечивается, а в кислой - краснеет. Вот почему такой аппетитный цвет у борща с квашеной капустой.

Классификация школьных индикаторов и способы их использования.

Индикаторы имеют различную классификацию. Одни из самых распространенных - кислотно-основные индикаторы, которые изменяют цвет в зависимости от кислотности раствора.В наше время известны несколько сотен, искусственно синтезированных кислотно-основных индикаторов, с некоторыми из них можно познакомиться в школьной химической лаборатории.

Фенолфталеин (продается в аптеке под названием "пурген") - белый или белый со слегка желтоватым оттенком мелкокристаллический порошок. Растворим в 95 % спирте, практически не растворим в воде. Бесцветный фенолфталеин в кислой и нейтральной среде бесцветен, а в щелочной среде окрасится в малиновый цвет. Поэтому фенолфталеин используется для определения щелочной среды.

Метиловый оранжевый - кристаллический порошок оранжевого цвета. Умеренно растворим в воде, легко растворим в горячей воде, практически нерастворим в органических растворителях. Переход окраски раствора от красной к желтой.

Лакмоид (лакмус) - порошок черного цвета. Растворим в воде, 95 % спирте, ацетоне, ледяной уксусной кислоте. Переход окраски раствора от красной к синей.

Индикаторы обычно используют, добавляя несколько капель водного или спиртового раствора, либо немного порошка к исследуемому раствору.

Другой способ применения - использование полосок бумаги, пропитанных раствором индикатора или смеси индикаторов и высушенных при комнатной температуре. Такие полоски выпускают в самых разнообразных вариантах - с нанесенной на них цветной шкалой - эталоном цвета или без него.

Водородный показатель

Индикатор бумажный универсальный имеет шкалу для определения среды (рН).

Водородный показатель, pH - величина, характеризующая концентрацию ионов водорода в растворах. Это понятие было введено в 1909 году датским химиком Сёренсеном. Показатель называется pH, по первым буквам латинских слов potentia hydrogeni — сила водорода, или pondus hydrogenii — вес водорода. Водные растворы могут иметь величину pH в интервале 0-14. В чистой воде и нейтральных растворах pH=7, в кислых растворах pH7. Величины pH измеряют при помощи кислотно-щелочных индикаторов.

Таблица 1. - Цвет индикатора в различных средах.