Лекции по фармацевтической химии 5 курс. Общая фармацевтическая химия

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Фармацевтическая химия и фармацевтический анализ

Вступление

1. Характеристика фармацевтической химии, как науки

1.1 Предмет и задачи фармацевтической химии

1.2 Связь фармацевтической химии с другими науками

1.3 Объекты фармацевтической химии

1.4 Современные проблемы фармацевтической химии

2. История развития фармацевтической химии

2.1 Основные этапы развития фармации

2.2 Развитие фармацевтической химии в России

2 .3 Развитие фармацевтической химии в СССР

3. Фармацевтический анализ

3.1 Основные принципы фармацевтического и фармакопейного анализа

3.2 Критерии фармацевтического анализа

3.3 Ошибки, возможные при проведении фармацевтического анализа

3.4 Общие принципы испытаний подлинности лекарственных веществ

3.5 Источники и причины недоброкачественности лекарственных веществ

3.6 Общие требования к испытаниям на чистоту

3.7 Методы исследования качества лекарственных средств

3.8 Валидация методов анализа

Выводы

Список использованной литературы

Вступление

Среди задач фармацевтической химии -- таких, как моделирование новых лекарственных, средств и их синтез, изучение фармакокинетики и др. особое место занимает анализ качества лекарств, Сборником обязательных обшегосударственных стандартов и положений, нормирующих качество лекарственных средств, является Государственная фармакопея.

Фармакопейный анализ лекарственных средств включает в себя оценку качества по множеству показателей. В частности, устанавливается подлинность лекарственною средства, анализируется его чистота, проводится количественное определение, Первоначально для такого анализа применяли исключительно химические методы; реакции подлинности, реакции на содержание примесей и титрование при количественном определении.

Со временем не только повысился уровень технического развития фармацевтической отрасли, но и изменились требования к качеству лекарственных средств. В последние годы наметилась тенденция к переходу на расширенное использование физических и физико-химических методов анализа. В частности, широко применяются спектральные методы инфракрасная и ультрафиолетовая спектрофотометрия, спектроскопия ядерно-магнитного резонанса и др. Активно используются методы хроматографии (высокоэффективная жидкостная, газожидкостная, тонкослойная), электрофорез и др.

Изучение всех этих методов и их усовершенствование - одна из самых важных задач фармацевтической химии на сегодняшний день.

1. Характеристика фармацевтической химии, как науки

1.1 Предмет и задачи фармацевтической химии

Фармацевтическая химия -- наука, которая, базируясь на общих законах химических наук, исследует способы получения, строение, физические и химические свойства лекарственных веществ, взаимосвязь между их химической структурой и действием на организм, методы контроля качества и изменения, происходящие при хранении.

Основными методами исследования лекарственных веществ в фармацевтической химии являются анализ и синтез -- диалектически тесно связанные между собой процессы, взаимно дополняющие друг друга. Анализ и синтез -- мощные средства познания сущности явлений, происходящих в природе.

Задачи, стоящие перед фармацевтической химией, решаются с помощью классических физических, химических и физико-химических методов, которые используются как для синтеза, так и для анализа лекарственных веществ.

Чтобы познать фармацевтическую химию, будущий провизор должен иметь глубокие знания в области общетеоретических химических и медико-биологических дисциплин, физики, математики. Необходимы также прочные знания в области философии, ибо фармацевтическая химия, как и другие химические науки, занимается изучением химической формы движения материи.

1.2 Связь фармацевтической химии с другими науками

Фармацевтическая химия является важным разделом химической науки и тесно связана с ее отдельными дисциплинами (рис. 1). Используя достижения базовых химических дисциплин, фармацевтическая химия решает задачу целенаправленного поиска новых лекарственных средств.

Например, современные компьютерные методы позволяют прогнозировать фармакологическое действие (терапевтический эффект) лекарственного средства. В химии сформировалось отдельное направление, связанное с поиском взаимно однозначных соответствий между структурой химического соединения, его свойствами и активностью (QSАR-, или ККСА-метод -- количественная корреляция структура -- активность).

Взаимосвязь «структура -- свойство» можно обнаружить, например, сравнивая величины топологического индекса (показателя, отражающего структуру лекарственного вещества) и терапевтического индекса (отношение летальной лозы к эффективной дозе LD50/ED50).

Фармацевтическая химия связана и с другими, нехимическими, дисциплинами (рис. 2).

Так, знание математики позволяет, в частности, применять метрологическую оценку результатов анализа ЛС, информатика обеспечивает своевременное получение информационных данных о ЛС, физика -- использование фундаментальных законов природы и применение современной аппаратуры при анализе и исследовании.

Очевидна взаимосвязь между фармацевтической химией и специальными дисциплинами. Развитие фармакогнозии невозможно без выделения и анализа биологически активных веществ растительного происхождения. Фармацевтический анализ сопутствует отдельным стадиям технологических процессов получения ЛС. Фармакоэкономика и управление фармацией соприкасаются с фармацевтической химией при организации системы стандартизации и контроля качества лекарственных средств. Определение содержания ЛС и их метаболитов в биологических средах в равновесии (фармакодинамика и токсико- динамика) и во времени (фармакокинетика и токсикокинетика) демонстрирует возможности применения фармацевтической химии для решения задач фармакологии и токсикологической химии.

Ряд дисциплин медико-биологического профиля (биология и микробиология, физиология и патофизиология) представляют собой теоретическую основу для изучения фармацевтической химии.

Тесная взаимосвязь со всеми перечисленными дисциплинами обеспечивает решение современных проблем фармацевтической химии.

В конечном итоге эти проблемы сводятся к созданию новых, более эффективных и безопасных лекарственных средств и разработке способов фармацевтического анализа.

1.3 Объекты фармацевтической химии

Объекты фармацевтической химии чрезвычайно разнообразны по химической структуре, фармакологическому действию, по массе, числу компонентов в смесях, наличию примесей и сопутствующих веществ. К числу таких объектов следует отнести:

Лекарственные вещества (ЛB) -- (субстанции) индивидуальные вещества растительного, животного, микробного или синтетического происхождения, обладающие фармакологической активностью. Субстанции предназначены для получения лекарственных средств.

Лекарственные средства (ЛС) -- неорганические или органические соединения, обладающие фармакологической активностью, полученные путем синтеза, из растительного сырья, минералов, крови, плазмы крови, органов, тканей человека или животного, а также с применением биологическихтехнологий. К ЛВтакже относятся биологически активные вещества (БАВ) синтетического, растительного или животного происхождения, предназначенные для производства или изготовления лекарственных средств. Лекарственная форма (ЛФ) -- придаваемое ЛС или ЛРС удобное для применения состояние, при котором достигается необходимый лечебный эффект.

Лекарственные препараты (ЛП) -- дозированные ЛС в определенной ЛФ, готовые к применению.

Все указанные ЛВ, ЛС, ЛФ и ЛП могут быть как отечественного, так и зарубежного производства, разрешенные для применения в Российской Федерации. Приведенные термины и их аббревиатуры являются официальными. Они внесены в ОСТы и предназначены для использования в фармацевтической практике.

К числу объектов фармацевтической химии относятся также исходные продукты, используемые для получения ЛВ, промежуточные и побочные продукты синтеза, остаточные растворители, вспомогательные и другие вещества. Кроме патентованных ЛС объектами фармацевтического анализа являются дженерики (генерические препараты). На разработанный оригинальный ЛП фармацевтическая компания-производитель получает патент, который подтверждает, что он является собственностью компании на определенный срок (обычно 20 лет). Патент обеспечивает эксклюзивное право на его реализацию без конкуренции со стороны других производителей. После истечения срока действия патента свободное производство и реализация данного ЛП разрешается всем другим компаниям. Он становится генерическим препаратом, или дженериком, но должен быть абсолютно идентичен оригинальному. Разница состоит только в отличии наименования, которое дает компания-производитель. Сравнительная оценка дженерика и оригинального препарата производится по фармацевтической эквивалентности (равное содержание активного ингредиента), биоэквивалентности (равные концентрации накопления при приеме в крови и тканях), терапевтической эквивалентности (одинаковая эффективность и безопасность при введении в равных условиях и дозах). Преимущества дженериков состоят в значительном снижении затрат по сравнению с созданием оригинального ЛП. Однако оценка их качества производится так же, как и соответствующих оригинальных ЛВ.

Объектами фармацевтической химии являются также различные готовые лекарственные средства (ГЛС) заводского и лекарственные формы аптечного изготовления (ЛФ), лекарственное растительное сырье (ЛРС). К их числу относятся таблетки, гранулы, капсулы, порошки, суппозитории, настойки, экстракты, аэрозоли, мази, пластыри, капли глазные, различные инъекционные ЛФ, глазные лекарственные пленки (ГЛП). Содержание указанных и других терминов и понятий приведено в терминологическом словаре данного учебного пособия.

Гомеопатические лекарственные средства представляют собой одно- или многокомпонентные ЛП, содержащие, как правило, микродозы активных соединений, производящихся по специальной технологии и предназначенные для перорального, инъекционного или местного применения в виде различных ЛФ.

Существенная особенность гомеопатического метода лечения состоит в использовании малых и сверхмалых доз ЛС, приготовленных путем ступенчатого последовательного разведения. Это обусловливает специфические особенности технологии и контроля качества гомеопатических препаратов.

Ассортимент гомеопатических ЛС складывается из двух категорий: монокомпонентных и комплексных. Впервые гомеопатические ЛС были включены в Государственный реестр в 1996 г. (в количестве 1192 монопрепаратов). В последующем эта номенклатура расширялась и насчитывает сейчас, кроме 1192 монопрепаратов, 185 отечественных и 261 наименование зарубежных гомеопатических ЛС. В их числе 154 субстанций-настоек матричных, а также различных ЛФ: гранул, таблеток сублингвальных, суппозиториев, мазей, кремов, гелей, капель, растворов для инъекций, драже для рассасывания, оральных растворов, пластырей.

Столь большая номенклатура гомеопатических ЛФ требует высоких требований к их качеству. Поэтому их регистрация проводится в строгом соответствии с требованиями контрольно-разрешительной системы, так же как и для аллопатических ЛС с последующей регистрацией в Минздраве. Это обеспечивает надежную гарантию эффективности и безопасности гомеопатических ЛС.

Биологически активные добавки (БАД) к пище (нутрицевтики и парафармацевтики) представляют собой концентраты натуральных или идентичных им БАВ, предназначенные для непосредственного приема или введения в состав пищевых продуктов с целью обогащения рациона питания человека. Получают БАД из растительного, животного или минерального сырья, а также химическими и биотехнологическими методами. К числу БАД относятся бактериальные и ферментные препараты, регулирующие микрофлору желудочно-кишечного тракта. БАД производят на предприятиях пищевой, фармацевтической и биотехнологической промышленности в виде экстрактов, настоек, бальзамов, порошков, сухих и жидких концентратов, сиропов, таблеток, капсул и других форм. Реализуют БАД аптеки и магазины диетических продуктов питания. Они не должны содержать сильнодействующих, наркотических и ядовитых веществ, а также ЛРС, не применяемого в медицине и не используемого в питании. Экспертная оценка и гигиеническая сертификация БАД осуществляется в строгом соответствии с положением, утвержденным приказом от 15 апреля 1997 г. №117 «О порядке экспертизы и гигиенической сертификации биологически активных добавок к пище».

Впервые БАД появились в медицинской практике США в 60-е гг. XX в. Вначале они представляли собой комплексы, состоящие из витаминов и минералов. Затем в их состав стали входить различные компоненты растительного и животного происхождения, экстракты и порошки, в т.ч. экзотических природных продуктов.

При составлении БАД не везде учитываются химический состав и дозировки компонентов, в особенности солей металлов. Многие из них могут вызывать осложнения. Не всегда в достаточном объеме изучается их эффективность и безопасность. Поэтому в ряде случаев БАД могут приносить вред вместо пользы, т.к. не учитываются взаимодействие их друг с другом, дозировки, побочное, а иногда даже наркотическое действие. В США с 1993 по 1998 г. зарегистрировано 2621 сообщение о побочных реакциях БАД, в т.ч. 101 со смертельным исходом. Поэтому принято решение ВОЗ об ужесточении контроля за БАД и предъявлении к их эффективности и безопасности требований, аналогичных критериям качества лекарственных средств.

1.4 Современные проблемы фармацевтической химии

Основными проблемами фармацевтической химии являются:

ѕ создание и исследование новых лекарственных средств;

ѕ разработка способов фармацевтического и биофармацевтического анализа.

Создание и исследование новых ЛС. Несмотря на огромный арсенал имеющихся ЛС, проблема изыскания новых высокоэффективных ЛВ остается актуальной.

Роль ЛС непрерывно растет в современной медицине. Это вызвано целым рядом причин, главными из которых являются:

ѕ ряд тяжелых заболеваний еще не излечивается ЛС;

ѕ длительное применение ряда ЛС формирует толерантные патологии, для борьбы с которыми необходимы новые ЛС с иным механизмом действия;

ѕ процессы эволюции микроорганизмов приводят к возникновению новых заболеваний, для лечения которых нужны эффективные ЛС;

ѕ некоторые из применяемых ЛВ вызывают побочные эффекты, в связи с чем необходимо создавать более безопасные ЛС.

Создание каждого нового оригинального ЛВ является результатом развития фундаментальных знаний и достижений медицинских, биологических, химических и других наук, проведения напряженных экспериментальных исследований, вложения крупных материальных затрат. Успехи современной фармакотерапии явились следствием глубоких теоретических исследований первичных механизмов гомеостаза, молекулярных основ патологических процессов, открытия и изучения физиологически активных соединений (гормоны, медиаторы, простагландины и др.). Получению новых химиотера- певтических средств способствовали достижения в изучении первичных механизмов инфекционных процессов и биохимии микроорганизмов. Создание новых ЛВ оказалось возможным на основе достижений в области органической и фармацевтической химии, использования комплекса физико-химических методов, проведения технологических, биотехно- догических, биофармацевтических и других исследований синтетических и природных соединений.

Будущее фармацевтической химии связано с запросами медицины и дальнейшим прогрессом исследований во всех указанных направлениях. Это создаст предпосылки для открытия новых направлений фармакотерапии, получения более физиологичных, безвредных ЛС как с помощью химического или микробиологического синтеза, так и путем выделения БАВ из растительного или животного сырья. Приоритетны разработки в области получения инсулина, гормонов роста, препаратов для лечения СПИДа, алкоголизма, получения моноклональных тел. Активные исследования ведутся в области создания иных сердечно-сосудистых, противовоспалительных, диуретических, нейролептических, антиаллергических средств, им- муномодуляторов, а также полусинтетических антибиотиков, цефалоспоринов и гибридных антибиотиков. Наиболее перспективно создание ЛВ на основе исследования природных пептидов, полимеров, полисахаридов, гормонов, ферментов и других БАВ. Чрезвычайно важны выявление новых фармакофоров и целенаправленный синтез поколений ЛВ на основе ранее не исследованных ароматических и гетероциклических соединений, родственных биологическим системам организма.

Получение новых синтетических ЛВ практически безгранично, так как число синтезируемых соединений возрастает с увеличением их молекулярной массы. Например, количество даже наиболее простейших соединений углерода с водородом с относительной молекулярной массой 412 превышает 4 млрд. веществ.

В последние годы изменился подход к процессу создания и исследования синтетических ЛВ. От чисто эмпирического метода «проб и ошибок» исследователи все больше переходят к использованию математических методов планирования и обработки результатов экспериментов, применению современных физико-химических методов. Такой подход открывает широкие возможности прогнозирования вероятных видов биологической активности синтезированных веществ, сокращения сроков создания новых ЛС. В перспективе все большее значение будет приобретать создание и накопление банков данных для ЭВМ, а также использование ЭВМ для установления зависимости между химическим строением и фармакологическим действием синтезируемых веществ. В конечном счете эти работы должны привести к созданию общей теории направленного конструирования эффективных ЛВ, родственных системам организма человека.

Создание новых ЛC растительного и животного происхождения складывается из таких основных факторов, как поиск новых видов высших растений, исследование органов и тканей животных или других организмов, установление биологической активности содержащихся в них химических веществ.

Немаловажное значение имеют также изучение новых источников получения ЛB, широкое использование для их производства отходов химической, пищевой, деревообрабатывающей и других отраслей промышленности. Это направление имеет непосредственную связь с экономикой химико-фармацевтической промышленности и будет способствовать снижению стоимости ЛC. Особенно перспективно использование для создания ЛB современных методов биотехнологии и генной инженерии, которые находят все более широкое применение в химико-фармацевтической промышленности.

Таким образом, современная номенклатура ЛC в различных фармакотерапевтических группах требует дальнейшего расширения. Создаваемые новые ЛC только в том случае являются перспективными, если по своей эффективности и безопасности они превосходят существующие, а по качеству соответствуют мировым требованиям. В решении этой проблемы важная роль принадлежит специалистам в области фармацевтической химии, которая отражает общественно-медицинскую значимость этой науки. Наиболее широко с участием химиков, биотехнологов, фармакологов и клиницистов комплексные исследования в области создания новых высокоэффективных ЛC ведутся в рамках подпрограммы 071 «Создание новых ЛC методами химического и биологического синтеза».

Наряду с традиционными работами по скринингу БАВ, необходимость продолжения которых очевидна, все больший удельный вес приобретают исследования по направленному синтезу новых ЛB. Такие работы базируются на изучении механизма фармакокинетию и метаболизма ЛC; выявлении роли эндогенных соединений в биохимических процессах, определяющих тот или иноь вид физиологической активности; исследовании возможных путей ингибирования или активации ферментных систем. Важнейшей основой создания новых ЛC является модификация молекул известных ЛВ или природных БАВ, а также эндогенных соединений с учетом их структурных особенностей и, в частности, введение «фармакофорных» групп, разработка пролекарств. При разработке ЛB необходимо достигать повышения биодоступности и избирательности, регулирования продолжительности действия путем создания транспортных систем в организме. Для направленного синтеза необходимо выявлять корреляционную зависимость между химической структурой, физико-химическими свойствами и биологической активностью соединений, используя для конструирования ЛВ компьютерную технику.

За последние годы существенно изменилась структура заболеваний и эпидемиологическая обстановка, в высокоразвитых странах увеличилась средняя продолжительность жизни населения, повысился уровень заболеваемости среди людей пожилого возраста. Указанные факторы определили новые направления поиска ЛC. Возникла необходимость расширения номенклатуры ЛП для лечения различных видов психоневрологических заболеваний (паркинсонизм, депрессия, расстройство сна), сердечно-сосудистых (атеросклероз, артериальная гипертензия, ИБС, нарушения сердечного ритма), болезней опорно-двигательного аппарата (артриты, заболевания позвоночника), заболеваний легких (бронхиты, бронхиальная астма). Эффективные ЛC для лечения указанных болезней могут существенно повлиять на качество жизни и значительно продлить активный период жизни людей, в т.ч. пожилого возраста. Причем основным подходом в этом направлении является поиск мягкодействующих ЛС, не вызывающих резких изменений основных функций организма, проявляющих лечебный эффект за счет влияния на метаболические звенья патогенеза болезни.

Основными направлениями поиска новых и модернизации имеющихся жизненно необходимых ЛC являются:

ѕ синтез биорегуляторов и метаболитов энергетического и пластического обмена;

ѕ выявление потенциальных ЛB в ходе скрининга новых продуктов химического синтеза;

ѕ синтез соединений с программируемыми свойствами (модифицирование структуры в известных рядах ЛB, ресинтез природных фитосубстанций, компьютерный поиск БАВ);

ѕ стереоселективный синтез эутомеров и наиболее активных конформаций социально значимых ЛB.

Разработка способов фармацевтического и биофармацевтического анализа. Решение этой важной проблемы возможно только на основе проведения фундаментальных теоретических исследований физических и химических свойств ЛВ с широким применением современных химических и физико-химических методов. Использование этих методов должно охватывать весь процесс от создания новых ЛВ до контроля качества конечного продукта производства. Необходима также разработка новой и усовершенствованной нормативной документации на ЛВ и ЛФ, отражающей требования к их качеству и обеспечивающей стандартизацию.

На основе научного анализа методом экспертных оценок выявлены наиболее перспективные направления исследований в области фармацевтического анализа. Важное место в этих исследованиях будут занимать работы по повышению точности анализа, его специфичности и чувствительности, стремление анализировать очень малые количества ЛВ, в том числе в одной дозе, а также выполнять анализ автоматически и в короткие сроки. Несомненное значение приобретает снижение трудоемкости и повышение экономичности методик анализа. Перспективна разработка унифицированных методик анализа групп ЛВ, объединенных родством химической структуры на основе использования физико-химических методов. Унификация создает большие возможности повышения производительности труда химика-аналитика.

В ближайшие годы сохранят свое значение химические титриметрические методы, имеющие ряд положительных сторон, в частности высокую точность определений. Необходимо также внедрять в фармацевтический анализ такие новые титриметрические методы, как безбюреточное и безиндикаторное титрование, диэлектрометрическое, биамперометрическое и другие типы титрования в сочетании с потенциометрией, в том числе в двухфазных и трехфазных системах.

В химическом анализе в последние годы используют волоконно-оптические сенсоры (без индикаторов, флуоресцентные, хемилюминесцентные, биосенсоры). Они дают возможность дистанционного изучения процессов, позволяют определять концентрацию без нарушения состояния пробы, стоимость их сравнительно невелика. Дальнейшее развитие полу-чат в фармацевтическом анализе кинетические методы, отличающиеся высокой чувствительностью как при испытании чистоты, так и количественном определении.

Трудоемкость и малая точность биологических методов испытаний вызывают необходимость замены их более быстрыми и чувствительными физико-химическими методами. Изучение адекватности биологических и физико-химических способов анализа ЛС, содержащих ферменты, белки, аминокислоты, гормоны, гликозиды, антибиотики, -- необходимый путь совершенствования фармацевтического анализа. В предстоящие 20-30 лет главенствующую роль займут оптические, электрохимические и особенно современные хроматографические методы как наиболее полно отвечающие требованиям фармацевтического анализа. Получат развитие различные модификации этих методов, например разностная спектроскопия типа дифференциальной и производной спектрофотометрии. В области хроматографии наряду с газожидкостной (ГЖХ) все больший приоритет приобретает высокоэффективная жидкостная хроматография (ВЭЖХ).

Доброкачественность получаемых ЛВ зависит от степени чистоты исходных продуктов, соблюдения технологического режима и т.д. Поэтому важным направлением исследований в области фармацевтического анализа является разработка способов контроля качества исходных и промежуточных продуктов получения ЛВ (постадийный контроль производства). Это направление вытекает из требований, которые предъявляют к производству Л С правила ОМР. В заводских контрольно-аналитических лабораториях будут развиваться автоматические методы анализа. Значительные возможности в этом отношении открывает использование автоматизированных проточно-инжекционных систем для постадийного контроля, а также ГЖХ и ВЭЖХ для посерийного контроля ГЛС. Сделан новый шаг на пути полной автоматизации всех операций выполнения анализа, в основе которого лежит использование лабораторных роботов. Робототехника нашла уже широкое использование в зарубежных лабораториях, особенно для осуществления пробоотбора и других вспомогательных операций.

Дальнейшего совершенствования потребуют способы анализа готовых, в том числе многокомпонентных ЛФ, включая аэрозоли, глазные пленки, многослойные таблетки, спансулы. С этой целью широкое применение получат гибридные методы, основанные на сочетании хроматографии с оптическими, электрохимическими и другими методами. Не потеряет своего значения экспресс-анализ ЛФ индивидуального изготовления, однако здесь на смену химическим методам все шире будут приходить физико-химические. Внедрение простых и достаточно точных методик рефрактометрического, ин- терферометрического, поляриметрического, люминесцентного, фотоколориметрического анализа и других методов позволяет повысить объективность и ускорить оценку качества ЛФ, изготавливаемых в аптеках. Разработка таких методик приобретает большую актуальность в связи с возникшей в последние годы проблемой борьбы с фальсификацией ЛС. Наряду с законодательными и правовыми нормами совершенно необходимо усиление контроля за качеством ЛС отечественного и зарубежного производства, в т.ч. экспресс-методами.

Чрезвычайно важным направлением является использование различных методов фармацевтического анализа для исследования химических процессов, происходящих при хранении ЛС. Познание этих процессов дает возможность решать такие актуальные проблемы, как стабилизация ЛВ и ЛФ, разработка научно обоснованных условий хранения ЛС. Практическая целесообразность таких исследований подтверждается их экономической значимостью.

В задачу биофармацевтического анализа входит разработка способов определения не только ЛВ, но и их метаболитов в биологических жидкостях и тканях организма. Для решения проблем биофармации и фармакокинетики необходимы точные и чувствительные физико-химические методы анализа ЛВ в биологических тканях и жидкостях. Разработка таких методик входит в круг задач специалистов, работающих в области фармацевтического и токсикологического анализа.

Дальнейшее развитие фармацевтического и биофармацевтического анализа тесно связано с применением математических методов для оптимизации способов контроля качества ЛС. В различных областях фармации уже используют теорию информации, а также такие математические методы, как симплексная оптимизация, линейное, нелинейное, численное программирование, многофакторный эксперимент, теория распознавания образов, различные экспертные системы.

Математические методы планирования эксперимента позволяют формализовать процедуру исследования той или иной системы и получить в итоге ее математическую модель в виде уравнения регрессии, которое включает все наиболее существенные факторы. В результате достигается оптимизация всего процесса и устанавливается наиболее вероятный механизм его функционирования.

Все чаще современные методы анализа сочетают с применением электронно-вычислительной техники. Это привело к возникновению на стыке аналитической химии и математики новой науки -- хемометрики. Она основана на широком использовании методов математической статистики и теории информации, применении ЭВМ и компьютеров на различных стадиях выбора метода анализа, его оптимизации, обработки и интерпретации результатов.

Весьма показательной характеристикой состояния исследований в области фармацевтического анализа является относительная частота применения различных методов. По данным на 2000 г., наблюдалась тенденция к снижению использования химических методов (7,7%, включая термохимию). Такой же процент использования методов ИК-спектроскопии и УФ-спектрофотометрии. Наибольшее число исследований (54%) выполнено с использованием хроматографических методов, особенно ВЭЖХ (33%). На долю других методов приходится 23% выполненных работ. Следовательно наблюдается стабильная тенденция к расширению использования хроматографических (особенно ВЭЖХ) и абсорбционных методов для совершенствования и унификации методов анализа ЛС.

2. История развития фармацевтической химии

2.1 Основные этапы развития фармации

Создание и развитие фармацевтической химии тесно связаны с историей фармации. Фармация зародилась в глубокой древности и оказала огромное влияние на формирование медицины, химии и других наук.

История фармации представляет собой самостоятельную дисциплину, которая изучается отдельно. Чтобы понять, как и почему зародилась фармацевтическая химия в недрах фармации, как происходил процесс становления ее в самостоятельную науку, кратко рассмотрим отдельные этапы развития фармации начиная с периода ятрохимии.

Период ятрохимии (XVI -- XVII вв.). В эпоху возрождения на смену алхимии пришла ятрохимия (лечебная химия). Ее основатель Парацельс (1493 -- 1541) считал, что "не добыванию золота, а защите здоровья должна служить химия". Сущность учения Парацельса основывалась на том, что организм человека представляет совокупность химических веществ и недостаток какого-либо из них может вызвать заболевание. Поэтому для исцеления Парацельс применял химические соединения различных металлов (ртути, свинца, меди, железа, сурьмы, мышьяка и др.), а также растительные лекарственные средства.

Парацельс провел исследование действия на организм многих веществ минерального и растительного происхождения. Он усовершенствовал ряд приборов и аппаратов для выполнения анализа. Вот почему Парацельса по праву считают одним из основоположников фармацевтического анализа, а ятрохимию -- периодом зарождения фармацевтической химии.

Аптеки в XVI -- XVII вв. были своеобразными центрами по изучению химических веществ. В них получали и исследовали вещества минерального, растительного и животного происхождения. Здесь был открыт целый ряд новых соединений, изучены свойства и превращения различных металлов. Это позволило накопить ценные химические знания, совершенствовать химический эксперимент. За 100 лет развития иатрохимии наука обогатилась бблыпим количеством фактов, чем алхимия за 1000 лет.

Период зарождения первых химических теорий (ХVII -- XIX вв.). Для развития промышленного производства в этот период необходимо было расширить рамки химических исследований за пределы иатрохимии. Это привело к созданию первых химических производств и к формированию химической науки.

Вторая половина XVII в. -- период зарождения первой химической теории -- теории флогистона. С ее помощью пытались доказать, что процессы горения и окисления сопровождаются выделением особого вещества -- "флогистона". Теорию флогистона создали И.Бехер (1635-1682) и Г.Шталь (1660-1734). Несмотря на некоторые ошибочные положения, она несомненно была прогрессивной и способствовала развитию химической науки.

В борьбе со сторонниками флогистонной теории возникла кислородная теория, которая явилась могучим толчком в развитии химической мысли. Наш великий соотечественник М.В. Ломоносов (1711 -- 1765) одним из первых ученых в мире доказал несостоятельность теории флогистона. Несмотря на то что еще не был известен кислород, М.В.Ломоносов экспериментально показал в 1756 г., что в процессе горения и окисления происходит не разложение, а присоединение веществом "частиц" воздуха. Аналогичные результаты спустя 18 лет в 1774 г. получил французский ученый А.Лавуазье.

Кислород впервые выделил шведский ученый -- фармацевт К.Шееле (1742 -- 1786), заслугой которого также было открытие хлора, глицерина, ряда органических кислот и других веществ.

Вторая половина XVIII в. была периодом бурного развития химии. Большой вклад в прогресс химической науки внесли фармацевты, которыми сделан ряд замечательных открытий, имеющих важное значение как для фармации, так и для химии. Так, французский фармацевт Л.Воклен (1763 -- 1829) открыл новые элементы -- хром, бериллий. Фармацевт Б.Куртуа (1777 -- 1836) обнаружил йод в морских водорослях. В 1807 г. французский фармацевт Сеген выделил морфин из опия, а его соотечественники Пельтье и Кавенту впервые получили из растительного сырья стрихнин, бруцин и другие алкалоиды.

Многое сделал для развития фармацевтического анализа аптекарь Мор (1806 -- 1879). Он впервые применил бюретки, пипетки, аптечные весы, которые носят его имя.

Таким образом, фармацевтическая химия, зародившаяся в период ятрохимии в XVI в., получила свое дальнейшее развитие в XVII -- XVIII вв.

2.2 Развитие фармацевтической химии в России

Истоки русской фармации. Возникновение фармации в России связано с широким развитием народной медицины и знахарства. До наших дней сохранились рукописные "лечебники" и "травники". В них содержатся сведения о многочисленных лекарственных средствах растительного и животного мира. Первыми ячейками аптечного дела на Руси были зелейные лавки (XIII -- XV вв.). К этому же периоду следует отнести возникновение фармацевтического анализа, так как появилась необходимость в проверке качества лекарств. Русские аптеки в XVI -- XVII вв. являлись своеобразными лабораториями по изготовлению не только лекарств, но и кислот (серной и азотной), квасцов, купоросов, очистке серы и т.д. Следовательно, аптеки были местом зарождения фармацевтической химии.

Идеи алхимиков были чужды России, здесь сразу начало развиваться подлинное ремесло по изготовлению лекарств. Приготовлением и контролем качества лекарств в аптеках занимались алхимисты (термин "алхимист" не имеет ничего общего с алхимией).

Подготовка кадров фармацевтов осуществлялась открытой в 1706 г. в Москве первой медицинской школой. Одной из специальных дисциплин в ней была фармацевтическая химия. Многие русские химики получили образование в этой школе.

Подлинное развитие химической и фармацевтической науки в России связано с именем М.В.Ломоносова. По инициативе М.В.Ломоносова в 1748 г. была создана первая научная химическая лаборатория, а в 1755 г. открыт первый русский университет. Вместе с Академией наук это были центры русской науки, в том числе химической и фармацевтической. М.В.Ломоносову принадлежат замечательные слова о взаимоотношении химии и медицины: "...Медик без довольного познания химии совершенен быть не может, и всех недостатков, всех излишеств и от них происходящих во врачебной науке поползновений; дополнения, отвращения и Исправления от одной почти химии уповать должно".

Одним из многочисленных преемников М.В.Ломоносова был аптекарский ученик, а затем крупный русский ученый Т.Е.Ловиц (1757 -- 1804). Он впервые открыл адсорбционную способность угля и применил его для очистки воды, спирта, винной кислоты; разработал способы получения абсолютного спирта, уксусной кислоты, виноградного сахара. Среди многочисленных работ Т.Е.Ловица непосредственное отношение к фармацевтической химии имеет разработка микрокристаллоскопического метода анализа (1798).

Достойным преемником М.В.Ломоносова был крупнейший русский ученый-химик В.М.Севергин (1765 -- 1826). Среди многочисленных его работ наибольшее значение для фармации имеют две книги, изданные в 1800 г.: "Способ испытывать чистоту и неподложность химических произведений лекарственных" и "Способ испытывать минеральные воды". Обе книги являются первыми отечественными руководствами в области исследования и анализа лекарственных веществ. Продолжая мысль М.В.Ломоносова, В.М.Севергин подчеркивает значение химии при оценке качества лекарств: "Без знания в химии испытание лекарств предпринимать не можно". Автор глубоко научно отбирает для исследования лекарств только наиболее точные и доступные методы анализа. Предложенный В.М.Севергиным порядок и план исследования лекарственных веществ мало изменился и используется сейчас при составлении Государственных фармакопей. В.М.Севергин создал научную основу не только фармацевтического, но и химического анализа в нашей стране.

"Энциклопедией фармацевтических знаний" по праву называют труды русского ученого А.П.Нелюбина (1785 -- 1858). Он впервые сформулировал научные основы фармации, выполнил ряд прикладных исследований в области фармацевтической химии; усовершенствовал способы получения солей хинина, создал приборы для получения эфира и для испытания мышьяка. А.П.Нелюбин провел широкие химические исследования кавказских минеральных вод.

До 40-х годов XIX в. в России было немало ученых-химиков, внесших своими трудами большой вклад в развитие фармацевтической химии. Однако работали они разрозненно, почти не существовало химических лабораторий, не было оборудования и научных химических школ.

Первые химические школы и создание новых химических теорий в России. Первые русские химические школы, основателями которых были А.А.Воскресенский (1809-1880) и Н.Н.Зинин (1812-1880), сыграли важную роль в подготовке кадров, в создании лабораторий, оказали большое влияние на развитие химических наук, в том числе и фармацевтической химии. А.А.Воскресенский выполнил со своими учениками ряд исследований, имеющих непосредственное отношение к фармации. Ими выделен алкалоид теобромин, проведены исследования химической структуры хинина. Выдающимся открытием Н.Н.Зинина была классическая реакция превращения ароматических нитросоединений в аминосоединения.

Д.И.Менделеев писал, что А.А.Воскресенский и Н.Н.Зинин являются "основателями самостоятельного развития химических знаний в России". Мировую известность принесли России их достойные преемники Д.И.Менделеев и А.М.Бутлеров.

Д.И.Менделеев (1834 -- 1907) является создателем Периодического закона и Периодической системы элементов. Огромное значение Периодического закона для всех химических наук общеизвестно, но он содержит и глубокий философский смысл, так как показывает, что все элементы образуют единую связанную общей закономерностью систему. В своей многогранной научной деятельности Д.И.Менделеев уделял внимание и фармации. Еще в 1892 г. он писал о необходимости "устройства в России заводов и лабораторий для производства фармацевтических и гигиенических препаратов" с целью освобождения от импорта.

Работы А.М.Бутлерова также способствовали развитию фармацевтической химии. А.М.Бутлеров (1828 -- 1886) получил в 1859 г. уротропин; изучая строение хинина, открыл хинолин. Он синтезировал сахаристые вещества из формальдегида. Однако мировую славу ему принесло создание (1861) теории строения органических соединений.

Периодическая система элементов Д.И.Менделеева и теория строения органических соединений А.М.Бутлерова оказали решающее влияние на развитие химической науки и ее связь с производством.

Исследования в области химиотерапии и химии природных веществ. В конце XIX Bv в России были проведены новые исследования природных веществ. Еще в 1880 г. задолго до работ польского ученого Функа русский врач Н.И Лунин высказал предположение о наличии в пище кроме белка, жира, сахара "веществ, незаменимых для питания". Он экспериментально доказал существование этих веществ, которые позже были названы витаминами.

В 1890 г. в Казани была издана книга Е.Шацкого "Учение о растительных алкалоидах, глюкозидах и птомаинах". В ней рассматриваются алкалоиды, известные к тому времени в соответствии с их классификацией по производящим растениям. Описаны способы экстракции алкалоидов из растительного сырья, в том числе аппарат, предложенный Е.Шацким.

В 1897 г. в Петербурге была опубликована монография К.Рябинина "Алкалоиды (Химико-физиологические очерки)". Во введении автор указывает о насущной необходимости "иметь на русском языке такое сочинение об алкалоидах, которое при небольшом объеме давало бы точное, существенное и всестороннее понятие об их свойствах". Монография имеет небольшое введение с описанием общих сведений о химических свойствах алкалоидов, а также разделы, в которых приведены суммарные формулы, физические и химические свойства, реактивы, используемые для идентификации, а также сведения о применении 28 алкалоидов.

Химиотерапия возникла на рубеже XX в. в связи с бурным развитием медицины, биологии и химии. Свой вклад в ее развитие внесли как отечественные, так и зарубежные ученые. Один из создателей химиотерапии -- русский врач Д.JI.Романовский. Он сформулировал в 1891 г. и подтвердил экспериментально основы этой науки, указав, что нужно искать "вещество", которое при введении в заболевший организм окажет наименьший вред последнему и вызовет наибольшее деструктивное действие в патогенном агенте. Это определение сохранило свое значение до наших дней.

Широкие исследования в области применения красителей и элементорганических соединений в качестве лекарственных веществ были проведены немецким ученым П.Эрлихом (1854 -- 1915) в конце XIX в. Им впервые предложен термин "химиотерапия". На основе разработанной П.Эрлихом теории, названной принципом химической вариации, многие, в том числе русские (О.Ю.Магидсон, М.Я.Крафт, М.В.Рубцов, А.М.Григоровский), ученые создали большое число химиотерапевтических средств, обладающих противомалярийным действием.

Создание сульфаниламидных препаратов, положившее начало новой эры в развитии химиотерапии, связано с изучением азокрасителя пронтозила, открытого в поисках препаратов для лечения бактериальных инфекций (Г.Домагк). Открытие пронтозила явилось подтверждением преемственности научных исследований -- от красителей к сульфаниламидам.

Современная химиотерапия располагает огромным арсеналом лекарственных средств, среди которых важнейшее место занимают антибиотики. Впервые открытый в 1928 г. англичанином А.Флемингом антибиотик пенициллин явился родоначальником новых химиотерапевтических средств, эффективных в отношении возбудителей многих заболеваний. Работам А.Флеминга предшествовали исследования русских ученых. В 1872 г. В.А.Манассеин установил отсутствие бактерий в культуральной жидкости при выращивании зеленой плесени (Pйnicillium glaucum). А.Г.Полотебнов экспериментально доказал, что очистка от гноя и заживление раны происходят быстрее, если к ней приложить плесень. Антибиотическое действие плесени было подтверждено в 1904 г. ветеринарным врачом М.Г.Тартаковским в опытах с возбудителем куриной чумы.

Исследование и производство антибиотиков привело к созданию целой отрасли науки и промышленности, совершило революцию в области лекарственной терапии многих заболеваний.

Таким образом, проведенные учеными России в конце XIX в. исследования в области химиотерапии и химии природных веществ заложили основы получения новых эффективных лекарственных средств в последующие годы.

2.3 Развитие фармацевтической химии в СССР

Становление и развитие фармацевтической химии в СССР происходило в первые годы советской власти в тесной связи с химической наукой и производством. Сохранились созданные в России отечественные школы химиков, которые оказали огромное влияние на развитие фармацевтической химии. Достаточно назвать крупные школы химиков-органиков А.Е.Фаворского и Н.Д.Зелинского, исследователя химии терпенов С.С.Наметкина, создателя синтетического каучука С.ВЛебедева, В.И.Вернадского и А.Е.Ферсмана -- в области геохимии, Н.С.Курнакова -- в области физико-химических методов исследования. Центром науки в стране является Академия наук СССР (теперь - НАН).

Подобно другим прикладным наукам, фармацевтическая химия может развиваться только на основе фундаментальных теоретических исследований, которые велись в научно-исследовательских институтах химического и медико-биологического профиля АН СССР (НАН) и АМН СССР (теперь АМН). Ученые академических институтов принимают непосредственное участие и в создании новых лекарственных препаратов.

Еще в 30-е годы в лабораториях А.Е.Чичибабина были проведены первые исследования в области химии природных биологически активных веществ. Последующее развитие эти исследования нашли в трудах И.Л.Кнунянца. Он вместе с О.Ю.Магидсоном был создателем технологии производства отечественного противомалярийного препарата акрихина, позволившего освободить нашу страну от импорта противомалярийных средств.

Важный вклад в развитие химии лекарственных средств, имеющих гетероциклическую структуру, внес Н.А.Преображенский. Им совместно с сотрудниками разработаны и внедрены в производство новые методы получения витаминов А, Е, РР, осуществлен синтез пилокарпина, проведены исследования коферментов, липидов и других природных веществ.

Большое влияние на развитие исследований в области химии гетероциклических соединений и аминокислот оказал В.М.Родионов. Он был одним из основателей отечественной промышленности тонкого органического синтеза и химико-фармацевтической промышленности.

Очень большое влияние на развитие фармацевтической химии оказали исследования школы А.П.Орехова в области химии алкалоидов. Под его руководством разработаны методы выделения, очистки и определения химической структуры многих алкалоидов, которые затем нашли применение в качестве лекарственных препаратов.

По инициативе М.М.Шемякина создан Институт химии природных соединений. Здесь ведутся фундаментальные исследования в области химии антибиотиков, пептидов, белков, нуклеотидов, липидов, ферментов, углеводов, стероидных гормонов. На этой основе созданы новые лекарственные препараты. В институте заложены теоретические основы новой науки -- биоорганической химии.

В решение проблем очистки биологически активных соединений от сопутствующих веществ большой вклад внесли исследования, проведенные Г.В.Самсоновым в Институте высокомолекулярных соединений.

Тесные узы связывают Институт органической химии с исследованиями в области фармацевтической химии. В годы Великой Отечественной войны здесь были созданы такие препараты, как бальзам Шостаковского, фенамин, а позже промедол, поливинилпирролидон и др. Исследования, проведенные в институте в области химии ацетилена, позволили разработать новые способы синтеза витаминов А и Е, а реакции синтеза производных пиридина легли в основу новых путей получения витамина Ве и его аналогов. Проведены работы в области синтеза противотуберкулезных антибиотиков и изучения механизма их действия.

Широкое развитие получили исследования в области элементорганических соединений, проводимые в лабораториях А.Н.Несмеянова, А.Е.Арбузова и Б.А.Арбузова, М.И.Кабачника, И.Л.Кнунянца. Эти исследования явились теоретической основой создания новых лекарственных препаратов, представляющих собой элементорганические соединения фтора, фосфора, железа и других элементов.

В Институте химической физики Н.М.Эмануэлем было впервые высказано представление о роли свободных радикалов в подавлении функции опухолевой клетки. Это позволило создать новые противоопухолевые препараты.

Развитию фармацевтической химии в немалой степени способствовали также достижения отечественной медицинской и биологической наук. Огромное влияние оказали работы школы великого русского физиолога И.П.Павлова, работы А.Н.Баха и А.В.Палладина в области биологической химии и т.д.

В Институте биохимии им. А.Н.Баха под руководством В.Н.Букина осуществлена разработка методов промышленного микробиологического синтеза витаминов В12, В15 и др.

Проводимые в институтах НАН фундаментальные исследования в области химии и биологии создают теоретическую основу для разработки направленного синтеза лекарственных веществ. Особенно важны исследования в области молекулярной биологии, которая дает химическое истолкование механизма биологических процессов, происходящих в организме, в том числе и под воздействием лекарственных веществ.

Большой вклад в создание новых лекарственных препаратов вносят научно-исследовательские институты АМН. Широкие синтетические и фармакологические исследования ведут институты НАН совместно с Институтом фармакологии АМН. Такое содружество позволило осуществить разработку теоретических основ направленного синтеза ряда лекарственных препаратов. Ученые химики-синтетики (Н.В.Хромов-Борисов, Н.К.Кочетков), микробиологи (З.В.Ермольева, Г.Ф.Гаузе и др.), фармакологи (С.В.Аничков, В.В.Закусов, М.Д.Машковский, Г.Н.Першин и др.) создали оригинальные лекарственные вещества.

На основе фундаментальных исследований в области химических и медико-биологических наук развивалась в нашей стране и стала самостоятельной отраслью фармацевтическая химия. Уже в первые годы советской власти были созданы научно-исследовательские институты фармацевтического профиля.

В 1920 г. в Москве был открыт Научно-исследовательский химико- фармацевтический институт, который в 1937 г. переименован во ВНИХФИ им. С.Орджоникидзе. Несколько позже такие институты (НИХФИ) созданы в Харькове (1920), Тбилиси (1932), Ленинграде (1930) (в 1951 г. ЛенНИХФИ был объединен с химико-фармацевтическим учебным институтом). В послевоенные годы образован НИХФИ в Новокузнецке.

ВНИХФИ -- один из крупнейших научных центров в области создания новых лекарственных средств. Силами ученых этого института была решена йодная проблема в нашей стране (О.Ю.Магидсон, А.Г.Байчиков и др.), разработаны способы получения противомалярийных препаратов, сульфаниламидов (О.Ю.Магидсон, М.В.Рубцов и др.), противотуберкулезных средств (С.И.Сергиевская), мышьякорганических препаратов (Г.А.Кирхгоф, М.Я.Крафт и др.), стероидных гормональных препаратов (В.И.Максимов, Н.Н.Суворов и др.), проведены крупные исследования в области химии алкалоидов (А.П.Орехов). Сейчас этот институт носит название "Центр химии лекарственных средств" -- ВНИХФИ им. С.Орджоникидзе. Здесь сосредоточены научные кадры, осуществляющие координацию деятельности по созданию и внедрению в практику работы химико-фармацевтических предприятий новых лекарственных веществ.

Подобные документы

    Предмет и объект фармацевтической химии, ее связь с другими дисциплинами. Современные наименования и классификация лекарственных средств. Структура управления и основные направления фармацевтической науки. Современные проблемы фармацевтической химии.

    реферат , добавлен 19.09.2010

    Краткий исторический очерк развития фармацевтической химии. Развитие фармацевтики в России. Основные этапы поиска лекарственных веществ. Предпосылки создания новых лекарственных препаратов. Эмпирический и направленный поиск лекарственных веществ.

    реферат , добавлен 19.09.2010

    Особенности и проблемы развития отечественного фармацевтического рынка на современном этапе. Статистика потребления готовых лекарственных средств российского производства. Стратегический сценарий развития фармацевтической отрасли в Российской Федерации.

    реферат , добавлен 02.07.2010

    Связь проблем фармацевтической химии с фармакокинетикой и фармакодинамикой. Понятие о биофармацевтических факторах. Способы установления биологической доступности лекарственных средств. Метаболизм и его роль в механизме действия лекарственных веществ.

    реферат , добавлен 16.11.2010

    Критерии фармацевтического анализа, общие принципы испытаний подлинности лекарственных веществ, критерии доброкачественности. Особенности экспресс-анализа лекарственных форм в условиях аптеки. Проведение экспериментального анализа таблеток анальгина.

    курсовая работа , добавлен 21.08.2011

    Виды и направления деятельности фармацевтической компании "АртЛайф" на рынке биологически активных добавок к пище. Правила производства и контроля качества лекарственных средств. Торговые марки и ассортимент лекарственных средств и препаратов компании.

    курсовая работа , добавлен 02.04.2012

    Специфические особенности фармацевтического анализа. Испытание на подлинность лекарственных препаратов. Источники и причины недоброкачественности лекарственных веществ. Классификация и характеристика методов контроля качества лекарственных веществ.

    реферат , добавлен 19.09.2010

    Виды и свойства лекарственных веществ. Особенности химических (кислотно-основное, не водное титрование), физико-химических (электрохимические, хроматографические) и физических (определение точек затвердевания, кипения) методов фармацевтической химии.

    курсовая работа , добавлен 07.10.2010

    Особенности распространения фармацевтической информации в медицинской среде. Виды медицинской информации: алфавитно-цифровая, визуальная, звуковая и др. Законодательные акты, регулирующие рекламную деятельность в сфере обращения лекарственных средств.

    курсовая работа , добавлен 10.07.2017

    Фармацевтическая индустрия как один из наиболее важных элементов современной системы здравоохранения. Знакомство с истоками современной медицинской науки. Рассмотрение основных особенностей развития фармацевтической отрасли в Республике Беларусь.

. активность , физ. и хим. св-ва, а также методы качеств, и количеств, анализа. Осн. проблемы фармацевтической химии : получение биологически активных в-в и их исследование; выявление закономерности между строением и биол . активностью хим. соед.; совершенствование оценки качества лек. ср-в для обеспечения их макс, терапевтич. эффективности и безопасности; исследование и разработка методов анализа лек. в-в в биол . объектах для токсикологич. и эколо-го-фармацевтич. мониторинга.

Ф армацевтическая химия тесно связана со спец. дисциплинами, такими, как технология лек. форм, фармакогнозия (изучает лек. сырье растит, и животного происхождения), организация и экономика фармации, и входит в комплекс дисциплин, формирующих базовое фармацевтич. образование.

Применение хим. B-B в качестве лек. ср-в осуществлялось уже в античной и средневековой медицине (Гиппократ, Гален, Авиценна). Возникновение фармацевтической химии обычно связывают с именем Парацельса (способствовал внедрению хим. препаратов в медицину) и последующими открытиями лечебного действия MH. хим. соед. и элементов (К. Шееле, Л. Воклен, Б. Куртуа), а также с работами M. В. Ломоносова и его школы по способам получения и методам исследования качества лек. ср-в. Формирование фармацевтической химии как науки относят ко 2-й пол. 19 в. К этапным периодам развития фармацевтической химии следует отнести 90-е гг. 19 в. (получение аспирина , фенацетина , барбитуратов), 1935-37 (применение сульфаниламидов), 1940-42 (открытие пенициллина), 1950 (психотропные препараты группы фено-тиазина), 1955-60 (полусинтетич. пенициллины и позже це-фалоспорины), 1958 (b -адреноблокаторы) и 80-е гг. (антибактериальные препараты группы фторхинолонов).

Предпосылками для поиска лек. ср-ва обычно служат данные о биол . активности в-ва, схожести его структуры с биогенными физиологически активными в-вами (напр., разл. метаболитами , гормонами). Иногда лек. ср-ва удается получать модификацией биогенных соед. (напр., стероидных гормонов животных) или благодаря исследованию в-в, чуждых человеческому организму (напр., производные фенотиазина и бензодиазепина).

Синтетич. в-ва получают путем орг. синтеза или применяют методы микробиологического синтеза , используя достижения генетической инженерии .

Важное значение в фармацевтической химии имеют методы исследования содержания лек. в-ва в препарате, его чистоты и др. факторов, положенных в основу показателей качества. Анализ лек. ср-в, или фармацевтич. анализ, имеет своей целью идентифицировать и осуществить количественное определение осн. компонента (или компонентов) в лекарстве. Фармацевтич. анализ в зависимости от фармакологич. действия лекарства (назначение, дозировка, способ введения)· предусматривает определение примесей, вспомогат. и сопутствующих в-в в лек. формах. Лек. ср-ва оценивают комплексно, по всем показателям. Поэтому выражение "фармакопейное качество" означает пригодность препарата для применения в медицине.

Соответствие лек. ср-в требуемому уровню качества устанавливают с помощью стандартных методов анализа, обычно оговоренных в фармакопее. Для идентификации лек. в-в наряду с групповыми хим. р-циями используют ЯМР и ИК спектроскопию . Для анализа многокомпонентных лек. форм обычно применяют тонкослойную хроматографию . Испытания на чистоту призваны подтвердить отсутствие (в пределах используемого метода) отдельных примесей, а в ряде случаев провести оценку их содержания. Для этой цели используют хроматографич. методы, часто в сочетании с оптическими.

Фармакокинетич. характеристики лек. ср-в (действие препарата и его распределение в организме во времени) представляют исключительно важную и обязательную информацию, обеспечивающую рациональное и эффективное применение лекарств, позволяют расширить знания в отношении

Год выпуска: 2004

Жанр: Фармакология

Формат: DjVu

Качество: Отсканированные страницы

Описание: Объем материала, изложенного в учебнике «Фармацевтическая химия», значительно превышает содержание учебной программы для фармацевтических училищ. Авторы умышленно пошли на такое расширение, учитывая примеры некоторых зарубежных и отечественных учебников, где предмет излагается с привлечением информации о последних научных достижениях. Это позволяет преподавателю самостоятельно осуществить отбор материала, рекомендованного программой в соответствии со сложившимися традициями учебного заведения. Принимая во внимание высокий уровень подготовки некоторых студентов, более широкое изложение предмета поможет им при изучении некоторых разделов.
Особенностью изложения материала является использование данных Российской энциклопедии лекарственных средств (2003), Фармакопеи США (USP-24), Европейской Фармакопеи (ЕФ-2002), Британской Фармакопеи (БФ-2001), научных изданий последних лет и текущей научной периодики по химии лекарственных средств (ЛС). Использование зарубежных фармакопеи при подготовке учебника вполне оправданно, так как отечественная Фармакопея в полном объеме не переиздавалась с 1968 г., а получение временных фармакопейных статей учебными заведениями сопряжено с ощутимыми материальными затратами. Кроме того, в России, как известно, ведется работа по внедрению методов GP (Good Practice - надлежащей практики) в фармацию на всех этапах «жизни» лекарства. Надлежащая фармацевтическая практика перешагнула границы США и Европы. Поэтому будущая отечественная Фармакопея непременно впитает в себя многое положительное, что достигнуто и используется в странах, входящих в сообщество Европейской Фармакопеи (ЕФ) в качестве членов и наблюдателей.
Вполне возможно, что интеграция стран на всех уровнях облегчит задачу присоединения России к Европейской Фармакопее, как это уже сделали 27 государств. Такое единство, согласование (гармонизация) фармакопеи разных стран не случайно: лекарство, которое мы продаем или приобретаем, перестало принадлежать одной стране. Субстанции, вспомогательные вещества, реагенты, упаковка, методики контроля качества всех компонентов, аппаратура для анализа - плод работы специалистов разных стран. В конечном итоге, ЛС может оказаться на рынке совсем иного государства. К сожалению, в настоящее время требования, применяемые в разных странах для оценки безопасности и эффективности ЛС, отличаются. Вот почему так важен вопрос согласований Фармакопеи различных государств, как выпускающих ЛС, так и применяющих их на своей территории.
Нетрадиционные для фармацевтической химии подходы были использованы для характеристики биологической активности лекарственных веществ в биологических средах. Так, авторы применили методы «рН-диаграмм» и диаграмм «рН-потенциал» для кислотно-основных и окислительно-восстановительных процессов с участием ЛС. При описании особенностей синтеза, анализа, условий хранения, терапевтической активности были использованы фундаментальные законы, в частности, закон действующих масс для равновесия и закон действующих масс для скорости.
Впервые в учебной литературе для оценки пирогенности инъекционных лекарственных форм описан ЛАЛ-тест, включенный в последние фармакопейные издания и отвечающий требованиям GMP (Good Manufacturing Practice - надлежащая производственная практика).
К сожалению, некоторые вопросы, важные для фармацевтической химии, остались вне изложения, что объясняется ограничениями объема издания.
Учебник «Фармацевтическая химия» написан коллективом авторов, представляющих три взаимосвязанных направления - биологию, химию, фармацию.
Глущенко Наталия Николаевна - доктор биологических наук, зав. лабораторией Проблем воздействия тяжелых металлов на биосистемы Института энергетических проблем химической физики РАН.
Плетенева Татьяна Вадимовна - профессор, доктор химических наук, заведующая кафедрой фармацевтической и токсикологической химии медицинского факультета Российского университета дружбы народов.
Попков Владимир Андреевич - профессор, доктор фармацевтических наук, доктор педагогических наук, академик Академии Образования, заведующий кафедрой общей химии Московской медицинской академии им. И.М. Сеченова.
Авторы будут признательны за критические замечания и пожелания по улучшению содержания учебника.

Учебник «Фармацевтическая химия» предназначен для студентов средних медицинских училищ и колледжей, обучающихся по специальности 0405 «Фармация». Отдельные разделы учебника могут быть использованы студентами вузов и слушателями факультетов повышения квалификации.

«Фармацевтическая химия»


ВВЕДЕНИЕ В ХИМИЮ ЛЕКАРСТВЕННЫХ СРЕДСТВ
Содержание фармацевтической химии

  1. Связь фармацевтической химии с другими науками
  2. Основные термины и понятия, используемые в фармацевтической химии
  3. Классификация лекарственных средств
Получение и исследование лекарственных средств. Основные положения и документы, регламентирующие фармацевтический анализ
  1. Источники получения лекарственных средств
  2. Основные направления поиска и создания лекарственных веществ
  3. Критерии качества лекарственных средств
  4. Стандартизация лекарственных средств. Контрольно-разрешительная система обеспечения качества лекарственных средств
  5. Методы анализа лекарственных средств
  6. Общие сведения о методах и испытаниях ЛС на токсичность, стерильность и микробиологическую чистоту
  7. Определение биоэквивалентности и биодоступности лекарственных средств кинетическими методами
  8. Сроки годности и стабилизация лекарственных средств
  9. Внутриаптечный контроль лекарственных средств
ХИМИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ НЕОРГАНИЧЕСКОЙ ПРИРОДЫ
Лекарственные средства s-элементов
  1. Общая характеристика группы
  2. Химия лекарственных средств магния
  3. Химия лекарственных средств кальция
  4. Химия лекарственных средств бария
Лекарственные средства р-элементов
  1. Лекарственные средства р-элементов VII группы
  2. Лекарственные средства р-элементов VI группы
  3. Лекарственные средства V группы
  4. Лекарственные средства р-элементов IV группы
  5. Лекарственные средства р-элементов III группы
Лекарственные средства d- и f-элементов
  1. Лекарственные средства d-элементов I группы
  2. Лекарственные средства d-элементов II группы
  3. Лекарственные средства d-элементов VIII группы
  4. Лекарственные средства f-элементов
Радиофармацевтические лекарственные средства
Гомеопатические лекарственные средства

ХИМИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ ОРГАНИЧЕСКОЙ ПРИРОДЫ
Лекарственные средства органической природы и особенности их анализа
  1. Классификация
  2. Анализ
Ациклические лекарственные средства
  1. Спирты
  2. Альдегиды
  3. Углеводы
  4. Эфиры
  5. Карбоновые кислоты. Аминокарбоновые кислоты и их производные

Карбоциклические лекарственные средства

  1. Аминоспирты ароматического ряда
  2. Фенолы, хиноны и их производные
  3. Ароматические кислоты, гидроксикислоты и их производные
  4. Ароматические аминокислоты
  5. Ароматические ацетаминопроизводные
Гетероциклические лекарственные средства
  1. Производные фурана
  2. Производные пиразола
  3. Производные имидазола
  4. Производные пиридина
  5. Производные пиримидина
  6. Производные тропана
  7. Производные хинолина
  8. Производные изохинолина
  9. Производные пурина
  10. Производные изоаллоксазина
Антибиотики
  1. Антибиотики с азетидиновым ядром (р-лактамиды)
  2. Антибиотики тетрациклинового ряда
  3. Антибиотики - аминогликозиды
  4. Антибиотики ароматического ряда - производные нитрофенилалкиламинов (группа левомицетина)
  5. Антибиотики макролиды и азалиды

Список литературы

Информация по специальности

Кафедра органической химии химико-технологического факультета готовит дипломированных специалистов по специальности 04.05.01 «Фундаментальная и прикладная химия», специализации «Органическая химия» и «Фармацевтическая химия». Коллектив кафедры - высококвалифицированные преподаватели и научные сотрудники: 5 докторов наук и 12 кандидатов химических наук.

Профессиональная деятельность выпускников

Выпускники готовятся к следующим видам профессиональной деятельности: научно-исследовательской, научно-производственной, педагогической, проектной и организационно-управленческой. Специалист-химик специальности «Фундаментальная и прикладная химия» будет готов решать следующие профессиональные задачи: планирование и постановка работы, которая включает исследование состава, строения и свойств веществ и химических процессов, создание и разработка новых перспективных материалов и химических технологий, решение фундаментальных и прикладных задач в области химии и химической технологии; подготовка отчета и научных публикаций; научно-педагогическая деятельность в вузе, в среднем специальном учебном заведении, в средней школе. Успевающие студенты, занимающиеся научной работой, могут пройти стажировку, принять участие в научных конференциях, олимпиадах и конкурсах различного уровня, а также представить результаты научной работы для публикации в российских и зарубежных научных журналах. В распоряжении обучающихся имеются химические лаборатории, оснащенные современным оборудованием и компьютерный класс, с необходимой литературой и доступом к полнотекстовым электронным базам данных.

Специалисты будут:

  • владеть навыками химического эксперимента, основными синтетическими и аналитическими методами получения и исследования химических веществ и реакций;
  • представлять основные химические, физические и технические аспекты химического промышленного производства с учетом сырьевых и энергетических затрат;
  • владеть навыками работы на современной учебно-научной аппаратуре при проведении химических экспериментов;
  • иметь опыт работы на серийной аппаратуре, применяемой в аналитических и физико-химических исследованиях (газо-жидкостная хроматография, инфракрасная и ультрафиолетовая спектроскопия);
  • владеть методами регистрации и обработки результатов химических экспериментов.
  • Владеть навыками планирования, постановки и проведения химических экспериментов в области тонкого органического синтеза для получения веществ с заданными полезными свойствами

Студенты приобретают знания в области основ неорганической химии, органической химии, физической и коллоидной химии, аналитической химии, планирования органического синтеза, химии алициклических и каркасных соединений, катализа в органическом синтезе, химии элементорганических соединений, фармацевтической химии, современных методов анализа и контроля качества лекарственных средств, основ медицинской химии, основ технологии фармацевтических препаратов, основ фармацевтического анализа. В ходе практических занятий обучающиеся получают навыки работы в современной химической лаборатории, осваивают методы получения и анализа новых соединений. Студенты владеют навыками работы на газо-жидкостном хроматографе, инфракрасном спектрофотометре, ультрафиолетовом спектрофотометре. Студенты проходят углубленное изучение иностранного языка (в течение 3 лет).

В процессе обучения студенты осваивают методы работы на аналитическом оборудовании кафедры «Органическая химия»:

Хромато-масс спектрометр Finnigan Trace DSQ

ЯМР спектрометр JEOL JNM ECX-400 (400 МГц)

ВЭЖХ/МС с времяпролетным масс-спектрометром высокого разрешения с источником ионизации ESI и DART, с диодноматричным и флуориметрическим детекторами

Система препаративной флэш-хроматографии с УФ и ELSD детекторами Reveleris X2

Инфракрасный-Фурье спектрометр Shimadzu IRAffinity-1

Жидкостный хроматограф Waters с УФ и рефрактометрическими детекторами

Дифференциальный сканирующий калориметр ТА Instruments DSC-Q20

Автоматический C,H,N,S анализатор EuroVector EA-3000

Сканирующий спектрофлуориметр Varian Cary Eclipse

Автоматический поляриметр AUTOPOL V PLUS

Автоматический прибор для определения температуры плавления OptiMelt

Высокопроизводительная вычислительная станция

В процессе обучения предусмотрена ознакомительная и химико-технологическая практики в лабораториях предприятий:

  • ЗАО «Всероссийский научно-исследовательский институт органического синтеза НК»;
  • ОАО «Средневолжский научно-исследовательский институт по нефтепереработке» НК Роснефть;
  • ЗАО «ТАРКЕТТ»;
  • Самарская ТЭЦ;
  • ОАО «Сызранский НПЗ» НК Роснефть;
  • ОАО «Гипровостокнефть»;
  • ОАО «Завод авиационных подшипников»;
  • ООО «Новокуйбышевский завод масел и присадок» НК Роснефть;
  • ЗАО «Нефтехимия»
  • ООО «Пранафарм»
  • ООО «Озон»
  • ОАО «Электрощит»
  • ФГУП ГНПРКЦ
  • «ЦСКБ-Прогресс»
  • ОАО "Балтика"
  • ПАО «СИБУР Холдинг», Тольятти

Успевающие студенты, занимающиеся научной работой, могут пройти стажировки, принять участие в научных конференциях, олимпиадах и конкурсах различного уровня, а также представить результаты научной работы для публикации в российских и зарубежных научных журналах. Специалисты, получившие подготовку по специальности «Фундаментальная и прикладная химия», востребованы в лабораториях государственных научных центров и частных компаний, в исследовательских и аналитических лабораториях различных производств (химических, пищевых, металлургических, фармацевтических, нефтехимических и газодобывающих), в экспертно-криминалистических лабораториях; в таможенных лабораториях; диагностических центрах; санитарно-эпидемиологических станциях; организациях экологического контроля; центрах сертификационных испытаний; предприятиях химической промышленности, черной и цветной металлургии; в учебных заведениях системы среднего профессионального образования; отделах охраны труда и производственной санитарии; метеорологических станциях.

Присваивается квалификация «Химик. Преподаватель химии» по специализации «Органическая химия» или «Фармацевтическая химия». Зачисление по результатам ЕГЭ: химия, математика и русский язык. Срок обучения: 5 лет (очно). Возможно поступление в аспирантуру.

Предмет и задачи фармацевтической химии.

Фармацевтическая химия (ФХ) - наука, изучающая способы получения,

строения, физические и химические свойства лекарственных веществ; взаимосвязь между их химической структурой и действием на организм; методы контроля качества лекарств и изменения, происходящие при их хранении. Задачи, стоящие перед нею, решаются с помощью физических, химических и физико-химических методов исследования, использующихся как для синтеза, так и для анализа лекарственных веществ. ФХ базируется на теории и законах смежных химических наук: неорганической, органической, аналитической, физической и биологической химии. Она тесно связана с фармакологией, медико-биологическими и клиническими дисциплинами.

Терминология в ФХ

Объектом изучения ФХ являются фармакологические и лекарственные средства. Первыми из них являются вещество или смесь веществ с установленной фармакологической активностью, являющиеся объектом клинических испытаний. После проведения клинических испытаний и получения положительных результатов средств утверждается Фармакологическим и Фармакопейным комитетами к применению и получает название лекарственное средство. Лекарственное вещество - это вещество, представляющее собой индивидуальное химическое соединение или биологическое вещество. Лекарственная форма - это удобное для применения состояние, придаваемое лекарственному средству, при котором достигается необходимый лечебный эффект. К ней относят порошки, таблетки, растворы, мази свечи. Лекарственная форма, изготовленная определенным предприятием и получившая фирменное название, называется препаратом.

Источники лекарственных средств

Лекарственные вещества по своей природе делятся на неорганические и органические. Они могут быть получены из природных источников и синтетически. Сырьем для получения неорганических веществ могут быть горные породы, газы, вода морей, отходы производства и т.д. Органические лекарственные вещества получают из нефти, угля, горючих сланцев, газов, тканей растений, животных, микроорганизмов и др. источников. В последние десятилетия резко увеличилось количество лекарств, получаемых синтетически.

Нередко полный химический синтез многих соединений (алкалоидов, антибиотиков, гликозидов и др.) технически сложный и используются новые методы получения лекарственных средств: полусинтез, биосинтез, генная инженерия, культура тканей и др.. При помощи полусинтеза получают лекарства из полупродуктов естественного происхождения, например полусинтетические пенициллины, цефалоспорины и др. Биосинтез - это естественный синтез конечного продукта живыми организмами на основе природных полупродуктов.

Суть генной инженерии заключается в изменении генетических программ микроорганизмов путем введения в их ДНК генов, кодирующих биосинтез определенных лекарств, например инсулина. Культура тканей - это размножение в искусственных условиях клеток животных или растений, которые становятся сырьем для производства лекарств. Для выработки последних используются также гидробионты, растительные и животные организмы морей и океанов.

Классификация лекарственных веществ.

Существует два типа классификации большого количества применяющихся лекарственных веществ: фармакологическая и химическая. Первая из них разделяет лекарственные вещества на группы в зависимости от механизма действия на отдельные органы и системы организма (центральную нервную, сердечно­сосудистую, пищеварительную и др.). Такая классификация удобная для использовании в лечебной практике. Недостатком ее является то, что в одной группе могут оказаться вещества с различным химическим строением, что затрудняет унификацию методов их анализа.

Согласно химической классификации лекарственные вещества подразделяются на группы, исходя из общности их химической структуры и химических свойств независимо от фармакологического действия. Например, производные пиридина оказывают разное действие на организм: никотинамид является витамином РР, диэтиламид никотиновой кислот (кордиамин) стимулирует центральную нервную систему и т.д. Химическая классификация удобна тем, что позволяет выявить зависимость между структурой и механизмом действия лекарственных веществ, а также позволяет унифицировать методы их анализа. В некоторых случаях используется смешанная классификация, позволяющая использовать преимущества фармакологической и химической классификации лекарств.

Требования, предъявляемые к лекарственным средствам.

Качество лекарственного препарата определяют по внешнему виду, растворимости, установлению его подлинности, степени чистоты и количественном определении содержания в препарате чистого вещества. Комплекс этих показателей составляет суть фармацевтического анализа, результаты которого должны соответствовать требованиям Государственной фармакопеи (ГФ).

Подлинность лекарственного вещества (подтверждение идентичности его) устанавливают при помощи химических, физических и физико-химических методов исследования. Химические методы включают реакции на входящие в структуру лекарства функциональные группы, характерные для данного вещества: Ими, согласно ГФ, являются реакции на амины ароматические первичные, аммоний, ацетаты, бензоаты, бромида, висмут, железо закисное и окисное, иодиды, калий, кальций, карбонаты (гидрокарбонаты), магний, мышьяк, натрий, нитраты, нитриты, ртуть окисную, салицилаты, сульфаты, сульфиты, тартраты, фосфаты, хлориды, цинк и цитраты.

Физические методы установления подлинности лекарственного средства включают определение его: 1) физических свойств: агрегатного состояния, окраски, запаха, вкуса, формы кристаллов или вида аморфного вещества, гигроскопичности или степени выветривания на воздухе, летучести, подвижности и воспламеняемости и 2) физических констант: температур плавления (разложения) и затвердевания, плотности, вязкости, растворимости в воде и других растворителях, прозрачности и степени мутности, окраски, золы, не растворимой в соляной кислоте и сульфатной и летучих веществ и воды.

Физико-химические методы исследования подлинности заключаются в применении приборов для химического анализа: спектрофотометров, флуорометров, пламенных фотометров, оборудования для хроматографии и др.

Примеси в лекарственных средствах и их источники.

Многие лекарственные средства содержат те или иные примеси посторонних веществ. Превышение их уровня может вызвать нежелательное действие. Причинами попадания примесей в лекарственные вещества могут быть недостаточная очистка исходного сырья, побочные продукты синтеза, механические загрязнения, примеси материалов, из которых сделана аппаратура, нарушение условий хранения.

ГФ требует либо полного отсутствия примесей, либо допускает определенный для данного препарата максимально допустимый предел их, который не влияет на качество и лечебный эффект лекарства. Для определения допустимого предела примесей ГФ предусмотрены эталонные растворы. Результат реакции на ту или иную примесь сравнивается с результатом реакции, проведенными с теми же реактивами и в том же объеме с эталонным, стандартным раствором, содержащим допустимое количество примеси. Определение степени чистоты лекарственного препарата включает испытание на: хлориды, сульфаты, соли аммония, кальция, железа, цинка, тяжелых металлов и мышьяк.

региона.Государственная фармакопея СССР (ГФ СССР)

ГФ СССР - сборник обязательных общегосударственных стандартов и положений, нормирующих качество лекарственных веществ. Она основана на принципах советского здравоохранения и отражает современные достижения в области фармации, медицины, химии и других смежных наук. Советская фармакопея является общегосударственным документом, она отражает социальную сущность советского здравоохранения, уровень науки и культуры населения нашей страны. Государственная фармакопея СССР имеет законодательный характер. Ее требования, предъявляемые к лекарственным средствам, являются обязательными для всех предприятий и учреждений Советского Союза, которые изготавливают, хранят, контролируют качество и применяют лекарственные средства.

Первое издание Советской фармакопеи, названное VII изданием Государственной фармакопеи СССР (ГФ VII), было введено в действие в июле 1926 г. Для ее создания в 1923 г. в Народном комиссариате здравоохранения РСФСР была образована специальная фармакопейная комиссия под председательством проф. А. Е. Чичибабина. Первая Советская фармакопея отличалась от предыдущих изданий повышенным научным уровнем, стремлением к возможной замене медикаментов, изготавливаемых из импортируемого сырья, на лекарственные препараты отечественного производства. Более высокие требования предъявлялись в ГФ VII не только к лекарственным препаратам, но и к продуктам, используемым для их изготовления.

Исходя из указанных принципов в ГФ VII было включено 116 статей на новые лекарственные препараты и исключено 112 статей. Существенные изменения были внесены в требования к контролю качества лекарств. Был предусмотрен ряд новых методов химической и биологической стандартизации лекарств, включено 30 общих статей в виде приложений, даны описания некоторых общих реакций, применяемых для определения качества лекарственных препаратов, и т.д. Органолептический контроль многих препаратов был впервые заменен более объективными физико-химическими методами, введены биологические методы контроля.

Таким образом, в ГФ VII первостепенное внимание было уделено совершенствованию контроля качества лекарств. Этот принцип нашел свое дальнейшее развитие в последующих изданиях фармакопей.

В 1949 г. вышло в свет VIII издание, а в октябре 1961 г. – IX издание Государственной фармакопеи СССР. К этому времени были созданы новые группы высокоэффективных лекарств (сульфаниламиды, антибиотики, психотропные, гормональные и другие препараты), которые потребовали разработки новых методов фармацевтического анализа.

X издание Государственной фармакопеи (ГФ X) введено в действие с 1 июля 1969 г. Оно отразило новые успехи отечественной фармацевтической и медицинской науки и промышленности.

Принципиальным отличием ГФ IX и ГФ X является переход на новую международную терминологию лекарственных препаратов, а также существенное обновление как номенклатуры, так и способов контроля качества лекарств.

В ГФ X значительно повышены требования к качеству лекарственных препаратов, усовершенствованы способы фармакопейного анализа, расширена область применения физико-химических методов. Многочисленные общие статьи, справочные таблицы и другие материалы, включенные в ГФ X, отразили требования, необходимые для оценки качественных и количественных характеристик лекарственных средств.

Государственная фармакопея СССР X издания включает 4 части: «Вводную часть»; «Препараты» (частные и групповые статьи); «Общие методы физико-химического, химического и биологического исследования»; «Приложения».

В «Вводной части» изложены общие принципы построения и порядок пользования ГФ X, указаны составители, изменения, отличающие ГФ X от ГФ IX, список A и список Б лекарственных веществ.

ГФ X содержит 707 статей на лекарственные вещества (в ГФ IX было 754) и 31 групповую статью (в ГФ IX было 27). Обновление номенклатуры на 30% произошло за счет исключения препаратов, снятых с производства, а также имеющих ограниченное применение. Качество последних устанавливают в соответствии с требованиями ГФ IX.

По сравнению ГФ IX увеличилось с 273 до 303 количество индивидуальных (синтетических и природных) лекарственных препаратов, с 10 до 22 препаратов антибиотиков, впервые в ГФ Xвключены радиоактивные препаратов. Среди включенных в ГФ X препаратов – новые сердечно-сосудистые, психотропные, ганглиоблокирующие, противомалярийные, противотуберкулезные средства, препараты для лечения злокачественных новообразований, грибковых заболеваний, новые средства для наркоза, гормональные препараты, витамины. Большинство из них впервые получено в нашей стране.

«Препараты» - основная часть ГФ X (с. 39-740). В 707 статьях изложены требования, предъявляемые к качеству лекарственных средств (нормы качества). Каждый лекарственный препарат в соответствии с требованиями фармакопеи подвергается проверке физических свойств, испытанию подлинности, испытанию на чистоту и определению количественного содержания препарата. В ГФ X детализирована структура статей, отражающих последовательность контроля. Раздел «Свойства» заменен двумя разделами: «Описание» и «Растворимость». Описание реакций подлинности для 25 ионов и функциональных групп сведены в одну общую статью, а в частных статьях на нее даны ссылки.

Изменен порядок расположения статей. Впервые в ГФ X статьи на готовые лекарственные формы расположены после статей на соответствующий лекарственный препарат. В большинстве статей ГФ X имеется рубрика с указанием фармакологического действия препарата. Развернуты сведения о высших дозах препаратов при различных способах введения.

В третьей части ГФ X «Общие методы физико-химического, химического и биологического исследования» приведено краткое описание методов, используемых для фармакопейного анализа, изложены сведения о реактивах, титрованных растворах и индикаторах.

«Приложения» к ГФ X содержат справочные таблицы атомных масс, плотностей, констант (растворителей, кислот, оснований) и других качественных показателей лекарственных препаратов. Сюда же включены таблицы высших разовых и суточных доз ядовитых и сильнодействующих лекарственных препаратов для взрослых, детей, а также и для животных.

После выхода в свет X издания Государственной фармакопеи Министерством здравоохранения СССР разрешен к применению в медицинской практике ряд новых высокоэффективных лекарственных средств. Многие из них впервые разработаны учеными нашей страны. Вместе с этим исключены малоэффективные препараты, на смену которым пришли более современные средства. Поэтому назрела необходимость создания нового XI издания Государственной фармакопеи СССР, которое готовится в настоящее время. К участию в этой работе привлечены научные учреждения и предприятия Министерства здравоохранения СССР, Министерства медицинской промышленности и другие ведомства. В новой Государственной фармакопее найдут отражение современные достижения в области фармацевтического анализа и улучшения качества лекарственных средств.

Национальные и региональные фармакопеи

Систематически через 5-8 лет осуществляют выпуск национальных фармакопей такие крупные капиталистические государства, как США, Великобритания, Франция, ФРГ, Япония, Италия, Швейцария и некоторые другие. Изданные в 1924-1946 гг. фармакопеи Греции, Чили, Парагвая, Португалии, Венесуэлы уже утратили свое значение.

Наряду с фармакопеями в некоторых странах периодически публикуются сборники официальных требований к лекарствам типа Национального формуляра США, Британского фармацевтического кодекса. В них нормируется качество новых лекарственных средств, не вошедших в фармакопеи или входивших в более ранние издания фармакопей.

Первый опыт создания региональной фармакопеи осуществили скандинавские страны (Норвегия, Финляндия, Дания и Швеция). Изданная скандинавская фармакопея с 1965 г. приобрела законодательный характер для этих стран.

Восемь западноевропейских государств (Великобритания, ФРГ, Франция, Италия, Бельгия, Люксембург, Нидерланды и Швейцария), входящих в ЕЭС (Европейское экономическое сообщество), создали в 1964 г. фармакопейную комиссию. Она подготовила и в 1969 г. выпустила в свет первый, а в 1971 г. второй том Фармакопеи ЕЭС (в 1973 г. выпущено дополнение к этим изданиям). В 1976 г. Фармакопея ЕЭС была признана скандинавскими странами, Исландией и Ирландией. Фармакопея ЕЭС имеет законодательный характер, но не заменяет национальные фармакопеи этих стран.

Региональные фармакопеи способствуют унификации номенклатуры и требований к качеству лекарственных средств, получаемых в различных странах

Контроль качества лекарств в аптеках

Внутриаптечный контроль качества лекарств включает не только аналитический контроль, но и систему мероприятий, которые обеспечивают правильное хранение, приготовление и отпуск лекарств. Он основан на строгом соблюдение фармацевтического и санитарного режима в аптеке. Особенно внимательно необходимо выполнять правила хранения медикаментов, технологию приготовления инъекционных растворов, концентратов и глазных капель.

Для внутриаптечного контроля качества лекарств в аптеках должны быть аналитические кабинеты или аналитические столы, оснащенные необходимыми приборами, реактивами, справочной и специальной литературой. Внутриаптечный контроль проводят провизоры-аналитики, входящие в штат крупных аптек, а также провизоры-технологи, в обязанности которых входит проверка качества лекарств. Они имеют оборудованное рабочее место на ассистентском столе или рядом с ним. Заведующий аптекой и его заместители руководят работой по контролю качества лекарств. Они должны владеть всеми видами внутриаптечного контроля, а в небольших аптеках сами выполнять функции провизора-аналитика или провизора-технолога.

Непосредственный аналитический контроль в аптеке включает три основных направления: контроль качества лекарственных веществ, поступающих от промышленности, контроль качества дистиллированной воды и различные виды контроля качества лекарственных форм, изготавливаемых в аптеке.

Лекарственные вещества, поступающие в аптеку от промышленности, независимо от наличия штампа ОТК контролируются на идентичность. Препараты, быстро изменяющиеся при хранении, не реже одного раза в квартал направляются для проверки в контрольно-аналитические лаборатории.

Систематический контроль за доброкачественностью дистиллированной воды в аптеке обеспечивает качество приготовления всех жидких лекарственных форм. Поэтому дистиллированная вода контролируется в каждом баллоне на отсутствие хлоридов, сульфатов т солей кальция. Еще более высокие требования предъявляются к воде, используемых для приготовления инъекционных растворов. Ее на отсутствие восстанавливающих веществ, аммиака, углекислого газа. Не реже одного раза в квартал аптека направляет дистиллированную воду для полного анализа в контрольно-аналитическую лабораторию, а два раза в год в санитарно-бактериологическую лабораторию для проверки отсутствия загрязненности микрофлорой.

Внутриаптечному контролю подвергаются все изготавливаемые в аптеках лекарственные формы. Существует несколько видов контроля: письменный, органолептический, опросный, физический и химический. Письменный, органолептический, опросный и физический контроль осуществляет, как правило, провизор-технолог после изготовления фармацевтом не менее 5 лекарств, а химический контроль – провизор-аналитик.

Письменному контролю подвергаются все изготавливаемые в любой аптеке лекарства. Сущность письменного контроля заключается в том, что фармацевт после приготовления лекарства записывает по памяти на специальном бланке название и общую массу каждого ингредиента или указывает содержание каждого взятого концентрата. Затем бланк вместе с рецептом передается для проверки провизору-технологу. Заполненные бланки хранятся в аптеке 12 дней.

Органолептический контроль включает проверку внешнего вида (цвет, однородность смешения), запаха и вкуса лекарств, отсутствия механических загрязнений. На вкус проверяют все лекарства, приготовленные детям для внутреннего употребления, и выборочно приготовленные для взрослых (исключающие лекарства, содержащие ингредиенты, относящиеся к списку А).

Опросный контроль осуществляет провизор-технолог. Он называет ингредиент, а в сложных лекарствах содержание первого ингредиента. После этого фармацевт называет все остальные ингредиенты и их количества. Если для изготовления лекарства использовались концентраты, то фармацевт перечисляет их с указанием процентного содержания. Опросный контроль проводится сразу же после изготовления лекарств, если они предназначены для инъекций или в их состав входят лекарственные препараты списка А. При сомнении в качестве изготовленного лекарства опросный контроль является дополнительном видом контроля.

Физический контроль заключается в проверки общего объема (массы) приготовленного лекарства или массы отдельных его доз. Контролируется 5-10% от числа доз, прописанных в рецепте, но не менее трех доз. Физический контроль проводится выборочно, периодически в течение всего рабочего дня. Вместе с физическим контролем осуществляют проверку правильности проверку правильности оформления лекарств и соответствие упаковки физико-химическим свойствам ингредиентов, входящих в состав лекарственной формы.

Химический контроль включает качественный и количественный химический анализ лекарств, приготовленных в аптеке. Качественному химическому анализу подвергают все инъекционные растворы (до их стерилизации); глазные капли; каждую серию концентратов, полуфабрикатов и внутриаптечной заготовки; лекарственные препараты, поступающие из отдела запасов в ассистентские; детские лекарственные формы; лекарства, содержащие препараты списка А. Выборочно контролируют лекарства, изготовленные по индивидуальным примесям.

Для выполнения качественного анализа применяют главным образом капельный метод, пользуясь таблицами наиболее характерных реакций.

ой практической работе необходимо изучение основ общей фармацевтической химии и методов изучения качественного и количественного исследования веществ, наиболее часто встречающихся в ветеринарной практике.

Перечень лекарственных средств, подлежащих количественному анализу, зависит от наличия в аптеке провизора-аналитика. Если он есть в штате аптеки, то количественному анализу подвергают все лекарства для инъекций (до стерилизации); глазные капли (содержащие серебра нитрат, атропина сульфат, дикаин, этилморфина пилокарпина гидрохлорид); растворы атропина сульфата для внутреннего употребления; все концентраты, полуфабрикаты и внутриаптечные заготовки. Остальные лекарства анализируют выборочно, но ежедневно у каждого фармацевта. В первую очередь контролируют лекарства, применяемые в детской и глазной практике, а также содержащие препараты списка А. Скоропортящиеся лекарственные средства (растворы пероксида водорода, аммиака и формальдегида, известковую воду, нашатырно-анисовые капли) анализируют не реже одного раза в квартал.

Если провизора-аналитика нет, но в штате аптеки имеется два и более фармацевта, то количественному анализу подвергают растворы для инъекций (до стерилизации), содержащие новокаин, атропина сульфат, кальция хлорид, натрия хлорид, глюкозу; глазные капли, содержащие серебра нитрат, атропина сульфат, пилокарпина гидрохлорид; все концентраты; растворы соляной кислоты. Скоропортящиеся лекарственные средства из этих аптек направляют для проверки в контрольно-аналитические лаборатории.

Качественному и количественному анализу в аптеках VI категории с одним фармацевтом в штате и в аптечных пунктах первой группы подлежат растворы для инъекций, содержащие новокаин и натрия хлорид; глазные капли, содержащие атропина сульфат и серебра нитрат.

Порядок оценки качества лекарств, изготовляемых в аптеках, и нормы допустимых отклонений при изготовлении лекарств установлены приказом по МЗ СССР № 382 от 2 сентября 1961 г. Для оценки качества изготовленных лекарств используют термины: «удовлетворяет» или «не удовлетворяет» требованиям ГФ СССР, ФС, ВФС или инструкциям Министерства здравоохранения СССР.

Особенности фармацевтического анализа.

Фармацевтический анализ – один из основных разделов фармацевтической химии. Он имеет свои специфические особенности, отличающие его от других видов анализа. Онизаключаются в том, что исследованию подвергают вещества различной химической природы: неорганические, элементорганические, радиоактивные, органические соединения от простых алифатических до сложных природных биологически активных веществ. Чрезвычайно широк диапазон концентраций анализируемых веществ. Объектами фармацевтического исследования являются не только индивидуальные лекарственные вещества, но и смеси, содержащие различное число компонентов. Количество использующихся лекарственных средств с каждым годом увеличивается. Это приводит к необходимости как разработки новых способов анализа, так и унификации уже известных.

Непрерывное повышением требований к качеству лекарственных средств диктует необходимости постоянного совершенствования фармацевтического анализа. Причём растут требования как к доброкачественности лекарственных веществ, так и к количественному содержанию. Это вызывает необходимость широкого использования не только химических, но и более чувствительных физико-химических методов для оценки качества лекарств.

К фармацевтическому анализу предъявляют высокие требования. Он должен быть достаточно специфичен и чувствителен, точен по отношению к нормативам, обусловленным ГФ СССР, ВФС, ФС и другой НТД, выполняться в короткие промежутки времени с использованием минимальных количеств испытуемых лекарственных препаратов и реактивов.

Фармацевтический анализ в зависимости от поставленных задач включает различные формы контроля качества лекарств: фармакопейный анализ, постадийный контроль производства лекарственных средств, анализ лекарственных форм индивидуального изготовления, экспресс-анализ в условиях аптеки и биофармацевтический анализ.

Составной частью фармацевтического анализа является фармакопейный анализ. Он представляет собой совокупность способов исследования лекарственных препаратов и лекарственных форм, изложенных в Государственной фармакопее или другой нормативно-технической документации (ВФС, ФС). На основании результатов, полученных при выполнении фармакопейного анализа, делается заключение о соответствии лекарственного средства требованиям ГФ СССР или другой нормативно-технической документации. При отклонении от этих требований лекарство к применению не допускают.

Выполнение фармакопейного анализа позволяет установить подлинность лекарственного средства, его доброкачественность, определить количественное содержание фармакологически активного вещества или ингредиентов, входящих в состав лекарственной формы. Несмотря на то, что каждый из этих этапов имеет свою конкретную цель, их нельзя рассматривать изолированно. Они взаимосвязаны и взаимно дополняют друг друга. Так, например, температура плавления, растворимость, pH среды водного раствора и т.д. являются критериями как подлинности, так и доброкачественности лекарственного вещества.

В ГФ Х описаны методики соответствующих испытаний применительно к тому или иному фармакопейному препарату. Многие из этих методик идентичны. Для обобщения большого объёма частных сведений по фармакопейному анализу будут рассмотрены основные критерии фармацевтического анализа и общие принципы испытаний на подлинность, доброкачественность и количественного определения лекарственных веществ. В отдельных разделах рассмотрены состояние и перспективы применения физико-химических и биологических методов в анализе лекарственных средств.